Solutions to sheet 6 for Math67201/47201

September 25, 2015

1 Sheet 6

Problem 1

(i). The value process of the portfolio ϕ is given by

$$
V_{\phi}(t)=\sum_{i=0}^{d} S_{i}(t) \phi_{i}(t)=S_{0}(t) \phi_{0}(t)+S_{1}(t) \phi_{1}(t)+\ldots+S_{d}(t) \phi_{d}(t)
$$

(ii). ϕ is self-financing if

$$
\begin{gathered}
\phi(t) \cdot S(t)=\sum_{i=0}^{d} S_{i}(t) \phi_{i}(t) \\
=\phi(t+1) \cdot S(t)=\sum_{i=0}^{d} S_{i}(t) \phi_{i}(t+1)
\end{gathered}
$$

for $t=1,2, \ldots, T-1$. This means that the investor adjusts his strategy from $\phi(t)$ to $\phi(t+1)$ without bringing in or consuming any wealth.
(iii). A self-financing portfolio $\phi(t)=\left(\phi_{0}(t), \phi_{1}(t), \ldots, \phi_{d-1}(t), \phi_{d}(t)\right)$ is called an arbitrage opportunity or arbitrage strategy if $V_{\phi}(0)=0$ and the terminal wealth of ϕ satisfies
(1) $V_{\phi}(T) \geq 0$,
(2) $P\left(V_{\phi}(T)>0\right)>0$.

A market is arbitrage-free if and only if there exists an equivalent martingale probability measure P^{*}, i.e., the discounted price process $\tilde{S}(t)$ is a martingale under P^{*}.
(iv). A market is complete if every contingent claim X is attainable, i.e., there exists a replicating self-financing portfolio $\phi(t)=\left(\phi_{0}(t), \ldots, \phi_{d}(t)\right)$ such that $V_{\phi}(T)=X$.
(v). An arbitrage-free market is complete if and only if there exists a unique probability measure P^{*} equivalently to P under which the discounted price process $\tilde{S}(t)$ is a martingale.
(vi). Let P^{*} be the unique equivalent martingale measure. The price at time zero is given by

$$
\Pi_{X}(0)=E^{*}\left[\frac{X}{S_{0}(T)}\right]
$$

where E^{*} stands for the expectation under P^{*}.

Problem 2.

(1). We need to choose $r \geq 0$ so that there exists an equivalent martingale probability measure P^{*}. Suppose $P^{*}\left(\left\{\omega_{1}\right\}\right)=p^{*}, P^{*}\left(\left\{\omega_{2}\right\}\right)=1-p^{*}$.. If P^{*} is an equivalent martingale probability measure, then the discounted price process $\tilde{S}(t)$ is a martingale. In particular,

$$
E^{*}\left[\tilde{S}_{1}(1)\right]=E^{*}\left[\tilde{S}_{1}(0)\right]
$$

That is

$$
E^{*}\left[\frac{1}{S_{0}(1)} S_{1}(1)\right]=E^{*}\left[\frac{1}{S_{0}(0)} S_{1}(0)\right]=80
$$

On the other hand,

$$
\begin{gathered}
E^{*}\left[\frac{1}{S_{0}(1)} S_{1}(1)\right]=\frac{1}{1+r} E^{*}\left[S_{1}(1)\right] \\
=\frac{1}{1+r}\left[S_{1}(1)\left(\omega_{1}\right) P^{*}\left(\left\{\omega_{1}\right\}\right)+S_{1}(1)\left(\omega_{2}\right) P^{*}\left(\left\{\omega_{2}\right\}\right)\right] \\
=\frac{1}{1+r}\left[120 p^{*}+40\left(1-p^{*}\right)\right]
\end{gathered}
$$

So P^{*} is an equivalent martingale probability if and only if

$$
\frac{1}{1+r}\left[120 p^{*}+40\left(1-p^{*}\right)\right]=80, \quad 0<p^{*}<1
$$

Solve the equation to obtain

$$
p^{*}=\frac{2 r+1}{2}
$$

To make sure P^{*} exists, we must have $0<p^{*}=\frac{1+2 r}{2}<1$, which is equivalent to $0 \leq r<\frac{1}{2}$.
(2). The market is complete since the martingale probability measure is uniquely given by

$$
P^{*}\left(\left\{\omega_{1}\right\}\right)=p^{*}=\frac{2 r+1}{2}, P^{*}\left(\left\{\omega_{2}\right\}\right)=1-p^{*}
$$

(3). The price of the claim X at time zero is given by

$$
\begin{gathered}
\Pi_{X}(0)=E^{*}\left[\frac{1}{S_{0}(1)} X\right]=E^{*}\left[\frac{1}{1+r} X\right] \\
=\frac{1}{1+r} E^{*}\left[S_{0}(1)^{2}+S_{1}(1)^{2}\right] \\
=1+r+\frac{1}{1+r}\left[S_{1}(1)\left(\omega_{1}\right)^{2} P^{*}\left(\left\{\omega_{1}\right\}\right)+S_{1}(1)\left(\omega_{2}\right)^{2} P^{*}\left(\left\{\omega_{2}\right\}\right)\right]
\end{gathered}
$$

$$
\begin{gathered}
=1+r+\frac{1}{1+r}\left[120^{2} \frac{2 r+1}{2}+40^{2} \frac{1-2 r}{2}\right] \\
=\frac{1}{1+r}\left[(1+r)^{2}+12800 r+8000\right]
\end{gathered}
$$

