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Abstract

We present a path-space integral representation of the semigroup associated with the quadratic

form obtained by a lower order perturbation of the L2-infinitesimal generator L of a general

symmetric Markov process. An illuminating concrete example for L is ∆D − (−∆)s

D
, where D

is a bounded Euclidean domain in R
d, s ∈]0, 1[, ∆D is the Laplacian operator in D with zero

Dirichlet boundary condition and −(−∆)s

D
is the fractional Laplacian operator in D with zero

exterior condition. The strong Markov process corresponding to L is a Lévy process that is the

sum of Brownian motion in R
d and an independent symmetric (2s)-stable process in R

d killed

upon exiting domain D. This probabilistic representation is a combination of Feynman-Kac

and Girsanov formulas. Crucial to the development is to use the extension of Nakao’s stochastic

integral for zero-energy additive functionals and the associated Itô formula, both of which were

recently developed in [3].
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1 Introduction

Let A(x) := (aij(x))1≤i,j≤d be a symmetric matrix-valued function on R
n that is uniformly elliptic

and bounded. It is well-known that there is a conservative symmetric diffusion {Ω, X,Px, x ∈ R
d}

on R
d with infinitesimal generator L := 1

2

∑d
i,j=1

∂
∂xi

(
aij(x)

∂
∂xj

)
. Moreover X has the following

Fukushima’s decomposition (see [10])

Xt = X0 +Mt +Nt, t ≥ 0, (1.1)

whereM = (M 1, · · · ,Md) is a square-integrable martingale additive functional of X with quadratic

covariant 〈M i,M j〉t =
∫ t
0 aij(Xs)ds and N = (N 1, · · · , Nd) is a continuous additive functional of X

locally of zero energy. Let b and b̂ be two R
d-valued functions on R

d, and c a measurable function

on R
d such that |b| + |̂b| ∈ Lp1(Rd) for some p1 > d (resp. p1 ≥ 2) and c ∈ Lp1(Rd) for some

p2 > d/2 (resp. p2 ≥ 1) under d ≥ 2 (resp. d = 1). In [14], Lunt, Lyons and Zhang showed that the

semigroup {Tt, t ≥ 0} of the following operator

L̃ϕ(x) =
1

2

d∑

i,j=1

∂

∂xi

(
aij(x)

∂ϕ(x)

∂xj

)
+ b(x) · ∇ϕ(x) − div

(
b̂(x)ϕ(x)

)
+ c(x)ϕ(x)

is given by

Ttf(x) = Ex [Ztf(Xt)] , (1.2)

where

Zt = exp

(∫ t

0
(A−1b)(Xs) · dMs +

(∫ t

0
(A−1b̂)(Xs) · dMs

)
◦ rt

−1

2

∫ t

0

(
(b− b̂) ·A−1(b− b̂)

)
(Xs) ds+

∫ t

0
c(Xs) ds

)
. (1.3)

Here rt is the time-reversal operator on Ω from time t > 0, that is, given a path ω ∈ Ω,

rt(ω)(s) :=

{
ω(t− s), if 0 ≤ s ≤ t,

ω(0), if s ≥ t,

Recently, Fitzsimmons and Kuwae [9] extended the above result from symmetric diffusions X on

R
d associated with bounded uniformly elliptic divergence form operators to general symmetric

diffusions with no killings inside the state space. The purpose of this paper is to establish similar

results for general symmetric Markov processes which may have discontinuous sample paths and

killings inside the state space. An illuminating concrete example to keep in mind while reading

this paper is that X being a discontinuous symmetric Lévy process killed upon exiting a domain,

such as X is the sum of a Brownian motion on Rd with an independent symmetric α-stable process

on R
d that is killed upon leaving an open ball. When X is a discontinuous symmetric Markov

process, its martingale additive functional may be discontinuous. This discontinuity causes a lot

of challenges when studying the transformation of X of the form Zt given in analogous to (1.3).

2



One of the challenges is to define stochastic integral for zero-energy additive functionals of X and

to establish the associated Itô formula. Nakao [17] has defined such kind of stochastic integral

for a class of integrand but it is too restrictive for our investigation. In our recent paper [3], we

established the needed stochastic integration theory for zero-energy additive functionals of X as

well as the corresponding Itô formula via time-reversal technique. The main result of the current

paper extends not only the results in [14] and [9] but also Feynman-Kac transforms by continuous

additive functionals of zero energy studied in Chen and Zhang [8] and the pure-jump Girsanov

transforms and discontinuous Feynman-Kac transforms in Chen [1] and in Chen and Song [5]-[6].

The following is a more detailed description of this paper.

Throughout this paper, X = (Ω,F∞,Ft, Xt, ζ,Px, x ∈ E) is an m-symmetric right Markov

process on a Lusin space E, where m is a positive σ-finite measure with full topological support on

E. Here Ω := D([0,∞[→ E∂) is the totality of right-continuous, left-limited (rcll , for short) sample

paths from [0,∞[ to E∂ . For any ω ∈ Ω, we set Xt(ω) := ω(t). Let ζ(ω) := inf{t ≥ 0 | Xt(ω) = ∂}
be the life time of X. As usual, F∞ and Ft are the minimal augmented σ-algebras obtained from

F0
∞ := σ{Xs | 0 ≤ s < ∞}, F0

t := σ{Xs | 0 ≤ s ≤ t} under Px; see Section 3 below for more

details. We sometimes use a filtration denoted by (Mt) on (Ω,M) in order to represent several

filtrations, for example, (F 0
t ), (F0

t+) on (Ω,F0
∞), (Ft) on (Ω,F∞) and others introduced later. We

set Xt(ω) := ∂ for t ≥ ζ(ω) and use θt to denote the shift operator defined by θt(ω)(s) := ω(t+ s),

t, s ≥ 0. Let ω∂ be the path starting from ∂. Then ω∂(s) ≡ ∂ for all s ∈ [0,∞[. Note that

θζ(ω)(ω) = ω∂ for all ω ∈ Ω, {ω∂} ∈ F0
0 ⊂ F0

t for all t > 0 and Px({ω∂}) ≤ Px(X0 = ∂) = 0

for x ∈ E. For a Borel subset B of E, τB := inf{t > 0 | Xt /∈ B} (the exit time of B) is an

(Ft)-stopping time. If B is closed, then τB is an (F0
t+)-stopping time. Also, ζ is an (F 0

t )-stopping

time because {ζ ≤ t} = {Xt = ∂} ∈ F0
t , t ≥ 0.

The transition semigroup of X, {Pt, t ≥ 0}, is defined by

Ptf(x) := Ex[f(Xt)] = Ex[f(Xt) : t < ζ], t ≥ 0.

Each Pt may be viewed as an operator on L2(E;m); collectively these operators form a strongly

continuous semigroup of self-adjoint contractions. The Dirichlet form associated with X is the

bilinear form

E(u, v) := lim
t↓0

1

t
(u− Ptu, v)m

defined on the space

F :=

{
u ∈ L2(E;m)

∣∣∣ sup
t>0

t−1(u− Ptu, u)m <∞
}
.

Here we use the notation (f, g)m :=
∫
E f(x)g(x)m(dx). Since (E , E) is a quasi-regular Dirichlet

form, we know from [4] that (E ,F) is quasi-homeomorphic to a regular Dirichlet form on a locally

compact metric space. Thus without loss of generality, we may and do assume that X is an m-

symmetric Hunt process on a locally compact metric space E, whose associated Dirichlet form

(E ,F) is regular in L2(E;m) and m is a positive Radon measure with full topological support on
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E. For notions such as quasi-continuous, quasi-everywhere (abbreviated as q.e. or E-q.e.), E-nest,

martingale additive functional, continuous additive functionals, Floc, etc. we refer the reader to

[10] and [15]. In particular, we recall that an increasing sequence of closed sets {Fn} is called an

E-nest if ∪∞
n=1FFn is E1/2

1 -dense in F , where FFn := {u ∈ F : u = 0 m-a.e. on E \ Fn}. A function

f is said to be locally in F (denoted as f ∈ Floc) if there is an increasing sequence of finely open

Borel sets {Dk, k ≥ 1} with ∪∞
k=1Dk = E q.e. and for every k ≥ 1, there is fk ∈ F such that f = fk

m-a.e. on Dk.

The main purpose of this paper is to establish a probabilistic representation (via a combination

of Girsanov and Feynman-Kac transformations) of certain lower-order perturbations of the Dirichlet

form E . To discuss these perturbations we need to establish some notation.

A positive continuous additive functional (PCAF in abbreviation) of X (call it A) determines

a measure µ = µA on the Borel subsets of E via the formula

∫

E
f(x)µ(dx) =↑ lim

t→0

1

t
Em

[∫ t

0
f(Xs) dAs

]
, (1.4)

in which f : E → [0,∞] is Borel measurable. The measure µ is necessarily smooth, in the sense

that µ charges no exceptional set of X and there is an E-nest {Fn} of closed subsets of E such

that µ(Fn) < ∞ for each n ∈ N. Conversely, given a smooth measure µ, there is a unique PCAF

Aµ such that (1.4) holds with A = Aµ. In the sequel we refer to this bijection between smooth

measures and PCAFs as the Revuz correspondence, and to µ as the Revuz measure of Aµ.

A smooth measure ν is said to be of the Hardy class if there are constants δ > 0 and γ ≥ 0

such that ∫

E
ũ2 dν ≤ δ · E(u, u) + γ · (u, u)m for every u ∈ F .

It is well known that for every u ∈ F , u has a quasi-continuous m-version ũ. As a rule we take

u to be represented by its quasi-continuous version (when such exists), and drop the tilde from the

notation. Let
◦

M and N denote, respectively, the space of MAFs of finite energy and the space of

continuous additive functionals of zero energy. For u ∈ F , the following Fukushima decomposition

holds:

u(Xt) − u(X0) = Mu
t +Nu

t for t ∈ [0,∞[, (1.5)

Px-a.s. for E-q.e. x ∈ E, where Mu ∈
◦

M and Nu ∈ N .

If M is a locally square-integrable martingale additive functional (MAF) on [[0, ζ[[ of X, then

the process 〈M〉 (the dual predictable projection of [M ]) is a PCAF, and the associated Revuz

measure (as in (1.4)) is denoted by µ〈M〉 (see [3]). More generally, if M u is the martingale part in

the Fukushima decomposition (1.5) of u ∈ F , then 〈M u,M〉 is a CAF locally of bounded variation,

and we have the associated Revuz measure µ〈Mu,M〉, which is locally the difference of smooth

(positive) measures.

