# Problem sheets for Math67201/47201: part I 

November 7, 2016

## 1 Sheet 1

Problem 1. Let $\left\{B_{n}\right\}_{n \geq 1}$ be a sequence of events with $P\left(B_{n}\right)=\frac{1}{2^{n+1}}, n \geq 1$.
(i). Let $A=\cup_{n=1}^{\infty} B_{n}$. Show that $P\left(A^{c}\right) \geq \frac{1}{2}$.
(ii). Let $A_{m}=\cup_{n=m}^{\infty} B_{n}$. Show that $P\left(A_{m}\right)^{2} \leq \frac{1}{2^{m}}$.
(iii). Deduce the probability of $\cap_{m=1}^{\infty} A_{m}$.

Problem 2. Show that if $P\left(B_{n}\right)=1$, for $n \geq 1$, then $P\left(\cap_{n=1}^{\infty} B_{n}\right)=1$.
Problem 3. We write $B_{n} \uparrow B$ if $B_{1} \subset B_{2} \subset B_{3} \ldots$ and $B=\cup_{n=1}^{\infty} B_{n}$. Likewise, write $B_{n} \downarrow B$ if $B_{1} \supset B_{2} \supset B_{3} \ldots$ and $B=\cap_{n=1}^{\infty} B_{n}$.

If $B_{n} \uparrow B\left(B_{n} \downarrow B\right)$, show that $P\left(B_{n}\right) \uparrow P(B)\left(P\left(B_{n}\right) \downarrow P(B)\right)$.
Problem 4. State the definition of a $\sigma$-field $\mathcal{G}$.
(i) Verify that $\mathcal{G}=\{\Omega, \emptyset\}$ is a $\sigma$-field.
(ii). Write down the smallest $\sigma$-field that contains an event $A \subset \Omega$.
(iii). If $\mathcal{G}_{1}, \mathcal{G}_{2}$ are two $\sigma$-fields, show that $\mathcal{G}=\mathcal{G}_{1} \cap \mathcal{G}_{2}$ is also a $\sigma$-field.

## 2 Sheet 2

## Problem 1.

(i). Let $A \in \mathcal{F}$. Write down the indicator $I_{A}(\omega)$ of $A$.
(ii). Write down the value of $\int_{\Omega} I_{A}(\omega) d P$.
(iii). If $P$ and $Q$ are two probability measures on $(\Omega, \mathcal{F})$ such that

$$
\int_{\Omega} X(\omega) d P=\int_{\Omega} X(\omega) d Q
$$

for all non-negative random variables, then $P=Q$, i.e., $P(A)=Q(A)$ for all $A \in \mathcal{F}$.

Problem 2. Let $\Omega=[0,1], \mathcal{F}$ is the Borel $\sigma$-field that contains intervals. The probability $P$ is the generalized length. Define

$$
X_{n}(\omega)= \begin{cases}n^{2}, & \text { if } \frac{1}{n} \leq \omega \leq \frac{2}{n} \\ 0 & \text { otherwise }\end{cases}
$$

Show that for every $\omega \in \Omega$ we have $\lim _{n \rightarrow \infty} X_{n}(\omega)=0$. Is $\lim _{n \rightarrow \infty} E\left(X_{n}\right)=0$ true?

## Problem 3.

(i). If $X_{1}, X_{2}, \ldots$, are non-negative random variables on a probability space, apply the monotone convergence theorem to the sequence $Y_{n}=\sum_{j=1}^{n} X_{j}$ to show that

$$
E\left(\sum_{j=1}^{\infty} X_{j}\right)=\sum_{j=1}^{\infty} E\left(X_{j}\right)
$$

(ii) By choosing $X_{j}=I_{A_{j}}$ in (i), show that if $N$ is the (random) number of $A_{1}, A_{2}, \ldots$ which occur, then

$$
E(N)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots+P\left(A_{n}\right)+\ldots
$$

Problem 4. Use the Dominated Convergence Theorem to prove that

$$
\int_{0}^{2 \pi}\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos (n t)\right) d t=0
$$

## Problem 5.

(1). Prove the Chebyshev inequality:

$$
P(|X| \geq \varepsilon) \leq \frac{E\left[|X|^{\alpha}\right]}{\varepsilon^{\alpha}}, \quad \alpha>0, \varepsilon>0
$$

(2) Use (1) to show that if $E[|X|]<\infty$, then

$$
\lim _{n \rightarrow \infty} P(|X|>n)=0
$$

(3) Let $X_{1}, X_{2}, \ldots, X_{n} \ldots$ be independent random variables with mean 0 and variance 1 . Show that for any $\delta>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}\right|>\delta\right)=0
$$

## 3 Sheet 3

Problem 1. Let $X_{1}, X_{2}, \ldots, X_{n} \ldots$ be independent random variables. Define $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geq 1$. Set $S_{0}=0, S_{n}=X_{1}+X_{2}+\ldots+X_{n}, n \geq 1$.
(1) Prove that $\left\{S_{n}, n \geq 0\right\}$ is a martingale w.r.t. $\mathcal{F}_{n}$ if and only if $E\left(X_{n}\right)=$ 0 for $n \geq 1$.
(2) If $\left\{S_{n}, n \geq 0\right\}$ is a martingale and if $E\left(X_{n}^{2}\right)=1$ for $n \geq 1$, show that $\left\{M_{n}=S_{n}^{2}-n, n \geq 0\right\}$ is also a martingale.

Problem 2. Let $X_{1}, X_{2}, \ldots, X_{n} \ldots$ be independent, identically distributed random variables. Define $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geq 1$. Put $a=\log \left(E\left[e^{X_{1}}\right]\right)$ and $S_{n}=X_{1}+X_{2}+\ldots+X_{n}, n \geq 1$. Prove that $\left\{Z_{n}=\exp \left(S_{n}-n a\right), n \geq 1\right\}$ is a martingale w.r.t. $\mathcal{F}_{n}$.

Problem 3. Suppose that $X_{1}, X_{2}, \ldots, X_{n} \ldots$ are independent and normally distributed with mean zero and variance $\sigma^{2}$. Define $Y_{0}=1$ and

$$
Y_{n}=\exp \left\{\left(X_{1}+X_{2}+\ldots+X_{n}\right)-\frac{1}{2} n \sigma^{2}\right\}, \quad n \geq 1
$$

Show that $Y_{n}, n \geq 0$ is a martingale with respect to $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
Problem 4. Consider a family of random variables $\left\{X_{n}, n \geq 0\right\}$, each having finite absolute expectation and satisfying

$$
E\left(X_{n+1} \mid \mathcal{F}_{n}\right)=\alpha X_{n}+\beta X_{n-1}, n \geq 1,
$$

with $\alpha>0, \beta>0$, and $\alpha+\beta=1$. Here $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Find an appropriate value of $a$ such that the sequence $Y_{n}=a X_{n}+X_{n-1}, n \geq 1$, $Y_{0}=X_{0}$ constitutes a martingale with respect to $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

Problem 5. Let $X_{1}, X_{2}, \ldots, X_{n} \ldots$ be a sequence of random variables such that the partial sums $S_{n}=X_{0}+X_{1}+\ldots+X_{n}, n \geq 1$ determine a martingale w.r.t. $\mathcal{F}_{n}=\sigma\left(X_{1}, X_{2}, \ldots, X_{n}\right), n \geq 1$. Show that the summands are mutually uncorrelated, i.e.,

$$
E\left(X_{i} X_{j}\right)=0
$$

for $i \neq j$.