(4).The replicating strategy $\phi=\left(\phi_{0}, \phi_{1}\right)$ for the claim X is determined by

$$
V_{\phi}(1)=\phi_{0} S_{0}(1)+\phi_{1} S_{1}(1)=X
$$

Put $\omega=\omega_{1}$ and $\omega=\omega_{2}$ in the above equation to get

$$
\left\{\begin{aligned}
\phi_{0}(1+r)+\phi_{1} \times 120 & =(1+r)^{2}+120^{2} \\
\phi_{0}(1+r)+\phi_{1} \times 40 & =(1+r)^{2}+40^{2}
\end{aligned}\right.
$$

Solve the above equations to obtain

$$
\phi_{1}=160, \quad \phi_{0}=\frac{(1+r)^{2}-3 \times 40^{2}}{1+r}
$$

Problem 3.

(1).Note that $\left\{\tilde{S}_{0}(t)=1, t=0,1, \ldots, T\right\}$ is always a martingale. So we need to choose r, p so that the discounted price $\left\{\tilde{S}_{1}(t), t=0,1, \ldots\right\}$ is a P martingale , i. e.,

$$
E^{*}\left[\tilde{S}_{1}(t+1) \mid \mathcal{F}_{t}\right]=\tilde{S}_{1}(t)
$$

Now,

$$
\begin{gathered}
\tilde{S}_{1}(t+1)=\frac{S_{1}(t+1)}{S_{0}(t+1)}=\frac{1}{(1+r)^{t+1}} S_{1}(0) \Pi_{m=1}^{t+1} Z(m) \\
=\frac{1}{(1+r)^{t}} S_{1}(0) \Pi_{m=1}^{t} Z(m) \frac{1}{(1+r)} Z(t+1)=\tilde{S}_{1}(t) \frac{1}{(1+r)} Z(t+1)
\end{gathered}
$$

It follows that

$$
\begin{gathered}
E\left[\tilde{S}_{1}(t+1) \mid \mathcal{F}_{t}\right]=E\left[\left.\tilde{S}_{1}(t) \frac{1}{(1+r)} Z(t+1) \right\rvert\, \mathcal{F}_{t}\right] \\
=\tilde{S}_{1}(t) E\left[\left.\frac{1}{(1+r)} Z(t+1) \right\rvert\, \mathcal{F}_{t}\right]=\tilde{S}_{1}(t) \frac{1}{(1+r)} E[Z(t+1)]
\end{gathered}
$$

In order that $\left\{\tilde{S}_{1}(t), t=0,1, \ldots\right\}$ is a P-martingale, we must have

$$
1+r=E[Z(t+1)], t=0,1,2, \ldots, T-1
$$

But

$$
E[Z(t+1)]=u P(Z(t)=u)+l P(Z(t)=l)=u p+l(1-p) .
$$

Therefore we must have

$$
u p+l(1-p)=1+r
$$

This yields

$$
p=\frac{1+r-l}{u-l}
$$

In order that P exists one must have

$$
0<p=\frac{1+r-l}{u-l}<1
$$

which is equivalent to $l<1+r<u$. It is also seen that p is uniquely determined.
(2).The price of the claim is given by

$$
\begin{aligned}
& \Pi_{X}(0)=E\left[\frac{X}{S_{0}(T)}\right]=\frac{1}{(1+r)^{T}} E[X] \\
& \quad=(1+r)^{-T} E\left[\left(\Pi_{\tau=1}^{T} Z(\tau)-K\right)^{+}\right]
\end{aligned}
$$

Now note that the random variable $\prod_{\tau=1}^{T} Z(\tau)$ takes the values $u^{j} l^{T-j}, j=$ $0,1, \ldots, T$ with

$$
P\left(\Pi_{\tau=1}^{T} Z(\tau)=u^{j} l^{T-j}\right)
$$

$=P(j$ of $Z(\tau)$ take the value u and $T-j$ of them take the value $l)$

$$
=\binom{T}{j}(p)^{j}(1-p)^{T-j}
$$

Therefore,

$$
\begin{gathered}
\Pi_{X}(0)=(1+r)^{-T} \sum_{j=0}^{T}\left(u^{j} l^{T-j}-K\right)^{+} P\left(\Pi_{\tau=1}^{T} Z(\tau)=u^{j} l^{T-j}\right) \\
=(1+r)^{-T} \sum_{j=0}^{T}\binom{T}{j}(p)^{j}(1-p)^{T-j}\left(u^{j} l^{T-j}-K\right)^{+}
\end{gathered}
$$