Now let M and M̂ be two locally square-integrable MAFs on I(ζ) such that µ〈M〉 and µ
〈cM〉

are

of the Hardy class, and let Aµ be a CAF locally of bounded variation whose Revuz measure µ has

total variation |µ| of the Hardy class. Here I(ζ) := [[0, ζ[[∪[[ζi]], where ζi is the totally inaccessible

part of ζ (see the comment before Definition 2.1). As the main result of this paper (Theorem 3.1),

4



we show that under a suitable condition on the δ coefficients in the Hardy inequality for µ〈M〉,

µ
〈cM〉

, and |µ|, the form perturbation (Q,F) of (E ,F) defined by

Q(f, g) = E(f, g) −
∫

E
f(x)µ

〈Mg ,cM〉
(dx) −

∫

E
g(x)µ〈Mf ,M〉(dx) −

∫

E
f(x)g(x)µ(dx)

−
∫

E×E
f(y)g(x)ϕ(x, y)ψ(y, x)N(x, dy)µH (dx).

determines a strongly continuous semigroup {Tt, t ≥ 0} of operators on L2(E;m), where ϕ and ψ

are Borel functions bounded below and away from −1, coming from the jump part of M and M̂

respectively, and {Tt, t ≥ 0} admits the representation

Ttf(x) := Ex [Ztf(Xt)]

where

Zt = Exp(Mt +Aµt + 〈M c, M̂ c〉t) · Exp(M̂t) ◦ rt(1 + ψ(Xt, Xt−)), for t < ζ. (1.6)

Here rt is the time-reversal operator defined on the path space Ω of X as follows: Given a path

ω ∈ {t < ζ},

rt(ω)(s) =

{
ω((t− s)−), if 0 ≤ s ≤ t,

ω(0), if s ≥ t,

in which, for r > 0, ω(r−) := lims↑r ω(s). (The restriction of the measure Pm to Ft is invariant

under rt on Ω∩{ζ > t}.) Also in (1.6), the symbol Exp denotes the familiar Doléans-Dade stochastic

exponential: if Y is a semimartingale with Y0 = 0, then Z = Exp(Y ) is the unique solution of the

SDE

Zt = 1 +

∫ t

0
Zs− dYs,

and is given explicitly by the formula

Exp(Yt) = exp

(
Yt −

1

2
〈Y c, Y c〉t

) ∏

s∈]0,t]

(1 + ∆Ys)e
−∆Ys .

As mentioned previously, this result was first obtained by Lunt, Lyons and Zhang [14] when X is

a conservative symmetric diffusion on R
d whose L2-infinitesimal generator is a bounded uniformly

elliptic divergence form operator, and then by Fitzsimmons and Kuwae [9] in case X is a diffusion

process on a Lusin space E with no killing inside E. The jumps of X, as allowed in the context of

the present paper, complicate the study. It calls for first to develop certain aspects of the stochastic

calculus of symmetric Markov processes (in particular a general enough version of Itô’s formula) to

deal with these complications, which have been addressed very recently in our separate paper [3].

See section 2 below for a quick review

A special case (M̂ = 0 and M purely discontinuous) of the above result was obtained by Chen

and Song [5] (see also [1] and [6]) in the broader context of “nearly symmetric” right Markov

processes, under somewhat more stringent conditions on µ〈M〉 and µ (in [5] µ〈M〉 is assumed to be
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in the Kato class while µ is only assumed to satisfy the condition ‖Gµ+‖∞ < 1). Recall that the

Revuz measure ν of a PCAF Aν is said to be of the Kato class provided

lim
t→0

‖E·[A
ν
t ]‖∞ = 0,

and that the Kato class is a subclass of the Hardy class. We write K(X) for the Kato class and

define K0(X) := {ν ∈ K(X) | ν(E) <∞}.
The remainder of the paper is organized as follows. A quick review of the needed stochastic

integration with respect to a continuous additive functional of zero energy is given in Section 2.

Section 3 contains the statement of our main result (Theorem 3.1) as well as some auxiliary lemmas

needed for its proof. The proof of Theorem 3.1 is completed in section 4. In section 5 we show that

the Feynman-Kac formula for zero-energy CAF perturbations (Theorem 2.1 of Chen and Song [6])

can be deduced from Theorem 3.1 of the present paper.

2 Stochastic integral for Dirichlet processes

In this section, we give a quick review of Nakao’s [17] definition of stochastic integral with respect

to a additive functional of zero energy and our time-reversal approach of stochastic integral for

Dirichlet processes developed in [3].

Let (N(x, dy),Ht) be a Lévy system for X; that is, N(x, dy) is a kernel on (E∂ ,B(E∂)) and Ht

is a PCAF with bounded 1-potential such that for any nonnegative Borel function φ on E∂ × E∂
vanishing on the diagonal and any x ∈ E∂ ,

Ex


∑

s≤t

φ(Xs−, Xs)


 = Ex

(∫ t

0

∫

E∂

φ(Xs, y)N(Xs, dy)dHs

)
.

To simplify notation, we will write

Nφ(x) :=

∫

E∂

φ(x, y)N(x, dy)

and

(Nφ ∗H)t :=

∫ t

0
Nφ(Xs)dHs.

Let µH be the Revuz measure of the PCAF H. Then the jumping measure J and the killing

measure κ of X are given by

J(dx, dy) =
1

2
N(x, dy)µH(dx), and κ(dx) = N(x, {∂})µH (dx).

These measure feature in the Beurling-Deny decomposition of E : for f, g ∈ F ,

E(f, g) = E (c)(f, g) +

∫

E×E
(f(x) − f(y))(g(x) − g(y))J(dx, dy) +

∫

E
f(x)g(x)κ(dx),
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where E (c) is the strongly local part of E .

For u ∈ F , the martingale part Mu
t in (1.5) can be decomposed as

Mu
t = Mu,c

t +Mu,j
t +Mu,κ

t , ∀t ∈ [0,∞[,Px-a.s. for E-q.e. x ∈ E,

where Mu,c
t is the continuous part of martingale M u, and

Mu,j
t = lim

ε↓0




∑

0<s≤t

(u(Xs) − u(Xs−))1{|u(Xs)−u(Xs−)|>ε}1{s<ζ}

−
∫ t

0

(∫

{y∈E: |u(y)−u(Xs)|>ε}
(u(y) − u(Xs))N(Xs, dy)

)
dHs

}
,

Mu,κ
t =

∫ t

0
u(Xs)N(Xs, {∂})dHs − u(Xζ−)1{t≥ζi},

are the jump and killing parts of M u, respectively. See Theorem A.3.9 of [10]. The limit in

the expression for Mu,j is in the sense of convergence in the norm of
◦

M and of convergence in

probability under Px for E-q.e. x ∈ E (see [10]). The Revuz measure µ〈Mu〉 of 〈Mu〉 will usually

be denoted by µ〈u〉.

Let N ∗ ⊂ N denote the class of continuous additive functionals of the form N u +
∫ ·
0 g(Xs)ds

for some u ∈ F and g ∈ L2(E;m). Nakao [17] constructed a certain linear map Γ from
◦

M into N ∗

in the following way. It is shown in [17] that, for every Z ∈
◦

M, there is a unique w ∈ F such that

E1(w, f) =
1

2
µ〈Mf+Mf,κ, Z〉(E) for every f ∈ F . (2.1)

This unique w is denoted by γ(Z). The operator Γ is defined by

Γ(Z)t = N
γ(Z)
t −

∫ t

0
γ(Z)(Xs)ds for Z ∈

◦
M . (2.2)

It is shown in Nakao [17] that Γ(Z) can be characterized by the following equation

lim
t↓0

1

t
Eg·m [Γ(Z)t] = −1

2
µ〈Mg+Mg,κ, Z〉(E) for every g ∈ Fb. (2.3)

So in particular we have Γ(Mu) = Nu for u ∈ F . Nakao [17] used the operator Γ to define a

stochastic integral

∫ t

0
f(Xs)dN

u
s := Γ(f ∗Mu)t −

1

2
〈Mf,c +Mf,j , Mu,c +Mu,j〉t, (2.4)

where u ∈ F , f ∈ F ∩ L2(E;µ〈u〉) and (f ∗Mu)t :=
∫ t
0 f(Xs−)dMu

s . If we define

Ñ := {N ∈ N | N = Nu +Aµ for some u ∈ F and some signed smooth measure µ} ,

then we see by (2.2) that
∫ ·
0 f(Xs)dN

u
s ∈ Ñ if u ∈ F and f ∈ F ∩ L2(E;µ〈u〉). However Nakao’s

definition of stochastic integral places restrictions on the integrand f(Xt) and on the integrator
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Nu that are too stringent for our study of the perturbation theory of general symmetric Markov

processes. We now recall the definition of the stochastic integral introduced in our recent paper [3]

using time-reversal.

For T an (Ft)-stopping time, we will use Tp and Ti to denote, respectively, the predictable and

totally inaccessible parts of the given (Ft)-stopping time T of X, that is, Tp := TΛp and Ti := TΛi ,

where Λp := {T < ∞, XT− = XT }, Λi := {T < ∞, XT− ∈ E,XT− 6= XT } (see Theorem 44.5 in

M. Sharpe [18]). It is shown in [18] that Tp and Ti are (Ft)-stopping times if T is an (Ft)-stopping

time. We set I(T ) := [[0, T [[∪[[Ti]].

For a locally square-integrable MAF Mt on I(ζ), it is shown in [3] (cf. [2, Lemma 3.2]) that

there is a Borel function ϕ on E∂ ×E∂ with ϕ(x, x) = ϕ(∂, x) = 0 for all x ∈ E∂ so that

Mt −Mt− = ϕ(Xt−, Xt) for every t ∈]0, ζp[, Pm-a.s.

Such a function ϕ is unique up to a measure J ∗-null set on E∂ ×E∂ , where J∗ denotes the measure
1
2N(x, dy)µH(dx) on E∂ ×E∂ . We will call ϕ the jump function of M .

Definition 2.1 Let M be a locally square-integrable MAF on I(ζ) with jump function ϕ. Assume

∫ t

0

∫

E

(
ϕ̂21{|bϕ|≤1} + |ϕ̂|1{|bϕ|>1}

)
(Xs, y)N(Xs, dy)dHs <∞, ∀t < ζ, Px-a.s. (2.5)

for E-q.e. x ∈ E, where ϕ̂(x, y) := ϕ(x, y) + ϕ(y, x). Define, Pm-a.s. on [0, ζ[,

Λ(M)t := −1

2
(Mt +Mt ◦ rt + ϕ(Xt, Xt−) +Kt) for t ∈ [0, ζ[, (2.6)

where Kt is the purely discontinuous local MAF on I(ζ) with

Kt −Kt− = −ϕ̂(Xt−, Xt), t < ζ, Px-a.s. for E-q.e. x ∈ E. (2.7)

It is shown in [3, Theorem 3.5] that Λ(M) = Γ(M) when M is a MAF of X having finite energy.

In other words, the above Λ operator extends Nakao’s Γ operator.

Note that for f ∈ Floc, M
f,c is well defined as a continuous MAF on [0, ζ[ of locally finite energy.

Moreover, for f ∈ Floc and a locally square-integrable MAF M on I(ζ),

t 7→ (f ∗M)t :=

∫ t

0
f(Xs−)dMs

is a locally square-integrable MAF on I(ζ). For a locally square-integrable MAF M on I(ζ), denote

by M c its continuous part, which is also a locally square-integrable MAF on I(ζ) (see Theorem 8.23

in [11]). The following definition of stochastic integral is introduced in [3].

