Solutions to sheet 5 for Math67201/47201

November 7, 2016

1 Sheet 5

Problem 1. As $\left|Z_{n}\right| \leq E\left[|X| \mid \mathcal{F}_{n}\right]$, we have

$$
E\left[\left|Z_{n}\right|\right] \leq E\left[E\left[|X| \mid \mathcal{F}_{n}\right]\right]=E[|X|]
$$

Hence, $\sup _{n} E\left[\left|Z_{n}\right|\right]<+\infty$. Applying the martingale convergence theorem, it follows that $\lim _{n \rightarrow \infty} Z_{n}$ exists.

Problem 2. Put $M_{n}=\sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right)$ for $n \geq 1$. we can verify (exercise) that $\left\{M_{n}, n \geq 1\right\}$ is a martingale with respect to $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right), n \geq 1$. As $E\left[M_{n}\right]=0$, we have

$$
E\left[M_{n}^{2}\right]=\operatorname{var}\left(M_{n}\right)=\sum_{i=1}^{n} \sigma_{i}^{2} \leq \sum_{i=1}^{\infty} \sigma_{i}^{2}<\infty
$$

Note that $|x| \leq x^{2}+1$. It follows that

$$
\sup _{n} E\left[\left|M_{n}\right|\right] \leq 1+\sup _{n} E\left[M_{n}^{2}\right]<\infty
$$

By the Martingale Convergence Theorem, we conclude that

$$
\lim _{n \rightarrow \infty} M_{n}=\lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} \mu_{i}\right)
$$

exists. But $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \mu_{i}=\sum_{i=1}^{\infty} \mu_{i}$ exists. Thus we see that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} X_{i}=\sum_{i=1}^{\infty} \mu_{i}+\lim _{n \rightarrow \infty} M_{n}
$$

exists too. Hence, $\sum_{i=1}^{\infty} X_{i}(\omega)$ converges almost surely.
Problem 3. Proof.
(1) From the definition of \mathcal{F}_{t}, we see that B_{t} is \mathcal{F}_{t}-determined. Also we have $\left[\left|B_{t}\right|\right]<\infty$. Now for $s<t$,

$$
\begin{gathered}
E\left[B_{t} \mid \mathcal{F}_{s}\right]=E\left[B_{t}-B_{s}+B_{s} \mid \mathcal{F}_{s}\right] \\
=E\left[B_{s} \mid \mathcal{F}_{s}\right]+E\left[B_{t}-B_{s} \mid \mathcal{F}_{s}\right]
\end{gathered}
$$

$$
=B_{s}+E\left[B_{t}-B_{s}\right]=B_{s}
$$

Thus the three conditions in the definition of martingales are met. Hence, $B_{t}, t \geq 0$ is a martingale w.r.t. $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$.
(2). Since Z_{t} is a function of B_{t}, Z_{t} is \mathcal{F}_{t}-determined. We also have

$$
E\left[\left|Z_{t}\right|\right] \leq E\left[B_{t}^{2}\right]+t=2 t<\infty
$$

Let $s<t$. We have

$$
\begin{gathered}
E\left[Z_{t} \mid \mathcal{F}_{s}\right]=E\left[B_{t}^{2}-t \mid \mathcal{F}_{s}\right]=E\left[\left(B_{t}-B_{s}+B_{s}\right)^{2}-t \mid \mathcal{F}_{s}\right] \\
=E\left[\left(B_{t}-B_{s}\right)^{2}+2\left(B_{t}-B_{s}\right) B_{s}+B_{s}^{2}-s-(t-s) \mid \mathcal{F}_{s}\right] \\
=E\left[\left(B_{t}-B_{s}\right)^{2}-(t-s) \mid \mathcal{F}_{s}\right]+2 E\left[\left(B_{t}-B_{s}\right) B_{s} \mid \mathcal{F}_{s}\right]+E\left[B_{s}^{2}-s \mid \mathcal{F}_{s}\right] \\
=E\left[\left(B_{t}-B_{s}\right)^{2}\right]-(t-s)+2 B_{s} E\left[\left(B_{t}-B_{s}\right)\right]+B_{s}^{2}-s \\
\quad=(t-s)-(t-s)+2 \times 0+Z_{s}=Z_{s}
\end{gathered}
$$

