Solutions to sheet 1 for Math67201/47201

September 25, 2015

1 Sheet 1

Problem 1.

(i). We have

$$
\begin{gathered}
P(A)=P\left(\cup_{n=1}^{\infty} B_{n}\right) \leq \sum_{n=1}^{\infty} P\left(B_{n}\right) \\
=\sum_{n=1}^{\infty} \frac{1}{2^{n+1}}=\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} \\
=\frac{1}{4} \frac{1}{1-\frac{1}{2}}=\frac{1}{2}
\end{gathered}
$$

So

$$
P\left(A^{c}\right)=1-P(A) \geq 1-\frac{1}{2}=\frac{1}{2}
$$

(ii).

$$
\begin{aligned}
& P\left(A_{m}\right) \leq \sum_{n=m}^{\infty} P\left(B_{n}\right)=\sum_{n=m}^{\infty} \frac{1}{2^{n+1}} \\
= & \frac{1}{2^{m+1}} \sum_{n=m}^{\infty} \frac{1}{2^{n-m}}=\frac{1}{2^{m+1}} \frac{1}{1-\frac{1}{2}}=\frac{1}{2^{m}}
\end{aligned}
$$

(iii). Note for any $n \geq 1, \cap_{m=1}^{\infty} A_{m} \subset A_{n}$. Thus,

$$
P\left(\cap_{m=1}^{\infty} A_{m}\right) \leq P\left(A_{n}\right)=\frac{1}{2^{n}}
$$

for all $n \geq 1$. hence,

$$
P\left(\cap_{m=1}^{\infty} A_{m}\right) \leq \lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0
$$

Problem 2. Put $B=\cap_{n=1}^{\infty} B_{n}$. Then

$$
\begin{aligned}
P\left(B^{c}\right) & =P\left(\cup_{n=1}^{\infty} B_{n}^{c}\right) \leq \sum_{n=1}^{\infty} P\left(B_{n}^{c}\right) \\
& =\sum_{n=1}^{\infty}\left(1-P\left(B_{n}\right)\right)=0
\end{aligned}
$$

So $P(B)=1$.
Problem 3. Proof. Assume $B_{n} \uparrow B$. Introduce $A_{1}=B_{1}, A_{2}=B_{2} \backslash B_{1}, \ldots$, $A_{n}=B_{n} \backslash B_{n-1}, \ldots$ Then, $B_{n}=\cup_{k=1}^{n} A_{k}$ and

$$
\cup_{n=1}^{\infty} B_{n}=\cup_{n=1}^{\infty} A_{n}=B
$$

Since $A_{i}^{\prime} s$ are disjoint, we have

$$
P(B)=P\left(\cup_{n=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} P\left(A_{k}\right)
$$

Hence,

$$
\sum_{k=1}^{n} P\left(A_{k}\right) \rightarrow P(B)
$$

But,

$$
\sum_{k=1}^{n} P\left(A_{k}\right)=\sum_{k=1}^{n}\left[P\left(B_{k}\right)-P\left(B_{k-1}\right)\right]=P\left(B_{n}\right)
$$

The result follows.
Problem 4. \mathcal{G} is a σ-field if (1) $\Omega \in \mathcal{G}$. (2). $A \in \mathcal{G} \Rightarrow A^{c} \in \mathcal{G}$. (3). If $A_{1}, A_{2}, \ldots, A_{n}, . . \in \mathcal{G}$, then $\cup_{n=1}^{\infty} A_{n} \in \mathcal{G}$.
(i) As $\Omega \in \mathcal{G}$ and $\Omega^{c}=\emptyset \in \mathcal{G}$, (1) and (2) are satisfied in the definition. Since $\Omega \cup \emptyset=\Omega \in \mathcal{G},(3)$ is satisfied too.
(ii). The smallest σ-field \mathcal{G} that contains an event $A \subset \Omega$ is given by

$$
\mathcal{G}=\left\{\Omega, \emptyset, A, A^{c}\right\}
$$

(iii). Proof.
(1). Since $\Omega \in \mathcal{G}_{1}, \Omega \in \mathcal{G}_{2}, \Omega \in \mathcal{G}=\mathcal{G}_{1} \cap \mathcal{G}_{2}$.
(2) If $A \in \mathcal{G}=\mathcal{G}_{1} \cap \mathcal{G}_{2}$, then $A \in \mathcal{G}_{1}$ and $A \in \mathcal{G}_{2}$. Since \mathcal{G}_{1} and \mathcal{G}_{2} are both σ-fields, we conclude that $A^{c} \in \mathcal{G}_{1}$ and $A^{c} \in \mathcal{G}_{2}$. Hence, $A^{c} \in \mathcal{G}=\mathcal{G}_{1} \cap \mathcal{G}_{2}$.
(3). If $A_{i} \in \mathcal{G}=\mathcal{G}_{1} \cap \mathcal{G}_{2}$ for $i=1,2, \ldots$, then $A_{i} \in \mathcal{G}_{1}$ and $A_{i} \in \mathcal{G}_{2}$. Since \mathcal{G}_{1} and \mathcal{G}_{2} are both σ-fields, we conclude that $\cup_{i=1}^{\infty} A_{i} \in \mathcal{G}_{1}$ and $\cup_{i=1}^{\infty} A_{i} \in \mathcal{G}_{2}$. Hence, $\cup_{i=1}^{\infty} A_{i} \in \mathcal{G}=\mathcal{G}_{1} \cap \mathcal{G}_{2}$.