8



Definition 2.2 (Stochastic integral) Suppose that M is a locally square-integrable MAF on

I(ζ) and f ∈ Floc. Let ϕ : E∂ × E∂ → R be a jump function for M , and assume that ϕ satisfies

condition (2.5). Define Pm-a.s. on [0, ζ[ by,

∫ t

0
f(Xs−) dΛ(M)s

:= Λ(f ∗M)t −
1

2
〈Mf,c, M c〉t +

1

2

∫ t

0

∫

E
(f(y) − f(Xs))ϕ(y,Xs)N(Xs, dy)dHs, (2.8)

whenever Λ(f ∗M) is well defined and the third term in the right hand side of (2.8) is absolutely

convergent.

It is shown in [3, Remark 3.8(ii) and Theorem 4.6] that the above defined stochastic integral

extends Nakao’s definition of stochastic integral (2.4) and enjoys a generalized Itô’s formula.

3 Perturbation

Recall that a smooth measure µ is in the Hardy class (write µ ∈ H(X)) if there are constants

δ ∈]0,∞[ and γ ∈ [0,∞[ such that

∫

E
u2dµ ≤ δE(u, u) + γ

∫

E
u2dm, ∀u ∈ F . (3.1)

A well-known sufficient condition for µ ∈ H(X) is that for some δ > 0 and β ≥ 0 the β-potential

Uβµ is bounded above E-q.e. by δ, in which case γ = δβ does the job in (3.1).

LetM , M̂ be two locally square-integrable MAFs on I(ζ). LetM c and M̂ c denote the continuous

parts of M and M̂ respectively, and let ϕ and ψ be jump functions for M and M̂ respectively; thus

ϕ and ψ are Borel functions on E∂ ×E∂ , vanishing on the diagonal, such that

Mt −Mt− = ϕ(Xt−, Xt) and M̂t − M̂t− = ψ(Xt−, Xt),
∀t ∈]0, ζp[ Pm-a.s.

We assume ϕ > −1 and ψ > −1 on E∂ × E∂ . Let 〈M〉 and 〈M̂〉 denote the dual predictable

projections of [M ] and [M̂ ] respectively. Note that

〈M〉t = 〈M c〉t +

∫ t

0

∫

E∂

ϕ(Xs, y)
2N(Xs, dy)dHs, t < ζ,

and

〈M̂ 〉t = 〈M̂ c〉t +

∫ t

0

∫

E∂

ψ(Xs, y)
2N(Xs, dy)dHs, t < ζ.

Let µ be a signed smooth measure; thus µ uniquely determines a continuous additive functional Aµ

of bounded variation on each compact time interval. Let µ〈M〉 and µ
〈cM〉

be the smooth measures

associated with the PCAFs 〈M〉t and 〈M̂ 〉t. Then

µ〈M〉 = µ〈Mc〉 +N(ϕ2)µH and µ
〈cM〉

= µ
〈cMc〉

+N(ψ2)µH .
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We assume µ〈M〉, µ〈cM〉
and |µ| are in H(X). Let δ(〈M〉), δ(〈M̂ 〉), δ(Aµ+

), δ(ϕ2) and δ(ψ2) denote

the coefficient of E(u) and γ(〈M〉), γ(〈M̂ 〉), γ(Aµ+
), γ(ϕ2) and γ(ψ2) the coefficient of ‖u‖2

2 in the

estimate (3.1) for µ〈M〉, µ〈cM〉
, µ+, N(1E×E · ϕ2)µH and N(1E×E · ψ2)µH , respectively. We assume

that

δ0 :=
√

2δ(〈M〉) +

√
2δ(〈M̂ 〉) + δ(Aµ

+
) +

√
δ(ϕ2)δ(ψ2) < 1. (3.2)

Given these elements, we define a quadratic form Q on F : For f, g ∈ F ,

Q(f, g) := E(f, g) −
∫

E
gdµ〈Mf ,M〉 −

∫

E
fdµ

〈Mg ,cM〉
−
∫

E
fgdµ

−
∫

E×E
f(y)g(x)ϕ(x, y)ψ(y, x)N(x, dy)µH (dx). (3.3)

It is easy to check that there is a constant C > 0 that

|Q(f, g)| ≤ CE1(f, f)1/2E1(g, g)
1/2, f, g ∈ F . (3.4)

Moreover,

Qα(f, f) ≥ (1 − δ0)E(f, f) + (α− α0)‖f‖2
2, f ∈ F , (3.5)

where

α0 := γ(〈M〉)
√

2/δ(〈M〉) + γ(〈M̂ 〉)
√

2/δ(〈M̂ 〉)

+γ(Aµ
+
) +

√
δ(ϕ2)δ(ψ2)

{
γ(ϕ2)

δ(ϕ2)
∨ γ(ψ2)

δ(ψ2)

}
.

The quadratic form (Q,F) is closed as a form on L2(E;m). Standard resolvent theory now yields the

existence of a strongly continuous semigroup (Qt)t≥0 of operators on L2(E;m) with ‖Qt‖2→2 ≤ eα0t

for all t ≥ 0.

Define a multiplicative functional Z = (Zt) by

Zt := Exp(M̂t) ◦ rt Exp
(
Mt +Aµt + 〈M c, M̂ c〉t

)
(1 + ψ(Xt, Xt−)). (3.6)

and an operator

Ttf(x) := Ex [Zt f(Xt)] . (3.7)

The main result of this paper is the following.

Theorem 3.1 Assume that µ〈M〉, µ〈cM〉
and |µ| are all in the Hardy class H(X) and that δ0 defined

in (3.2) is less than 1. Then {Tt, t ≥ 0} defined by (3.7) coincides with the strongly continuous

semigroup {Qt, t ≥ 0} on L2(E;m) associated with (Q,F).

The rest of this section is devoted to the statement and proof of two lemmas needed for the

proof of Theorem 3.1.
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Lemma 3.2 (i) If µ〈Mc〉, µ〈cMc〉
, |µ|, N(|ϕ|)µH and N(|ψ|)µH are measures in K(X), then the

semigroup {Tt, t ≥ 0} defined by (3.7) is a bounded linear operator in L2(E;m).

(ii) Let F be a closed set and G its fine interior under X. If

1F (µ〈Mc〉 + µ
〈cMc〉

+ |µ| +N(|ϕ|)µH +N(|ψ|)µH ) ∈ K(X),

and if Λ(M̂ c)t = Nρ
t −
∫ t
0 ρ(Xs)ds Pm-a.s. on {t < τG} for some ρ ∈ F bounded on G such that

1Fµ〈ρ〉 ∈ K(X), then there exists a constant k > 0 such that for non-negative f, g ∈ L2(G;m)

Em

[
f(Xt)g(X0) sup

s∈[0, t∧τG[
Zs

]
≤ k ek t‖f‖2‖g‖2 for t ≥ 0.

Proof. (i): Since log(1 + t) ≤ t+(:= t ∨ 0), for t < ζ

Exp (Mt) = exp


M c

t −
1

2
〈M c〉t +Md

t +
∑

0<s≤t

(log(1 + ϕ(Xs−, Xs)) − ϕ(Xs−, Xs))




= exp


M c

t −
1

2
〈M c〉t −

∫ t

0
N(ϕ)(Xs)dHs +

∑

0<s≤t

log(1 + ϕ(Xs−, Xs))




≤ exp


M c

t −
1

2
〈M c〉t +

∫ t

0
N(ϕ−)(Xs)dHs +

∑

0<s≤t

ϕ+(Xs−, Xs)


 . (3.8)

where we use the fact that mt :=
∑

0<s≤t ϕ(Xs−, Xs) −
∫ t
0 N(ϕ)(Xs)dHs is a purely discontinuous

martingale and coincides with M d
t because N(|ϕ|)µH ∈ K(X). Similarly

Exp
(
M̂t

)
◦ rt · (1 + ψ(Xt−, Xt))

= exp


M̂ c

t ◦ rt −
1

2
〈M̂ c〉t −

∫ t

0
N(ψ)(Xs)dHs +

∑

0<s≤t

log(1 + ψ(Xs−, Xs))




≤ exp


M̂ c

t ◦ rt −
1

2
〈M̂ c〉t +

∫ t

0
N(ψ−)(Xs)dHs +

∑

0<s≤t

ψ
+
(Xs−, Xs)


 , (3.9)

where ψ(x, y) := ψ(y, x), ψ
+
(x, y) := ψ+(y, x). Decompose the CAF Aµ as the difference Aµ

+−Aµ−

of PCAFs with mutually singular Revuz measures µ+ and µ−, respectively. Then µ+ ≤ |µ|, and

because µ〈Mc〉 + µ
〈cMc〉

+ |µ| +N(|ϕ|)µH +N(|ψ|)µH ∈ K(X), so also

η :=
9

2
[µ〈Mc〉 + µ

〈cMc〉
] + 3µ+ + 3N(ϕ−)µH + 3N(ψ−)µH ∈ K(X). (3.10)

Let f and g be non-negative elements of L2(E;m). Then by Hölder’s inequality and the ex-

pression (3.6) for Zt,

Em[g(X0)Ztf(Xt)] ≤ Em[g(X0)
2e3M

c
t −(9/2)〈Mc〉t ]1/3

×Em[f(Xt)
2e3

cMc
t ◦rt−(9/2)〈cMc〉t ]1/3Em[g(X0)e

Bt+Dtf(Xt)]
1/3,

(3.11)
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where Dt := 3
∑

0<s≤t ψ
+
(Xs−, Xs) and

Bt :=
3

2
〈M c〉t +

3

2
〈M̂ c〉t + 3Aµ

+

t + 3

∫ t

0
N(ϕ− + ψ−)(Xs)dHs + 3

∑

0<s≤t

ϕ+(Xs−, Xs)

is the sum of the PCAF associated with the Revuz measure η and the discontinuous increasing AF

3
∑

0<s≤t ϕ
+(Xs−, Xs). Note that D̂t := 3

∑
0<s≤t ψ

+(Xs−, Xs) = Dt ◦ rt Pm-a.s. on {t < ζ}.
Now e3M

c
t −(9/2)〈Mc〉t is a positive supermartingale, so Ex[e

3Mc
t −(9/2)〈Mc〉t ] ≤ 1 for E-q.e. x ∈ E.