We conclude that $Z_{t}=B_{t}^{2}-t, t \geq 0$, is a martingale w.r.t. $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$.
(3). We only check

$$
E\left[Z_{t} \mid \mathcal{F}_{s}\right]=Z_{s}
$$

for $s<t$, and leave other details to you as exercise. Recall if $X \sim N\left(0, \sigma^{2}\right)$, then

$$
E\left[e^{X}\right]=e^{\frac{1}{2} \sigma^{2}}
$$

We proceed as follows:

$$
\begin{gathered}
E\left[Z_{t} \mid \mathcal{F}_{s}\right]=E\left[\left.\exp \left(B_{t}-B_{s}-\frac{1}{2}(t-s)\right) \exp \left(B_{s}-\frac{1}{2} s\right) \right\rvert\, \mathcal{F}_{s}\right] \\
=\exp \left(B_{s}-\frac{1}{2} s\right) E\left[\left.\exp \left(B_{t}-B_{s}-\frac{1}{2}(t-s)\right) \right\rvert\, \mathcal{F}_{s}\right] \\
=Z_{s} E\left[\exp \left(B_{t}-B_{s}\right) \mid \mathcal{F}_{s}\right] \exp \left(-\frac{1}{2}(t-s)\right)=Z_{s} E\left[\exp \left(B_{t}-B_{s}\right)\right] \exp \left(-\frac{1}{2}(t-s)\right) \\
=Z_{s} \exp \left(\frac{1}{2}(t-s)\right) \exp \left(-\frac{1}{2}(t-s)\right)=Z_{s}
\end{gathered}
$$

(4). From (1) we know that $B_{t}, t \geq 0$ is a martingale. As $\left|B_{t \wedge T}\right| \leq a+b$, by Doob's Optimal Stopping Theorem we have $E\left[B_{T}\right]=E\left[B_{0}\right]=0$. Noticing that

$$
E\left[B_{T}\right]=(-a) P\left(B_{T}=-a\right)+b P\left(B_{T}=b\right)
$$

it follows that

$$
(-a) P\left(B_{T}=-a\right)+b P\left(B_{T}=b\right)=0
$$

On the other hand,

$$
P\left(B_{T}=-a\right)+P\left(B_{T}=b\right)=1
$$

Solve the above two equations to obtain

$$
P\left(B_{T}=-a\right)=\frac{b}{a+b}, \quad P\left(B_{T}=b\right)=\frac{a}{a+b}
$$

(5). It is known from (2) that $Z_{t}=B_{t}^{2}-t, t \geq 0$, is a martingale. Consequently, the stopped process $Z_{t \wedge T}=B_{t \wedge T}^{2}-(t \wedge T), t \geq 0$ is also a martingale. Thus

$$
E\left[Z_{t \wedge T}\right]=E\left[B_{t \wedge T}^{2}-(t \wedge T)\right]=0
$$

i.e.,

$$
E\left[B_{t \wedge T}^{2}\right]=E[(t \wedge T)]
$$

By Monotone Convergence Theorem,

$$
\lim _{t \rightarrow \infty} E[(t \wedge T)]=E[T]
$$

Note that $B_{t \wedge T}^{2} \leq(a+b)^{2}$. The dominated Convergence Theorem yields

$$
\lim _{t \rightarrow \infty} E\left[B_{t \wedge T}^{2}\right]=E\left[B_{T}^{2}\right]
$$

Combining the above two convergence we get

$$
\begin{gathered}
E[T]=E\left[B_{T}^{2}\right] \\
=(-a)^{2} P\left(B_{T}=-a\right)+b^{2} P\left(B_{T}=b\right)=a^{2} \frac{b}{a+b}+b^{2} \frac{a}{a+b}=a b
\end{gathered}
$$

