Solutions to sheet 3 for Math67201/47201

November 7, 2016

1 Sheet 3

Problem 1.

(1). We have

$$
\begin{gathered}
E\left[S_{n+1} \mid \mathcal{F}_{n}\right]=E\left[S_{n}+X_{n+1} \mid \mathcal{F}_{n}\right] \\
=E\left[S_{n} \mid \mathcal{F}_{n}\right]+E\left[X_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}+E\left[X_{n+1}\right]
\end{gathered}
$$

as S_{n} is determined by \mathcal{F}_{n} and X_{n+1} is independent of $\mathcal{F}_{n} .\left\{S_{n}, n \geq 0\right\}$ is a martingale with respect to $\mathcal{F}_{n}, n \geq 0$ if and only if $E\left[S_{n+1} \mid \mathcal{F}_{n}\right]=S_{n}$, and this is the case if and only if $E\left[X_{n}\right]=0$ for all n.
(2) Since $\left\{S_{n}, n \geq 0\right\}$ is a martingale, $E\left[X_{n}\right]=0$ for all n by (1). M_{n} is a function of $X_{1}, X_{2}, \ldots X_{n}$. So M_{n} is determined by \mathcal{F}_{n}. As $\left|M_{n}\right| \leq$ $C\left(\sum_{k=1}^{n} X_{k}^{2}+n\right)$, we see that $E\left[M_{n}\right]<\infty$. Write

$$
\begin{gathered}
M_{n+1}=S_{n+1}^{2}-(n+1)=\left(S_{n}+X_{n+1}\right)^{2}-(n+1) \\
=S_{n}^{2}+2 S_{n} X_{n+1}+X_{n+1}^{2}-n-1 \\
=M_{n}+2 S_{n} X_{n+1}+X_{n+1}^{2}-1
\end{gathered}
$$

Taking into account the independence, it follows that

$$
\begin{gathered}
E\left[M_{n+1} \mid \mathcal{F}_{n}\right]=E\left[M_{n}+2 S_{n} X_{n+1}+X_{n+1}^{2}-1 \mid \mathcal{F}_{n}\right] \\
=E\left[M_{n} \mid \mathcal{F}_{n}\right]+E\left[2 S_{n} X_{n+1} \mid \mathcal{F}_{n}\right]+E\left[X_{n+1}^{2}-1 \mid \mathcal{F}_{n}\right] \\
\quad=M_{n}+2 S_{n} E\left[X_{n+1}\right]+E\left[X_{n+1}^{2}\right]-1=M_{n}
\end{gathered}
$$

This shows that $\left\{M_{n}=S_{n}^{2}-n, n \geq 0\right\}$ is a martingale.

Problem 2.

(i). Since Z_{n} is a function of $X_{1}, X_{2}, \ldots, X_{n}, Z_{n}$ is \mathcal{F}_{n}-determined.
(ii).

$$
\begin{gathered}
E\left[\left|Z_{n}\right|\right]=e^{-n a} E\left[e^{S_{n}}\right]=e^{-n a} E\left[e^{X_{1}+X_{2}+\ldots+X_{n}}\right] \\
=e^{-n a}\left(E\left[e^{X_{1}}\right]\right)^{n}<\infty
\end{gathered}
$$

(iii).

$$
\begin{gathered}
E\left[Z_{n+1} \mid \mathcal{F}_{n}\right]=E\left[\exp \left(S_{n+1}-(n+1) a\right) \mid \mathcal{F}_{n}\right] \\
=E\left[\exp \left(S_{n}-n a\right) \exp \left(X_{n+1}-a\right) \mid \mathcal{F}_{n}\right]=\exp \left(S_{n}-n a\right) E\left[\exp \left(X_{n+1}-a\right) \mid \mathcal{F}_{n}\right] \\
=Z_{n} E\left[\exp \left(X_{n+1}-a\right)\right]=Z_{n} E\left[\exp \left(X_{n+1}\right)\right] e^{-a}=Z_{n} e^{a} e^{-a}=Z_{n}
\end{gathered}
$$

Combining (i), (ii) and (iii) we see that $\left\{Z_{n}=\exp \left(S_{n}-n a\right), n \geq 1\right\}$ is a martingale w.r.t. \mathcal{F}_{n}.