Thus the first factor on the right side of (3.11) is no bigger than ‖g‖2/3
2 . Because 〈M̂ c〉 is even, the

middle factor on the right side of (3.11) is equal to

Em[f(Xt)
2e3

cMc
t ◦rt−(9/2)〈cMc〉t◦rt ]1/3 = Em[f(X0)

2e3
cMc

t −(9/2)〈cMc〉t ]1/3 ≤ ‖f‖2/3
2 , (3.12)

because e3
cMc

t −(9/2)〈cMc〉t is also a positive supermartingale. Finally, by Proposition 2.3 in Chen and

Song [5], the cube of the last factor in (3.11) is estimated by

Egm[e2Btf(Xt)]
1/2Egm[e2Dtf(Xt)]

1/2 = Em[e2Btf(Xt)g(X0)]
1/2Em[e2Dt◦rtf(X0)g(Xt)]

1/2

≤ ‖E·[e
4Bt ]‖1/4

∞ ‖E·[e
4 bDt ]‖1/4

∞ ‖f‖2 ‖g‖2

≤ k0e
k0t ‖f‖2 ‖g‖2

for some k0 > 0. Hence, (3.10) implies that (3.11) is no bigger than k
1/3
0 ek0t/3‖f‖1/3

2 ‖g‖1/3
2 . Com-

bining these estimates we find that

Em[f(Xt)Ztg(X0)] ≤ k
1/3
0 · ek0t/3‖f‖2‖g‖2, (3.13)

which proves the assertion.

(ii): By (3.8) and (3.9), we have that Pm-a.s. on {t < τG}

Zt ≤ exp
(
−2Λ(M̂ c)t

)
Exp

(
M c
t − M̂ c

t

)

× exp


 ∑

0<s≤t

(ϕ+ + ψ
+
)(Xs−, Xs)


 exp

(
Aµt +

∫ t

0
N(ϕ− + ψ−)(Xs)dHs

)

= exp

(
2ρ(X0) − 2ρ(Xt) + 2

∫ t

0
ρ(Xs)ds+ 2Mρ

t

)
Exp

(
M c
t − M̂ c

t

)

× exp


 ∑

0<s≤t

(ϕ+ + ψ
+
)(Xs−, Xs)


 exp

(
Aµt +

∫ t

0
N(ϕ− + ψ−)(Xs)dHs

)
.

12



Then, Pm-a.s. on {t < τG}

sup
0≤s<t

Zs ≤ exp [(4 + 2t)‖ρ‖G,∞] sup
0≤s<t

exp [2(1F ∗Mρ)s] (3.14)

× sup
0≤s<t

exp

(
(1F ∗Kc)s −

1

2
〈1F ∗Kc〉s

)
(3.15)

× exp


 ∑

0<s≤t

1F (Xs−)ψ
+
(Xs−, Xs)


 (3.16)

× exp


(1FA

µ+
)t +

∫ t

0
1F (Xs)N(ϕ− + ψ−)(Xs)dHs +

∑

0<s≤t

1F (Xs−)ϕ+(Xs−, Xs)


 , (3.17)

where Kc := M c− M̂ c and 1F ∗Kc
t :=

∫ t
0 1F (Xs−)dKc

s and (1FA
µ+

)t :=
∫ t
0 1F (Xs)dA

µ+

s . Applying

Doob’s inequality to the submartingale exp(1F ∗Mρ)t together with Lemma 4.1(i) in Chen and

Zhang [8] we see that, because 1Fµ〈ρ〉 ∈ K(X), the expectation of the eighth power of the second

factor of (3.14) is estimated by

∥∥∥∥∥E·

[
sup

0≤s<t
exp (16(1F ∗Mρ)s)

]∥∥∥∥∥
∞

≤
(

16

15

)16 ∥∥E· [exp (16(1F ∗Mρ)t)]
∥∥
∞

≤ k1e
k1t

for some k1 > 0. Since 1Fµ〈Kc〉 ∈ K(X), exp
(
(1F ∗Kc) − 1

2 〈1F ∗Kc〉
)

is a martingale. Applying

Doob’s inequality to exp
(
(1F ∗Kc) − 1

2〈1F ∗Kc〉
)
, the expectation of the eighth power of (3.15) is

estimated by

Ex

[∣∣∣∣ sup
0≤s≤t

exp((1F ∗Kc)s − 1
2〈1F ∗Kc〉s)

∣∣∣∣
8
]

≤
(

8

7

)8

Ex

[
exp(8(1F ∗Kc)t − 4〈1F ∗Kc〉t)

]

≤
(

8

7

)8

Ex[exp(16(1F ∗Kc)t − 128〈1F ∗Kc〉t)]1/2 Ex[exp(120〈1F ∗Kc〉t)]1/2

≤
(

8

7

)8√
k2e

(k2/2)t (3.18)

for some k2 > 0, because exp(16(1F ∗ Kc)t − 128〈1F ∗ Kc〉t) is a martingale. Noting 1FN(|ϕ| +

|ψ|)µH ∈ K(X), by using Proposition 2.3 in [8] again, the expectations of the eighth power of (3.16)

(after time reversion with respect to the part process on G) and (3.17) are estimated by k3e
k3t for

some k3 > 0. Denote by C
(1)
t , C

(2)
t , C

(3)
t and C

(4)
t , the second factor of (3.14), (3.15), (3.16) and

(3.17) respectively. Then

E1Gm

[
f(Xt)g(X0) sup

0≤s<t
Zs : t < τG

]
≤ e(4+2t)‖ρ‖G,∞

4∏

i=1

E1Gm[|C(i)
t |4f(Xt)g(X0) : t < τG]1/4.
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For i = 1, 2, 4,

E1Gm

[
|C(i)
t |4f(Xt)g(X0) : t < τG

]
≤ ‖f‖2‖g‖2‖E·[|C(i)

t |8 : t < τG]‖G,∞,

while for i = 3,

E1Gm

[
|C(3)
t |4f(Xt)g(X0) : t < τG

]
≤ ‖f‖2‖g‖2‖E·[|C(3)

t ◦ rt|8 : t < τG]‖G,∞.

Here rt is the time reverse operator under the part process on G. Therefore we have the desired

estimate. 2

Under the assumptions of Theorem 3.1, it is easy to show that the bilinear form (Q,F) is a

closed, lower-bounded quadratic form. Therefore there exists a strongly continuous semigroup,

{Qt, t ≥ 0}, associated with (Q,F). Let (LQ,D(LQ)) be its corresponding L2-generator. On

the other hand, it can be shown that the operators {Tt, t ≥ 0} defined in (3.7) forms a strongly

continuous semigroup on L2(E;m). Denote the L2-generator of {Tt, t ≥ 0} by (L,D(L)).

Lemma 3.3 Suppose µ〈M〉 + µ
〈cM〉

+ |µ| +N(|ϕ|)µH ∈ K(X), µ
〈cM〉

(E) +
∫
E N(|ψ|)dµH <∞ and

−1 < c1 ≤ ϕ,ψ ≤ c2 <∞ for some constants c1, c2. Then, for f ∈ D(LQ)

Ztf(Xt) = f(X0) +

∫ t

0
Zs−d(M

f
s + U fs ) +

∫ t

0
Zs−f(Xs−)d(M c

s − M̂ c
s +Ws)

+

∫ t

0
ZsL

Qf(Xs)ds, (3.19)

where W and U f are purely discontinuous local MAFs on I(ζ) with

Wt −Wt− = ϕ(Xt−, Xt) + ψ(Xt, Xt−) + ϕ(Xt−, Xt)ψ(Xt, Xt−), t < ζ (3.20)

and

Uft − U ft− = (f(Xt) − f(Xt−)) (Wt −Wt−), t < ζ. (3.21)

Proof. Putting ψ(x, y) := ψ(y, x), we see
∫
E N(1E×E |ψ|2)dµH =

∫
E N(1E×E |ψ|2)dµH < ∞

and
∫
E N(1E×E |ψ|)dµH =

∫
E N(1E×E |ψ|)dµH < ∞. In view of Theorem 5.1.3 in [10], we have

Ex[
∫ t
0 N(1E×E(|ψ| + |ψ|2))(Xs)dHs] < ∞ for m-a.e. x ∈ E for each t > 0. On the other hand,

N(|ϕ|)µH ∈ K(X) implies Ex[
∫ t
0 N(|ϕ|)(Xs)dHs] < ∞ for m-a.e. x ∈ E for each t > 0. Thus,

we have the purely discontinuous local MAF W (resp. U f ) on I(ζ) with the property (3.20)

(resp. (3.21)). Since µ
〈cM〉

(E) < ∞, M̂ is a MAF having finite energy and so by (2.2) and [3,

Theorem 3.5] there is some ρ ∈ F such that

Λ(M̂)t = Nρ
t −

∫ t

0
ρ(Xs)ds = ρ(Xt) − ρ(X0) −Mρ

t −
∫ t

0
ρ(Xs)ds Pm-a.s. on {t < ζ}.

By Definition 2.1,

M̂t ◦ rt = −2Λ(M̂)t − M̂t − ψ(Xt, Xt−) − K̂t Pm-a.s. on {t < ζ},
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where K̂ is a purely discontinuous local MAF on I(ζ) with

K̂t − K̂t− = −ψ(Xt−, Xt) − ψ(Xt, Xt−), t < ζ.

The condition
∫
E N(|ψ|)dµH =

∫
E N(|ψ|)dµH ∈ K(X)

implies the integrability of K̂, hence, K̂ is a martingale. Therefore on {t < ζ},

Exp(M̂t) ◦ rt (1 + ψ(Xt, Xt−))

=


exp

(
M̂t −

1

2
〈M̂ c〉t

) ∏

0<s≤t

(1 + ψ(Xs−, Xs))e
−ψ(Xs− ,Xs)


 ◦ rt (1 + ψ(Xt, Xt−))

= exp

(
M̂t ◦ rt −

1

2
〈M̂ c〉t

)( ∏

0<s<t

(1 + ψ(Xs, Xs−))e−ψ(Xs ,Xs−)

)
(1 + ψ(Xt, Xt−))

= exp

(
−2Λ(M̂ )t − M̂t − K̂t −

1

2
〈M̂ c〉t

) ∏

0<s≤t

(1 + ψ(Xs, Xs−))e−ψ(Xs ,Xs−)

= exp
(
−2Λ(M̂ )t

)
Exp

(
−M̂ c

t

)
Exp

(
−M̂d

t − K̂t

)

= exp
(
−2Λ(M̂ )t

)
Exp

(
−M̂t − K̂t

)
.

We see

Wt = Md
t − M̂d

t − K̂t +
∑

0<s≤t

(ϕ · ψ)(Xs−, Xs) −
∫ t

0
N(ϕ · ψ)(Xs)dHs, t < ζ.

Thus

Zt = exp
(
−2Λ(M̂ )t

)
Exp

(
−M̂t − K̂t

)
Exp

(
Mt +Aµt + 〈M c, M̂ c〉t

)

= exp
(
−2Λ(M̂ )t

)
Exp

(
Mt − M̂t − K̂t +Aµt − [Md, M̂d + K̂]t

)

= exp
(
−2Λ(M̂ )t

)
Exp


Mt − M̂t − K̂t +Aµt +

∑

0<s≤t

(ϕ · ψ)(Xs−, Xs)




= exp
(
−2Λ(M̂ )t

)
Exp

(
M c
t − M̂ c

t +Wt +Aµt +

∫ t

0
N(ϕ · ψ)(Xs)dHs

)
(3.22)

:= exp(−2ρ(Xt))Z
1
t (3.23)

with

Z1
t := exp

(
2ρ(X0) + 2Mρ

t + 2

∫ t

0
ρ(Xs)ds

)
Exp

(
M c
t − M̂ c

t +Wt +Aµt +

∫ t

0
N(ϕ · ψ)(Xs)dHs

)
.