Problem 4. (a). Show $U(t)=N(t)-\lambda t$ is a martingale.
(1). $U(t)$ is \mathcal{F}_{t}-measurable by the definition of \mathcal{F}_{t}.
(2). $U(t)$ is integrable because $N(t)$ has a Poisson distribution with parameter λt.
(3). For $s<t$, we have

$$
\begin{gathered}
E\left[U(t) \mid \mathcal{F}_{s}\right]=E\left[U(t)-U(s) \mid \mathcal{F}_{s}\right]+E\left[U(s) \mid \mathcal{F}_{s}\right] \\
\quad=U(s)+E\left[N(t)-N(s) \mid \mathcal{F}_{s}\right]-\lambda(t-s) \\
=U(s)+E[N(t)-N(s)]-\lambda(t-s)=U(s)
\end{gathered}
$$

(b). Show $V(t)=U^{2}(t)-\lambda t$ is a martingale.
(1). $V(t)$ is \mathcal{F}_{t}-measurable by the definition of \mathcal{F}_{t}.
(2). $V(t)$ is integrable because $N(t)$ has a Poisson distribution with parameter λt.
(3). For $s<t$, we have

$$
\begin{gathered}
E\left[V(t) \mid \mathcal{F}_{s}\right]=E\left[U^{2}(t)-\lambda t \mid \mathcal{F}_{s}\right] \\
=E\left[(U(t)-U(s)+U(s))^{2} \mid \mathcal{F}_{s}\right]-\lambda t \\
=E\left[(U(t)-U(s))^{2} \mid \mathcal{F}_{s}\right]+2 E\left[(U(t)-U(s)) U(s) \mid \mathcal{F}_{s}\right]+E\left[U^{2}(s) \mid \mathcal{F}_{s}\right]-\lambda t
\end{gathered}
$$

$$
\begin{gathered}
=E\left[(N(t)-N(s)-\lambda(t-s))^{2}\right]+2 U(s) E\left[(U(t)-U(s)) \mid \mathcal{F}_{s}\right]+U^{2}(s)-\lambda t \\
=\lambda(t-s)+2 U(s) \times 0+U^{2}(s)-\lambda t=U^{2}(s)-\lambda s=V(s)
\end{gathered}
$$

where the fact $N(t)-N(s) \sim \operatorname{Poisson}(\lambda(t-s))$ has been used.
(c). Show $W(t)=\exp \left[-\theta N(t)+\lambda t\left(1-e^{-\theta}\right)\right]$ is a martingale.
(1). $W(t)$ is \mathcal{F}_{t}-measurable by the definition of \mathcal{F}_{t}.
(2). $W(t)$ is integrable because $N(t)$ has a Poisson distribution with parameter λt.
(3). For $s<t$, we have

$$
\begin{gathered}
E\left[W(t) \mid \mathcal{F}_{s}\right]=E\left[W(s) W^{-1}(s) W(t) \mid \mathcal{F}_{s}\right] \\
=E\left[W(s) \exp \left[-\theta(N(t)-N(s))+\lambda(t-s)\left(1-e^{-\theta}\right)\right] \mid \mathcal{F}_{s}\right] \\
=W(s) \exp \left[\lambda(t-s)\left(1-e^{-\theta}\right)\right] E\left[\exp [-\theta(N(t)-N(s))] \mid \mathcal{F}_{s}\right] \\
=W(s) \exp \left[\lambda(t-s)\left(1-e^{-\theta}\right)\right] E[\exp [-\theta(N(t)-N(s))]]
\end{gathered}
$$

But

$$
\begin{aligned}
& E[\exp [-\theta(N(t)-N(s))]]=\sum_{n=0}^{\infty} \exp (-\theta n) \exp (-\lambda(t-s)) \frac{(\lambda(t-s))^{n}}{n!} \\
& =\exp (-\lambda(t-s)) \sum_{n=0}^{\infty} \frac{(\exp (-\theta) \lambda(t-s))^{n}}{n!}=\exp \left[-\lambda(t-s)\left(1-e^{-\theta}\right)\right]
\end{aligned}
$$

Combine the above equations to get

$$
E\left[W(t) \mid \mathcal{F}_{s}\right]=W(s)
$$