Problem 3. Y_{n} is a function of $X_{1}, X_{2}, \ldots X_{n}$. So Y_{n} is determined by \mathcal{F}_{n}. As $X_{k}, k \geq 1$ are normal random variables, $E\left[\left|Y_{n}\right|\right]<\infty$. Write

$$
Y_{n+1}=Y_{n} \exp \left(X_{n+1}-\frac{1}{2} \sigma^{2}\right)
$$

By the independence, we have

$$
\begin{gathered}
E\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=E\left[\left.Y_{n} \exp \left(X_{n+1}-\frac{1}{2} \sigma^{2}\right) \right\rvert\, \mathcal{F}_{n}\right] \\
=Y_{n} E\left[\left.\exp \left(X_{n+1}-\frac{1}{2} \sigma^{2}\right) \right\rvert\, \mathcal{F}_{n}\right]=Y_{n} E\left[\exp \left(X_{n+1}-\frac{1}{2} \sigma^{2}\right)\right] \\
=Y_{n} E\left[\exp \left(X_{n+1}\right)\right] \exp \left(-\frac{1}{2} \sigma^{2}\right)=Y_{n} \exp \left(\frac{1}{2} \sigma^{2}\right) \exp \left(-\frac{1}{2} \sigma^{2}\right)=Y_{n},
\end{gathered}
$$

where we used the fact that $E\left[\exp \left(X_{n+1}\right)\right]=\exp \left(\frac{1}{2} \sigma^{2}\right)$, which is true for Gaussian random variables with mean 0 and variance σ^{2}.

Problem 4. The martingale property requires that

$$
E\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=Y_{n}
$$

Now,

$$
\begin{gathered}
E\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=E\left[a X_{n+1}+X_{n} \mid \mathcal{F}_{n}\right] \\
=a E\left[X_{n+1} \mid \mathcal{F}_{n}\right]+X_{n}=a\left(\alpha X_{n}+\beta X_{n-1}\right)+X_{n} \\
=X_{n}(\alpha a+1)+\beta a X_{n-1}
\end{gathered}
$$

In order that the martingale property holds, one needs

$$
X_{n}(\alpha a+1)+\beta a X_{n-1}=Y_{n}=a X_{n}+X_{n-1}
$$

This will hold if $\alpha a+1=a$ and $\beta a=1$. Using $\alpha=1-\beta$, we see that both $\alpha a+1=a$ and $\beta a=1$ lead to $a=\frac{1}{\beta}$.

Problem 5. For $i \neq j$, let us assume without loss of generality that $i<j$. Since $\left\{S_{n}, n \geq 1\right\}$ is a martingale, we have

$$
E\left[S_{j} \mid \mathcal{F}_{j-1}\right]=S_{j-1}
$$

Equivalently,

$$
E\left[X_{j} \mid \mathcal{F}_{j-1}\right]=E\left[S_{j}-S_{j-1} \mid \mathcal{F}_{j-1}\right]=0
$$

As $i \leq j-1, X_{i}$ is also $\mathcal{F}_{j-1} \supset \mathcal{F}_{i}$-determined. Multiplying the above equation by X_{i}, we get

$$
0=X_{i} E\left[X_{j} \mid \mathcal{F}_{j-1}\right]=E\left[X_{i} X_{j} \mid \mathcal{F}_{j-1}\right]
$$

Taking expectation gives

$$
E\left[X_{i} X_{j}\right]=E\left[E\left[X_{i} X_{j} \mid \mathcal{F}_{j-1}\right]\right]=0
$$