(3.24)

Note that

1 +Wt −Wt− = (1 + ϕ(Xt−, Xt))(1 + ψ(Xt, Xt−)) > 0.
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Let f ∈ D(LQ) ⊂ F . Then

E(f, g) =

∫

E
(−LQf)(x)g(x)m(dx) +

∫

E
f(x)µ

〈Mg ,cM〉
(dx) +

∫

E
g(x)µ〈Mf ,M〉(dx)

+

∫

E
f(x)g(x)µ(dx) +

∫

E
g(x)

(∫

E
f(y)ϕ(x, y)ψ(y, x)N(x, dy)

)
µH(dx).

Applying (2.3) to the MAF f ∗ M̂ having finite energy, we have

lim
t→0

1

t
Egm

[
2Γ(f ∗ M̂)t

]
= −

∫

E
f(x)µ

〈Mg ,cM〉
(dx) for every g ∈ Fb, (3.25)

where (f ∗ M̂)t =
∫ t
0 f(Xs−)dM̂s. By (3.24)-(3.25) above and Theorem 5.2.4 in [10],

Nf
t =

∫ t

0
LQf(Xs)ds+ 2Γ(f ∗ M̂)t − 〈M f ,M〉t −

∫ t

0
f(Xs)dA

µ
s

−
∫ t

0

(∫

E
f(y)ϕ(Xs, y)ψ(y,Xs)N(Xs, dy)

)
dHs. (3.26)

Note that it was shown in [3, Remark 3.8(ii)] that Γ(f ∗ M̂ ) = Λ(f ∗ M̂ ) and that by Definition 1.2,

Λ(f ∗ M̂ )t =

∫ t

0
f(Xs−) dΛ(M̂ )s +

1

2
〈Mf , M̂ c〉t −

1

2

∫ t

0

∫

E
(f(y) − f(Xs))ψ(y,Xs)N(Xs, dy)dHs.

(3.27)

It follows from (3.26)-(3.27)

Nf
t =

∫ t

0
LQf(Xs)ds+ 2

∫ t

0
f(Xs−)dNρ

s − 2

∫ t

0
f(Xs)ρ(Xs)ds+ 〈M f , M̂ c −M〉t −

∫ t

0
f(Xs)dA

µ
s

−
∫ t

0

(∫

E

(
f(y) − f(Xs))ψ(y,Xs) + f(y)ϕ(Xs, y)ψ(y,Xs)

)
N(Xs, dy)

)
dHs.

By [3, Theorem 4.2],

∫ t

0
e−2ρ(Xs−)dNf

s − 2

∫ t

0
e−2ρ(Xs−)f(Xs−)dNρ

s

=

∫ t

0
e−2ρ(Xs)LQf(Xs)ds− 2

∫ t

0
e−2ρ(Xs)f(Xs)ρ(Xs)ds

+

∫ t

0
e−2ρ(Xs)d〈M f , M̂ c −M〉s −

∫ t

0
e−2ρ(Xs)f(Xs)dA

µ
s

−
∫ t

0
e−2ρ(Xs)

(∫

E

(
f(y) − f(Xs))ψ(y,Xs) + f(y)ϕ(Xs, y)ψ(y,Xs)

)
N(Xs, dy)

)
dHs.
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Now by the Itô’s formula in [3, Theorem 4.7] and the above identity, we have

e−2ρ(Xt)f(Xt) − e−2ρ(X0)f(X0)

=

∫ t

0
e−2ρ(Xs−)d(M f

s +N f
s ) − 2

∫ t

0
e−2ρ(Xs−)f(Xs−)d(Mρ

s +Nρ
s )

−2

∫ t

0
e−2ρ(Xs−)d〈Mρ,c,Mf,c〉s + 2

∫ t

0
e−2ρ(Xs−)f(Xs−)d〈Mρ,c,Mρ,c〉s

+
∑

0<s≤t

[∆(e−2ρ(Xs)f(Xs)) + 2e−2ρ(Xs−)f(Xs−)∆(ρ(Xs)) − e−2ρ(Xs−)∆(f(Xs))]

=

∫ t

0
e−2ρ(Xs−)dMf

s − 2

∫ t

0
e−2ρ(Xs−)f(Xs−)dMρ

s +

∫ t

0
e−2ρ(Xs)LQf(Xs)ds

−2

∫ t

0
e−2ρ(Xs)f(Xs)ρ(Xs)ds+

∫ t

0
e−2ρ(Xs)d〈M f , M̂ c −M〉s −

∫ t

0
e−2ρ(Xs)f(Xs)dA

µ
s

−
∫ t

0
e−2ρ(Xs)

(∫

E
(f(y) − f(Xs))ψ(y,Xs) + f(y)ϕ(Xs, y)ψ(y,Xs))N(Xs, dy)

)
dHs

−2

∫ t

0
e−2ρ(Xs−)d〈Mρ,c,Mf,c〉s + 2

∫ t

0
e−2ρ(Xs−)f(Xs−)d〈Mρ,c,Mρ,c〉s

+
∑

0<s≤t

[∆(e−2ρ(Xs)f(Xs)) + 2e−2ρ(Xs−)f(Xs−)∆(ρ(Xs)) − e−2ρ(Xs−)∆(f(Xs))], (3.28)

which is a semimartingale. Note that Z1
t can be rewritten as

Z1
t = Exp

(
M c
t − M̂ c

t +Wt +Aµt +

∫ t

0
N(ϕ · ψ)(Xs)dHs + 2

∫ t

0
ρ(Xs)ds

)
exp

(
2ρ(X0) +M2ρ

t

)
.

Now by Itô’s formula for semimartingales,

Z1
t − Z1

0

=

∫ t

0
Z1
s−d
(
M c
s − M̂ c

s +Ws + 2Mρ
s +Aµs +

∫ s

0
N(ϕ · ψ)(Xu)dHu + 2

∫ s

0
ρ(Xu)du

)

+2

∫ t

0
Z1
s−d〈Mρ,c +M c − M̂ c, Mρ,c〉s +

∑

0<s≤t

Z1
s−

(
e2∆(ρ(Xs)) − 1 − 2∆(ρ(Xs))

)
(3.29)

+
∑

0<s≤t

Z1
s−

(
ϕ(Xs−, Xs) + ψ(Xs, Xs−) + ϕ(Xs−, Xs)ψ(Xs, Xs−)

)(
e2∆(ρ(Xs)) − 1

)
.

Applying Itô’s formula to

Ztf(Xt) = Z1
t · (e−2ρ(Xt)f(Xt))

and using (3.28)-(3.29), we get (3.19) after many terms cancel out. This calculation is tedious

and must be done with care. It is fairly easy to calculate out the martingale part, the quadratic

variation part and continuous additive part while applying Itô’s formula. However the calculation

of the jump part of Z1
t · (e−2ρ(Xt)f(Xt)) using Itô’s formula can be frustrating. The best way to
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calculate Ztf(Xt) − Zt−f(Xt−) directly is perhaps the following. It follows from (3.22) and that

the Doléans-Dade’s exponential solve an SDE, we see that

Zt − Zt− = Zt−(Wt −Wt−)

and so

Ztf(Xt) − Zt−f(Xt−) = Zt−

(
(1 +Wt −Wt−)f(Xt) − f(Xt−)

)

= Zt−

(
(1 +Wt −Wt−)∆(f(Xt)) + f(Xt−)(Wt −Wt−)

)
.

2

4 Proof of Theorem 3.1.

Lemma 4.1 Under the conditions of Theorem 3.1, the quadratic form (Q,F) defined in (3.3)

possesses the positivity preserving property in the sense of [16].

Proof. By Proposition 1.3(i) in [16], it suffices to show Q(f+, f−) ≤ 0 for f ∈ F . Let Q(c)+(k) be

the sum of continuous part and killing part of Q:

Q(c)+(k)(f, g) := E (c)(f, g) + E (k)(f, g)

−
∫

E
f(x)µ

〈Mg,c,cMc〉
(dx) −

∫

E
g(x)µ〈Mf,c,Mc〉(dx) −

∫

E
f(x)g(x)µ(dx)

+

∫

E
f(x)g(x)ψ(x, ∂)N(x, {∂})µH (dx) +

∫

E
f(x)g(x)ϕ(x, ∂)N(x, {∂})µH (dx).

Then we see Q(c)+(k)(f+, f−) = 0 because µc〈f〉(f = 0) = 0 and µc〈f+〉(f < 0) = µc〈f−〉(f >

0) = 0, where µc〈u〉 := µ〈Mu,c〉 for u ∈ F . If we let Q(j)(f, g) := Q(f, g) − Q(c)+(k)(f, g) =

E (j)(f, g)+2
∫
E×E\d(f(x)−f(y))g(x)ϕ(x, y)J(dx, dy)+2

∫
E×E\d(g(x)− g(y))f(x)ψ(x, y)J(dx, dy),

then Q(j)(f+, f−) = −2
∫
E×E f

+(y)f−(x)(1 + ϕ(x, y))(1 + ψ(y, x))J(dx, dy) ≤ 0. 2

Lemma 4.2 Let G be a finely open (nearly) Borel subset of E and consider the part space (EG,FG)

of (E ,F) on L2(G;m). Then Q on FG has the following expression: For f, g ∈ FG,

Q(f, g) = E(f, g) −
∫

G
f(x)µG

〈Mg ,cM〉
(dx) −

∫

G
g(x)µG〈Mf ,M〉(dx) −

∫

G
f(x)g(x)µG(dx)

−
∫

G×G
f(y)g(x)ϕ(x, y)ψ(y, x)N(x, dy)µH (dx), (4.1)

where

µG
〈Mg ,cM〉

(dx) := µ
〈Mg,c,cMc〉

(dx) +
(∫

G∂

(g(y) − g(x))ψ(x, y)N(x, dy)
)
µH(dx),

µG〈Mf ,M〉(dx) := µ〈Mf,c,Mc〉(dx) +
(∫

G∂

(f(y) − f(x))ϕ(x, y)N(x, dy)
)
µH(dx),

µG(dx) := µ(dx) −
(∫

E\G
(1 + ϕ(x, y) + ψ(x, y))N(x, dy)

)
µH(dx).
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Proof. The proof is an easy calculation. We also note that for f, g ∈ FG, E(f, g) = Ec(f, g) +∫
G×G(f(x) − f(y))(g(x) − g(y))J(dx, dy) +

∫
G f(x)g(x)κG(dx), where κG = κ + 1

2N(x,E \ G)µH .

