Solutions to sheet 4 for Math67201/47201

November 7, 2016

$1 \quad$ Sheet 4

Problem 1.

(1) For $k>j$, we have

$$
\begin{gathered}
E\left[Y_{k} \mid \mathcal{F}_{j}\right]=E\left[E\left[Y_{k} \mid \mathcal{F}_{k-1}\right] \mid \mathcal{F}_{j}\right] \\
=E\left[Y_{k-1} \mid \mathcal{F}_{j}\right]=E\left[E\left[Y_{k-1} \mid \mathcal{F}_{k-2}\right] \mid \mathcal{F}_{j}\right] \\
=E\left[Y_{k-2} \mid \mathcal{F}_{j}\right]=\cdots=E\left[Y_{j+1} \mid \mathcal{F}_{j}\right]=Y_{j}
\end{gathered}
$$

(2).

$$
\begin{gathered}
E\left[\left(Y_{k}-Y_{j}\right)^{2}\right]=E\left[\left(Y_{k}\right)^{2}\right]+E\left[\left(Y_{j}\right)^{2}\right]-2 E\left[Y_{k} Y_{j}\right] \\
=E\left[\left(Y_{k}\right)^{2}\right]+E\left[\left(Y_{j}\right)^{2}\right]-2 E\left[E\left[Y_{k} Y_{j} \mid \mathcal{F}_{j}\right]\right] \\
=E\left[\left(Y_{k}\right)^{2}\right]+E\left[\left(Y_{j}\right)^{2}\right]-2 E\left[Y_{j} E\left[Y_{k} \mid \mathcal{F}_{j}\right]\right] \\
=E\left[\left(Y_{k}\right)^{2}\right]+E\left[\left(Y_{j}\right)^{2}\right]-2 E\left[\left(Y_{j}\right)^{2}\right]=E\left[\left(Y_{k}\right)^{2}\right]-E\left[\left(Y_{j}\right)^{2}\right]
\end{gathered}
$$

Problem 2. (1). From the definition, we see that M_{n} is \mathcal{F}_{n}-measurable.
(2). M_{n} is integrable if for example, $S_{k}, k \geq 1$ is bounded.
(3).

$$
\begin{gathered}
E\left[M_{n+1} \mid \mathcal{F}_{n}\right]=E\left[M_{n}+S_{n+1}\left(Y_{n+1}-Y_{n}\right) \mid \mathcal{F}_{n}\right] \\
=E\left[M_{n} \mid \mathcal{F}_{n}\right]+E\left[S_{n+1}\left(Y_{n+1}-Y_{n}\right) \mid \mathcal{F}_{n}\right] \\
=M_{n}+S_{n+1} E\left[Y_{n+1}-Y_{n} \mid \mathcal{F}_{n}\right]=M_{n}+S_{n+1} \times 0=M_{n},
\end{gathered}
$$

we have used the fact that S_{n+1} is \mathcal{F}_{n}-measurable.
Problem 3. Measurability and integrability of Z_{n} follow from the fact that X and Y are martingales. Let us show

$$
E\left[Z_{n+1} \mid \mathcal{F}_{n}\right]=Z_{n}
$$

Write

$$
Z_{n}=I_{\{n<T\}} X_{n}+I_{\{T \leq n\}} Y_{n}
$$

Note that

$$
I_{\{n+1<T\}} X_{n+1}=X_{n+1}-I_{\{n+1 \geq T\}} X_{n+1}
$$

$$
\begin{aligned}
= & X_{n+1}-I_{\{n+1>T\}} X_{n+1}-I_{\{n+1=T\}} X_{n+1} \\
& =X_{n+1}-I_{\{n \geq T\}} X_{n+1}-I_{\{n+1=T\}} X_{T}
\end{aligned}
$$

and

$$
I_{\{T \leq n+1\}} Y_{n+1}=I_{\{T \leq n\}} Y_{n+1}+I_{\{T=n+1\}} Y_{T}
$$

We have

$$
\begin{gathered}
E\left[Z_{n+1} \mid \mathcal{F}_{n}\right] \\
=E\left[I_{\{n+1<T\}} X_{n+1}+I_{\{T \leq n+1\}} Y_{n+1} \mid \mathcal{F}_{n}\right] \\
=E\left[X_{n+1}-I_{\{T \leq n\}} X_{n+1}-I_{\{n+1=T\}} X_{T} \mid \mathcal{F}_{n}\right] \\
+E\left[I_{\{T \leq n\}} Y_{n+1}+I_{\{T=n+1\}} Y_{T} \mid \mathcal{F}_{n}\right] \\
=E\left[X_{n+1} \mid \mathcal{F}_{n}\right]-E\left[I_{\{T \leq n\}} X_{n+1} \mid \mathcal{F}_{n}\right]-E\left[I_{\{n+1=T\}} X_{T} \mid \mathcal{F}_{n}\right] \\
+E\left[I_{\{T \leq n\}} Y_{n+1} \mid \mathcal{F}_{n}\right]+E\left[I_{\{T=n+1\}} Y_{T} \mid \mathcal{F}_{n}\right] \\
=X_{n}-I_{\{T \leq n\}} E\left[X_{n+1} \mid \mathcal{F}_{n}\right]-E\left[I_{\{n+1=T\}} Y_{T} \mid \mathcal{F}_{n}\right] \\
+I_{\{T \leq n\}} E\left[Y_{n+1} \mid \mathcal{F}_{n}\right]+E\left[I_{\{T=n+1\}} Y_{T} \mid \mathcal{F}_{n}\right] \\
=X_{n}-I_{\{T \leq n\}} X_{n}+I_{\{T \leq n\}} Y_{n} \\
=I_{\{T>n\}} X_{n}+I_{\{T \leq n\}} Y_{n}=Z_{n}
\end{gathered}
$$

Problem 4. Set $S_{n}=X_{1}+X_{2}+\ldots+X_{n}, n \geq 1$, and $S_{0}=0$. As in problem 1 we see that $\left\{S_{n}, n \geq 0\right\}$ forms a martingale. Then the stopped process $\left\{Z_{n}=S_{n \wedge T}, n \geq 0\right\}$ is also a martingale. In particular,

$$
E\left[Z_{n}\right]=E\left[S_{n \wedge T}\right]=E\left[S_{0}\right]=0
$$

Remark that

$$
\lim _{n \rightarrow \infty} S_{n \wedge T}=X_{1}+X_{2}+\ldots+X_{T}
$$

and

$$
\left|S_{n \wedge T}\right| \leq\left|X_{1}\right|+\left|X_{2}\right|+\ldots+\left|X_{T}\right| \leq T M
$$

Since $E(T)<\infty$, by dominated convergence theorem we have

$$
E\left[S_{T}\right]=\lim _{n \rightarrow \infty} E\left[S_{n \wedge T}\right]=0
$$

