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Problem 1. Let {Bn}n≥1 be a sequence of events with P (Bn) =
1

2n+1 , n ≥ 1.
(i). Let A = ∪∞

n=1Bn. Show that P (Ac) ≥ 1
2
.

(ii). Let Am = ∪∞
n=mBn. Show that P (Am) ≤ 1

2m
.

(iii). Deduce the probability of ∩∞
m=1Am.

Problem 2. Show that if P (Bn) = 1, for n ≥ 1, then P (∩∞
n=1Bn) = 1.

Problem 3. We write Bn ↑ B if B1 ⊂ B2 ⊂ B3... and B = ∪∞
n=1Bn.

Likewise, write Bn ↓ B if B1 ⊃ B2 ⊃ B3... and B = ∩∞
n=1Bn.

If Bn ↑ B(Bn ↓ B), show that P (Bn) ↑ P (B)(P (Bn) ↓ P (B)).

Problem 4. State the definition of a σ-field G.
(i) Verify that G = {Ω, ∅} is a σ-field.
(ii). Write down the smallest σ-field that contains an event A ⊂ Ω.
(iii). If G1, G2 are two σ-fields, show that G = G1 ∩ G2 is also a σ-field.
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Problem 1.
(i). Let A ∈ F . Write down the indicator IA(ω) of A.
(ii). Write down the value of

∫
Ω
IA(ω)dP .

(iii). If P and Q are two probability measures on (Ω,F) such that∫
Ω

X(ω)dP =

∫
Ω

X(ω)dQ

for all non-negative random variables, then P = Q, i.e., P (A) = Q(A) for all
A ∈ F .

Problem 2. Let Ω = [0, 1], F is the Borel σ-field that contains intervals.
The probability P is the generalized length. Define

Xn(ω) =

{
n2, if 1

n
≤ ω ≤ 2

n

0 otherwise.

Show that for every ω ∈ Ω we have limn→∞ Xn(ω) = 0. Is limn→∞ E(Xn) = 0
true ?
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Problem 3.
(i). If X1, X2, ..., are non-negative random variables on a probability

space, apply the monotone convergence theorem to the sequence Yn =
∑n

j=1Xj

to show that

E(
∞∑
j=1

Xj) =
∞∑
j=1

E(Xj)

(ii) By choosing Xj = IAj
in (i), show that if N is the (random) number

of A1, A2, ... which occur, then

E(N) = P (A1) + P (A2) + ...+ P (An) + ...

Problem 4. Use the Dominated Convergence Theorem to prove that∫ 2π

0

(
∞∑
n=1

1

n2
cos(nt))dt = 0

Problem 5.
(1). Prove the Chebyshev inequality:

P (|X| ≥ ε) ≤ E[|X|α]
εα

, α > 0, ε > 0.

(2) Use (1) to show that if E[|X|] < ∞, then

lim
n→∞

P (|X| > n) = 0

(3) Let X1, X2, ..., Xn... be independent random variables with mean 0
and variance 1. Show that for any δ > 0,

lim
n→∞

P (

∣∣∣∣X1 +X2 + ...+Xn

n

∣∣∣∣ > δ) = 0
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Problem 1. Let X1, X2, ..., Xn... be independent random variables. Define
Fn = σ(X1, X2, ..., Xn), n ≥ 1. Set S0 = 0, Sn = X1 +X2 + ...+Xn, n ≥ 1.

(1) Prove that {Sn, n ≥ 0} is a martingale w.r.t. Fn if and only if E(Xn) =
0 for n ≥ 1.

(2) If {Sn, n ≥ 0} is a martingale and if E(X2
n) = 1 for n ≥ 1, show that

{Mn = S2
n − n, n ≥ 0} is also a martingale.

Problem 2. LetX1, X2, ..., Xn... be independent, identically distributed ran-
dom variables. Define Fn = σ(X1, X2, ..., Xn), n ≥ 1. Put a = log(E[eX1 ])
and Sn = X1 +X2 + ...+Xn, n ≥ 1. Prove that {Zn = exp(Sn −na), n ≥ 1}
is a martingale w.r.t. Fn.
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Problem 3. Suppose that X1, X2, ..., Xn... are independent and normally
distributed with mean zero and variance σ2. Define Y0 = 1 and

Yn = exp{(X1 +X2 + ...+Xn)−
1

2
nσ2}, n ≥ 1

Show that Yn, n ≥ 0 is a martingale with respect to Fn = σ(X1, X2, ..., Xn).

Problem 4. Consider a family of random variables {Xn, n ≥ 0}, each having
finite absolute expectation and satisfying

E(Xn+1|Fn) = αXn + βXn−1, n ≥ 1,

with α > 0, β > 0, and α + β = 1. Here Fn = σ(X1, X2, ..., Xn). Find an
appropriate value of a such that the sequence Yn = aXn + Xn−1, n ≥ 1,
Y0 = X0 constitutes a martingale with respect to Fn = σ(X1, X2, ..., Xn).

Problem 5. Let X1, X2, ..., Xn... be a sequence of random variables such
that the partial sums Sn = X0+X1+ ...+Xn, n ≥ 1 determine a martingale
w.r.t. Fn = σ(X1, X2, ..., Xn), n ≥ 1. Show that the summands are mutually
uncorrelated, i.e.,

E(XiXj) = 0

for i ̸= j.
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