2

Proof of Theorem 3.1. As in the analogous argument in [9], we can construct a common E-

nest {Fn}n∈N (of compact sets) such that (i) 1Fn(µ〈M〉+µ〈cM〉
+|µ|) ∈ K0(X) for each n ∈ N and (ii)

there exists ρn ∈ F such that Λ(M̂ c)t = Nρn
t −

∫ t
0 ρn(Xs)ds for 0 ≤ t < τFn Pm-a.s., ρn|Fn ∈ C(Fn)

and 1Fnµ〈ρn〉 ∈ K0(X) for each n ∈ N. Here we use the fact Λ(1Fn ∗M̂ c)t = Λ(M̂ c)t for 0 ≤ t < τFn

Pm-a.s. and µ
〈cMc〉

(Fn) <∞. The latter implies that 1Fn ∗ M̂ c is a MAF of finite energy under X

and there exists a ρn ∈ F such that Λ(1Fn ∗ M̂ c)t = Γ(1Fn ∗ M̂ c)t = Nρn
t −

∫ t
0 ρn(Xs)ds.

Let En denote the fine interior of Fn and define F (n) := {u ∈ F | u = 0 E-q.e. on Ec
n}, and let

Q(n) denote the restriction of Q to F (n). Clearly (Q(n),F (n)) is a quasi-regular positivity preserving

coercive closed form on L2(En;m) satisfying the same hypothesis as (Q,F). In fact, (Q(n),F (n))

is related to the restriction of E to F (n) (which is the Dirichlet form of the part process XEn) in

exactly the same way that (Q,F) is related to (E ,F).

(1) First assume that |ϕ| and |ψ| are bounded above and below away from 0. Note that

1FnN(|ϕ|+ |ψ|)µH ∈ K0(X) because of the boundedness of |ϕ| and |ψ| away from 0. Then the con-

ditions of Lemmas 3.2 and 3.3 are satisfied by XEn and (Q(n),F (n)). Let (Q
(n)
t )t>0 and (V

(n)
α )α>α0

be the semigroup and resolvent on L2(En;m) associated with (Q(n),F (n)). Let (LQ,(n),D(LQ,(n)))

denote the infinitesimal generator of (Q
(n)
t ).

Consider a bounded f ∈ D(LQ,(n)). Let τn be the first exit time of X from En. Then by

Lemma 3.3 (applied to XEn and (Q(n),F (n))),

f(Xt∧τn)Zt∧τn = f(X0) +

∫ t∧τn

0
Zs− d(M

f,(n)
s + U f,(n)

s )

+

∫ t∧τn

0
Zs−f(Xs−) d(M c,(n)

s − M̂ c,(n)
s +W (n)

s ) +

∫ t∧τn

0
ZsL

Q,(n)f(Xs) ds,

(4.2)

because f(Xτn) = 0, Pm-a.s. Here was used the fact that Z (n) (resp. M c,(n), W (n), Uf,(n)), the

analog of Z (resp. M c, W , U f ) with respect to XEn and (Q(n),F (n)), coincides with Z (resp. M c,

W , U f ) on [0, τn[. Let {Tk} be an increasing sequence of (Ft)-stopping times with Tk ↑ ζ as k → ∞
reducing the local martingale terms on the right hand side of (3.19). Replacing t by t∧ Tk in (4.2)

and taking expectations we obtain

Ex[f(Xt∧Tk∧τn)Zt∧Tk∧τn ] = f(x) + Ex

[∫ t∧Tk∧τn

0
Zs(L

Q,(n)f)(Xs) ds

]
, (4.3)

for m-a.e. x ∈ En. Hence, for non-negative g ∈ L2(En;m) we have

Egm[f(Xt∧Tk∧τn)Zt∧Tk∧τn ] = (f, g)L2(En;m) + Egm

[∫ t∧Tk∧τn

0
Zs(L

Q,(n)f)(Xs) ds

]
(4.4)

Because f is bounded, Lemma 3.2(ii) for 1En , g ∈ L2(En;m) permits us to conclude that, as k → ∞,
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the left side of (4.4) converges to Egm[f(Xt∧τn)Zt∧τn ]. On the other hand, because

∣∣∣∣∣Ex

[∫ t∧τn

0
Zs(L

Q,(n)f)(Xs) ds

]∣∣∣∣∣ ≤
∫ t

0
T (n)
s |LQ,(n)f |(x) ds, (4.5)

the left hand side of (4.5) is in L2(En;m) from Lemma 3.2(i), where

T (n)
s f(x) := Ex[f(Xs)Zs : s < τn]. (4.6)

Passing to the limit in (4.4) as k → ∞, we obtain

Egm[f(Xt∧τn)Zt∧τn ] = (f, g)L2(En;m) + Egm

[∫ t∧τn

0
Zs(L

Q,(n)f)(Xs) ds

]
(4.7)

first for non-negative, and then for all g ∈ L2(En;m). Then

Ex[f(Xt∧τn)Zt∧τn ] = f(x) + Ex

[∫ t∧τn

0
Zs(L

Q,(n)f)(Xs) ds

]
, (4.8)

for m-a.e. x ∈ En, provided f ∈ D(LQ,(n)) is bounded. For f ∈ D(LQ,(n)) of the form V
(n)
α g

(0 ≤ g ∈ L2(En;m)), by the construction of the nest {Fn}, there is a sequence {gk} of non-negative

elements of L2(E;m) such that fk := V
(n)
α gk is in L∞(En;m), fk converges in L2(En;m) to f and

LQ,(n)fk = αfk − gk converges to LQ,(n)f in L2(En;m). [The boundedness of fk comes from the

inequality V
(n)
α f ≤ 1Fn · Vαf for all non-negative f ∈ L2(E;m), which is a consequence of the fact

that these resolvents are associated with quasi-regular positivity preserving forms (see the argument

in [9]). Substituting fk for f in (4.8) and then passing the limit as k → ∞, we see that (4.8) is

valid for all f ∈ D(LQ,(n)), since any such f can be written as V
(n)
α g1 − V

(n)
α g2 for non-negative

g1, g2 ∈ L2(En;m). That is, we have,

T
(n)
t f(x) = f(x) +

∫ t

0
T (n)
s (LQ,(n)f)(x) ds, m-a.e. x ∈ En, (4.9)

for all f ∈ D(LQ,(n)). This implies the strong continuity of T
(n)
t on D(LQ,(n)), hence on L2(En;m).

Note that T
(n)
t maps L2(En;m) into itself by Lemma 3.2(i), because

1En(µ〈M〉 + µ
〈cM〉

+N(|ϕ|)µH +N(|ψ|)µH + |µ|)

is a Kato class smooth measure with respect to XEn . Hence

lim
t↓0

T
(n)
t f − f

t
= LQ,(n)f. (4.10)

Thus, using (L(n),D(L(n))) to denote the infinitesimal generator of (T
(n)
t )t>0,

D(LQ,(n)) ⊂ D(L(n)) and LQ,(n) = L(n) on D(LQ,(n)). (4.11)
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Let G
(n)
α :=

∫∞
0 e−αtT

(n)
t dt be the resolvent operator associated with L(n). Fix u ∈ L2(En;m) and

define, for α > α0, v := V
(n)
α u. Then v ∈ D(LQ,(n)) ⊂ D(L(n)) and L(n)v = LQ,(n)v = αv − u. But

D(L(n)) coincides withG
(n)
α (L2(En;m)), so there exists g ∈ L2(En;m) such that v = G

(n)
α g, in which

case L(n)v = αv − g. It follows that u = g, and then that G
(n)
α u = V

(n)
α u, for all u ∈ L2(En;m).

This identity of resolvents implies that the associated semigroups (T
(n)
t ) and (Q

(n)
t ) coincide under

the boundedness of |ϕ|, |ψ| away from 0.

(2) Secondly, we assume only that ψ is bounded below away from 0. For general ϕ > −1, define

ϕ`(x, y) := (1{ 1
`
<|ϕ|<`}ϕ)(x, y).

Clearly ϕ` satisfies the condition for ϕ in step (1). Let M d,` be a purely discontinuous MAF on

I(ζ) such that ∆M d,`
t = ϕ`(Xt−, Xt), t ∈]0, ζ[, and set M ` := M c +Md,`. Then we see µ〈M`−M〉 =

N((ϕ` − ϕ)2)µH ≤ N(ϕ2)µH . Hence we see that M ` converges uniformly to M on any compact

subinterval of [0, τFn [ Pm-a.s., because of the convergence of energy e(1Fn ∗ (M ` −M)) → 0. By

replacing M with M `, we consider Q`, Q`t , Z
`
t , T

`
t , G

`
α instead of Q, Qt, Zt, Tt, Gα, respectively and

also consider Q
`,(n)
t , T

`,(n)
t , G

`,(n)
α instead of Q

(n)
t , T

(n)
t , G

(n)
α respectively. From (1), we already know

that Q
`,(n)
t coincides with T

`,(n)
t . To show the coincidence, we first prove that T

(n)
t f ∈ L2(En;m)

and T
`,(n)
t f weakly converges to T

(n)
t f for any Borel function f ∈ L2(En;m).

In order to prove this weak convergence, we will follow the approach in Chen and Zhang [8]

by showing that there exists a constant α̌0 independent of `, `0 with ` ≥ `0 such that for any

nonnegative Borel f, g ∈ L2(En;m)

sup
`≥`0

Em

[
f(Xt)g(X0)Z

`0
t

(
Y `
t

)2
: t < τn

]
≤ eα̌0t‖f‖2‖g‖2, (4.12)

where Y `
t := Z`t

(
Z`0t

)−1
= Exp

(
Md,`
t

)
Exp

(
Md,`0
t

)−1
= Exp

(
Md,`
t −Md,`0

t

)
for ` ≥ `0 ≥ 1. Here

we use [Md,`0 ,Md,` −Md,`0 ]t = 0 for ` ≥ `0 ≥ 1. From (4.12) we see the uniform integrability of

{Y `
t , ` ≥ `0} under the law 1{t<τn}f(Xt)g(X0)Z

`0
t Pm, which implies the desired weak convergence.

Indeed, from (1), we can conclude ‖T `,(n)
t ‖2→2 ≤ eα0t, hence ‖G`,(n)

α ‖2→2 ≤ 1/(α−α0). By Fatou’s

lemma we have for Borel f ∈ L2(En;m)

∫

En

|T (n)
t f(x)|2m(dx) ≤ lim

l→∞

∫

En

|T `,(n)
t f(x)|2m(dx) ≤ eα0t‖f‖2

2.

Hence ‖T (n)
t ‖2→2 ≤ eα0t and ‖G(n)

α ‖2→2 ≤ 1/(α − α0). By (4.12), for each f ∈ L2(En;m), T
`,(n)
t f

converges to T
(n)
t f weakly on L2(En;m) and consequently G

`,(n)
α f converges to G

(n)
α f weakly on

L2(En;m) as `→ ∞.

21



We now prove (4.12). Since

(
Y `
t

)2
=

(
Exp

(
Md,`
t −Md,`0

t

))2

= exp
(
2Md,`

t − 2Md,`0
t

) ∏

0<s≤t

(1 + ∆(Md,` −Md,`0)s)
2 exp(−2∆(M d,` −Md,`0)s)

= exp
(
2Md,`

t − 2Md,`0
t

) ∏

0<s≤t

(
1 + (1 + ∆(Md,` −Md,`0)s)

2 − 1
)

× exp
(
1 − (1 + ∆(Md,` −Md,`0)s)

2
)

exp
(
(∆(Md,` −Md,`0)s)

2
)

= Exp
(
K`
t

)
exp

(
(N(1{1/`<|ϕ|≤1/`0 ,`0≤|ϕ|<`}ϕ

2) ∗H)t
)
,

where K`
t is the purely discontinuous MAF on I(ζ) with

∆K`
s = (1 + ∆(Md,` −Md,`0)s)

2 − 1

= 2∆(Md,` −Md,`0)s + (∆(Md,` −Md,`0)s)
2

= 1{1/`<|ϕ|≤1/`0,`0≤|ϕ|<`}(2ϕ+ ϕ2)(Xs−, Xs), s ∈]0, ζ[.

Thus Ž`t := Z`tY
`
t = Z`0t

(
Y `
t

)2
is of the same form as Z`t . Indeed,

Ž`t = Exp
(
M̂t

)
◦ rtExp

(
M `0
t +K`

t +Aµt + (N(1{1/`<|ϕ|≤1/`0}ϕ
2) ∗H)t + 〈M c, M̂ c〉t

)

×(1 + ψ(Xt, Xt−))

and the corresponding form Q̌` on F (n) is given by

Q̌`(f, g) = E(f, g) −
∫

En

f(x)µEn

〈Mg ,cM〉
(dx) −

∫

En

g(x)µEn

〈Mf ,M`0+K`
t 〉

(dx)

−
∫

En

f(x)g(x)
(
µEn +N(1En×En1{1/`<|ϕ|≤1/`0,`0≤|ϕ|<`}ϕ

2)µH
)
(dx) (4.13)

−
∫

En×En

f(y)g(x)1{1/`<|ϕ|≤1/`0 ,`0≤|ϕ|<`}ϕ(x, y)ψ(y, x)N(x, dy)µH (dx)

for f, g ∈ F (n). Then the constant δ̌`0 corresponding to Q̌` on F (n) is given by

δ̌`0 :=
√

2δ(〈M `0 +K`
t 〉) +

√
2δ(〈M̂ 〉) + δ(Aµ

+
)

+δ(1{1/`<|ϕ|≤1/`0 ,`0≤|ϕ|<`}ϕ
2) +

√
δ(1{1/`<|ϕ|≤1/`0 ,`0≤|ϕ|<`}ϕ2)

√
δ(ψ2)

and it is estimated by

δ̌0 :=
√

2δ(10〈M〉) +

√
2δ(〈M̂ 〉) + δ(Aµ

+
) + δ(ϕ2) +

√
δ(ϕ2)

√
δ(ψ2).

Here we use [M `0 ,K`] = 0, 〈M `0〉 ≤ 〈M〉 and 〈K`〉 ≤ 〈3M〉. Note that δ̌0 can be taken to be less

than 1 because 1En(µ〈M〉 + µ
〈cM〉

+ |µ|) ∈ K(X). Therefore by (1) we have (4.12). Here α̌0 is given
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by

α̌0 := γ(10〈M〉)
√

2/δ(10〈M〉) + γ(M̂ )

√
2/δ(〈M̂ 〉)

+γ(Aµ
+
) + γ(ϕ2) +

(
δ(ϕ2)δ(ψ2)

)1/2
{
γ(ϕ2)

δ(ϕ2)
∨ γ(ψ2)

δ(ψ2)

}
.

Next we show that {G(n)
α , α > α0} is the resolvent associated with (Q(n),F (n)). Fix a bounded

Borel f ∈ L2(En;m). We easily see

E1(G
`,(n)
α f,G`,(n)

α f) ≤MQ`,(n)
α (G`,(n)

α f,G`,(n)
α f) = M(f,G`,(n)

α f) ≤ M

α− α0
‖f‖2

2.

So {G`,(n)
α f, n ∈ N} is E1/2

1 -bounded. Taking a subsequence if necessary, G
`,(n)
α f converges weakly

to some f0 ∈ F (n) and its Cesàro mean strongly converges to f0. Hence f0 = G
(n)
α f .

Since

Q`,(n)(u, v) −Q(n)(u, v)

= −
∫

En

v dµEn

〈Mu,M`,d−Md〉
−
∫

En×En

u(y)v(x)((ϕ` − ϕ) · ψ)(x, y)N(x, dy)µH (dx),

we have

|Q`,(n)(u, v) −Q(n)(u, v)|

≤
(∫

En

v2N(ϕ2)dµH

)1/2 (∫

En×En

(u(x) − u(y))21{|ϕ|≤1/`,`≤|ϕ|}(x, y)N(x, dy)µH (dx)

)1/2

+

(∫

En

v2N(ϕ2)dµH

)1/2 (∫

En

u2N(1{|ϕ|≤1/`,`≤|ϕ|}ψ
2)dµH

)1/2

Taking u := G
(n)
α f , v := g` := G

`,(n)
α f −G

(n)
α f and noting sup`∈N E1(g`, g`) <∞, we have

E1(G
`,(n)
α f −G(n)

α f,G`,(n)
α f −G(n)

α f)

≤ MQ`,(n)
α (G`,(n)

α f −G(n)
α f,G`,(n)

α f −G(n)
α f)

= M
(
Q(n)
α (G(n)

α f, g`) −Q`,(n)
α (G(n)

α f, g`)
)

= M
∣∣∣Q`,(n)(G(n)

α f, g`) −Q(n)(G(n)
α f, g`)

∣∣∣
→ 0 as `→ ∞.

We also see

Q(n)
α (G(n)

α f, v) = lim
`→∞

Q(n)
α (G`,(n)

α f, v)

= lim
`→∞

(
Q(n)
α (G`,(n)

α f, v) −Q`,(n)
α (G`,(n)

α f, v)
)

+ (f, v)L2(En;m)

= (f, v)L2(En;m).
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Now G
(n)
α f = V

(n)
α f holds for any Borel f ∈ L2(En;m). Therefore, we have the desired result for

general ϕ > −1 and the lower boundedness of ψ away from 0.

(3) Finally, we show the coincidence for general ϕ,ψ > −1. By duality, it suffices to prove the

coincidence Ĝ
(n)
α f = V̂

(n)
α f for Borel f ∈ L2(En;m), where Ĝαf =

∫∞
0 e−αtT̂tfdt and T̂tf(x) :=

Ex[Zt ◦ rtf(Xt) : t < τn]. Considering the approximation ψ` := 1{|ψ|>1/`}ψ for ψ, we can apply

the result in (2) and the proof is quite similar with (2) [The boundedness of ψ away from 0 in (2)

is only used for the application of (1)]. Therefore, we have the coincidence Ĝ
(n)
α f = V̂

(n)
α f , hence

G
(n)
α f = V

(n)
α f for any Borel f ∈ L2(En;m).

As in [9], by using Lemma 3.6 in [12], we have that Gα coincides with Vα, consequently Tt
coincides with Qt by use of the positivity preserving property of (Q,F) (see Lemma 4.1). 2

5 Feynman-Kac type formula for Λ(M)

In this section, we show that Theorem 3.1 yields an extension of Feynman-Kac formula for zero

energy CAF Nu, studied by Chen and Zhang in [8], where u is a function in F having Kato class

energy measure µ〈Mu〉.

Let M be a locally square-integrable MAF on I(ζ). Let ϕ be the jumping function for M , that

is, ϕ vanishes on the diagonal of E∂×E∂ and ∆Mt = ϕ(Xt−, Xt) for ∀t ∈]0, ζp[, Pm-a.s. We assume

that ϕ(x, y) + ϕ(y, x) = 0 for x, y ∈ E∂ , which includes the case M = Mu for u ∈ Fe. Under this

assumption, we have Pm-a.s.

Λ(M)t = −1

2
(Mt +Mt ◦ rt + ϕ(Xt, Xt−)) for t ∈]0, ζ[.

We further assume that µ〈M〉, the energy measure of quadratic variation process 〈M〉, is of Hardy

class and satisfies

δ0 := [2δ(〈M c〉)]1/2 + [2δ(〈M j〉)]1/2 +
1

2
[δ(〈Mk〉)]1/2 < 1, (5.1)

where M j is the purely jump part and M k is the killing part of M , respectively. Actually, M d, M j

and Mk can be expressed as follows:

Md
t := lim

k→∞
lim
ε→0


 ∑

s∈]0,t]

1Gk
(Xs−)(ϕ1{|ϕ|>ε})(Xs−, Xs) − (1Gk

N(ϕ1{|ϕ|>ε}) ∗H)t


 ,

M j
t := lim

k→∞
lim
ε→0


 ∑

s∈]0,t]

1Gk
(Xs−)(ϕ1{|ϕ|>ε})(Xs−, Xs)1{s<ζ} − (1Gk

N(1E×Eϕ1{|ϕ|>ε}) ∗H)t


 ,

Mk
t := lim

k→∞
lim
ε→0

(
1Gk

(Xζ−)(ϕ1{|ϕ|>ε})(Xζ−, ∂)1{t≥ζi} −
∫ t

0
1Gk

(Xs)(1{|ϕ|>ε}ϕ)(Xs, ∂)N(Xs, {∂})dHs

)
.

Note Md = M j + Mk. Here {Gk} is a nest of finely open Borel sets such that 1Gk
∗ M ∈

◦
M

(see Proposition 2.17 in [3]). We also see 〈M j〉t =
∫ t
0

(∫
E ϕ(Xs, y)

2N(Xs, dy)
)
dHs, 〈Mk〉t =∫ t

0 ϕ(Xs, ∂)2N(Xs, {∂})dHs and µ〈Mj〉(dx) = N(1E×Eϕ
2)µH(dx), µ〈Mk〉(dx) = ϕ(x, ∂)2N(x, {∂})µH (dx).
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We consider the following quadratic form Q on F : For f, g ∈ F ,

Q(f, g) := E(f, g) +
1

2

∫

E
gdµ〈Mf,c,Mc〉 +

1

2

∫

E
fdµ〈Mg,c,Mc〉

+
1

2

∫

E
g(x)

(∫

E
(f(y) − f(x))ϕ(x, y)N(x, dy)

)
µH(dx)

+
1

2

∫

E
f(x)

(∫

E
(g(y) − g(x))ϕ(x, y)N(x, dy)

)
µH(dx) (5.2)

−
∫

E
f(x)g(x)ϕ(x, ∂)N(x, {∂})µH (dx)

From (5.1), we have (3.4) and (3.5) with

α0 := γ(〈M c〉) (2/δ(〈M c〉))1/2 + γ(〈M j〉)
(
2/δ(〈M j〉)

)1/2
+

1

2
γ(〈Mk〉)

(
1/δ(〈Mk〉)

)1/2
. (5.3)

Note that for f, g ∈ Fb

Q(f, g) = E(f, g) +
1

2
ν〈Mfg ,M〉(E), (5.4)

where the signed measure ν〈M,N〉 for locally square-integrable MAFs M,N on [[0, ζ[[ (more strongly,

on I(ζ)) is defined by ν〈M,N〉 := µ〈Mc,Nc〉 + µ〈Mj ,Nj〉 + 2µ〈Mk ,Nk〉. We have the following result

extending Theorem 1.2 in [8].

Theorem 5.1 Suppose that µ〈M〉 ∈ H(X) and satisfies (5.1). Then P tf(x) := Ex[e
Λ(M)tf(Xt)] is

the semigroup associated with (Q,F).

Proof. We consider an adequate nest {Fn} such that all objects µ〈Mc〉, N(ϕ2)µH restricted to Fn
are of Kato class as in the proof of Theorem 3.1 and recognize the fine interior En of Fn as the

whole space for each n.

First we assume the boundedness of |ϕ|, that is, 1/L ≤ |ϕ| ≤ L for some L > 0. Note that

|ex−1| ≤ |x| eL/2−1
L/2 for |x| ≤ L/2. Let Jt be the purely discontinuous locally square-integrable MAF

on I(ζ) satisfying ∆Jt = exp[− 1
2ϕ(Xt−, Xt)] − 1, t ∈]0, ζ[ and set M t := −1

2M
c
t + Jt for t ∈ I(ζ).

Then we see ∆M t = ∆Jt > −1 for t ∈]0, ζ[.

We then see on {t < ζ}
e−

1
2
Mt = Exp

(
M t

)
e−A

µ
t ,

where

µ(dx) :=

∫

E∂

(
1 − ϕ(x, y)

2
− e−

ϕ(x,y)
2

)
N(x, dy)µH(dx) − 1

8
µ〈Mc〉(dx).

Then we have on {t < ζ}

eΛ(M)t = Exp
(
M t

)
◦ rtExp

(
M t

)
e−2Aµ

t e−
ϕ(Xt,Xt−)

2 .

Recall that 1Enµ〈M〉 and 1En |µ| are of Kato class. Hence δ0 for M , Aµ, (e−ϕ/2 −1)2 and (eϕ/2 −1)2

as in (3.2) strictly less than 1 over (Q(n),F (n)). Here Q(n) := Q on F (n) := FEn . Therefore,

25



by Theorem 3.1, we have the desired result for (Q(n),F (n)) on L2(En;m), that is, P
(n)
t f(x) :=

Ex[e
Λ(M)tf(Xt) : t < τn] is the semigroup of (Q(n),F (n)) on L2(En;m). Let R

(n)
α :=

∫∞
0 e−αtP

(n)
t dt

be the resolvent of {P (n)
t , t > 0}.

For general ϕ, we approximate it by ϕ` := 1{1/`<|ϕ|<`}ϕ. We let M `
t := M c

t +Md,`
t , where Md,`

t

is the purely discontinuous locally square-integrable MAF on I(ζ) satisfying

∆Md,`
t = (1{1/`<|ϕ|<`}ϕ)(Xt−, Xt) for t ∈]0, ζ[.

We have e(1En(M −M `)) = 1
2

∫
En
N(1{1/`<|ϕ|<`}cϕ2)dµH → 0 as ` → ∞. Consequently, Λ(M `)t

converges uniformly to Λ(M)t on each compact subinterval of [0, τn[ under Pm by taking some

subsequence of `. We consider
(
Q`,(n), P

`,(n)
t , R

`,(n)
α

)
instead of

(
Q(n), P

(n)
t , R

(n)
α

)
by replacing M

with M `. In particular, P
`,(n)
t f(x) := Ex[e

Λ(M`)tf(Xt) : t < τn]. Then by the above argument

Q`,(n)(R
`,(n)
α f, g) = (f, g)L2(En;m) for α > α0, f ∈ L2(En;m), g ∈ F (n).

The proof of the uniform integrability of eΛ(M`)t under the law 1{t<τn}f(Xt)g(X0)Pm for non-

negative Borel f, g ∈ L2(En;m) is very similar to the analogous part of the proof of Theorem 3.1.

Actually, we can prove that there exists a constant β0 > 0 independent of ` (possibly depending on

n) such that for any nonnegative Borel f, g ∈ L2(En;m)

sup
`∈N

Em

[
f(Xt)g(X0)e

2Λ(M`)t : t < τn

]
≤ eβ0t‖f‖2‖g‖2. (5.5)

Then we have that P
(n)
t maps L2(En;m) to itself with the bound eα0t, where α0 independent of `

comes from (5.3) and the weak convergence of P
`,(n)
t → P

(n)
t . As in the proof of Theorem 3.1(3),

for each Borel f ∈ L2(En;m), R
`,(n)
α f is weakly convergent to R

(n)
α f for some subsequence of ` and

R
(n)
α f ∈ F (n). We only show that R

`,(n)
α strongly converges to R

(n)
α on L2(En;m). Note that Q(n)

has the following expression: For u, v ∈ F (n),

Q(n)(u, v) = E(u, v) +
1

2

∫

En

v dµ〈Mu,c,Mc〉 +
1

2

∫

En

u dµ〈Mv,c,Mc〉

+
1

2

∫

En

v(x)

(∫

En

(u(y) − u(x))ϕ(x, y)N(x, dy)

)
µH(dx)

+
1

2

∫

En

u(x)

(∫

En

(v(y) − v(x))ϕ(x, y)N(x, dy)

)
µH(dx)

−
∫

En

u(x)v(x)

(∫

Ec
n

ϕ(x, y)N(x, dy) + ϕ(x, ∂)N(x, {∂})
)
µH(dx).
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Similarly, Q`,(n) has the same expression by replacing ϕ with ϕ`. Since

Q`,(n)(u, v) −Q(n)(u, v)

=
1

2

∫

En

v(x)

(∫

En

(u(y) − u(x))1{1/`<|ϕ|<`}cϕ(x, y)N(x, dy)

)
µH(dx)

+
1

2

∫

En

u(x)

(∫

En

(v(y) − v(x))1{1/`<|ϕ|<`}cϕ(x, y)N(x, dy)

)
µH(dx)

−
∫

En

u(x)v(x)

(∫

Ec
n∪{∂}

1{1/`<|ϕ|<`}cϕ(x, y)N(x, dy)

)
µH(dx),

we have

|Q`,(n)(u, v) −Q(n)(u, v)|

≤ 1

2

(∫

En

v2N(1En×Enϕ
2)dµH

)1/2 (∫

En×En

(u(x) − u(y))21{1/`<|ϕ|<`}cN(x, dy)µH(dx)

)1/2

+
1

2

(∫

En

u2N(1En×En(ϕ` − ϕ)2)dµH

)1/2

(2E(v, v))1/2

+

(∫

En

u2N(1En×Ec
n∪{∂}

1{1/`<|ϕ|<`}cϕ2)dµH

)1/2 (∫

En

v(x)2N(x,Ec
n ∪ {∂})µH (dx)

)1/2

.

Taking u = R
(n)
α f and v := g` := R

`,(n)
α f −R

(n)
α f and noting sup`∈N E1(g`, g`) <∞, we have

E1(R
`,(n)
α f −R

(n)
α f,R

`,(n)
α f −R

(n)
α f)

≤MQ`,(n)
α (R

`,(n)
α f −R

(n)
α f,R

`,(n)
α f −R

(n)
α f)

= M
(
Q(n)
α (R

(n)
α f, g`) −Q`,(n)

α (R
(n)
α f, g`)

)

= M
∣∣∣Q`,(n)(R

(n)
α f, g`) −Q(n)(R

(n)
α f, g`)

∣∣∣
→ 0 as `→ ∞.

Therefore, we obtain the desired result for (Q(n),F (n)). The rest is the same as before. 2

6 Examples

Example 5.1 Let X = (Xt,Px)x∈Rd be the symmetric α-stable process with α ∈]0, 2[ and (E ,F)

the corresponding Dirichlet form on L2(Rd), and K a compact subset of R
d. It is well-known that

X is transient and has Green function given by G(x, y) := A(d, α)|x− y|−(d−α) under d > α, where

A(d, β) :=
|β|Γ(d−β2 )

21+βπd/2Γ(1 + β
2 )
, β < d

27



and (E ,F) is given by

E(u, v) =
A(d,−α)

2

∫

Rd×Rd

(u(x) − u(y))(v(x) − v(y))

|x− y|d+α dxdy,

F =
{
u ∈ L2(Rd)

∣∣∣
∫

Rd×Rd

(u(x) − u(y))2

|x− y|d+α dxdy <∞
}
.

X has a Lévy system (N,H), where N(x, dy) := A(d,−α)|x−y|−(d+α)dy and Ht = t. So µH(dx) =

dx.

We say that a measurable function f on R
d is of Kato class (resp. Hardy class) if the measure

|f(x)|dx is of Kato class (resp. Hardy class) and write f ∈ K(X) (resp. f ∈ H(X)). Since there

exists C > 0 such that pt(x, y) ≤ Ct−d/α for all x, y ∈ R
d, we have Lp(Rd) ⊂ K(X) ⊂ H(X) if

p > d/α (resp. p ≥ 1) for the case d > α (resp. for d = α = 1) (see [13]). For d > α, we have the

following Sobolev inequality

‖u‖ 2d
d−α

≤ Cd,αE(u, u).

In this case we see Ld/α(Rd) ⊂ H(X) and the coefficient δ(|f |) for f ∈ Ld/α(Rd) can be taken to

be arbitrarily small.

We assume one of the following:

• Let ϕi > −1 be a Borel function on R
d × R

d such that |ϕi(x, y)| ≤ Ci1K(x)1K(y)|x − y|γi

with γi > α/2 and Ci > 0, i = 1, 2. Then N(ϕ2
i ) is bounded, hence in K(X).

• Take fi ∈ Lp+(Rd) with p ≥ d/α for d > α, or with p ≥ 1 for d = α = 1 and set γi > α/2, i =

1, 2. We let ϕi(x, y) := fi(x)
1/21K(x)1K(y)|x − y|γi (resp. ϕi(x, y) := fi(x)

1/21K(y)|x− y|γi)

when p > d/α (resp. p = d/α), i = 1, 2. Then N(ϕ2
i ) ∈ Ld/α(Rd) ⊂ H(X).

Let M , M̂ be locally square-integrable MAFs with ∆Mt = ϕ1(Xt−, Xt) and ∆M̂t = ϕ2(Xt−, Xt)

for t > 0. Then Ttf(x) := Ex[Ztf(Xt)] with Zt := Exp
(
M̂t

)
◦ rtExp(Mt)(1 + ϕ2(Xt, Xt−)) is

associated with

Q(f, g) := E(f, g) −A(d,−α)

∫

Rd

g(x)

(∫

Rd

(f(y) − f(x))ϕ1(x, y)
dy

|x− y|d+α
)
dx

−A(d,−α)

∫

Rd

f(x)

(∫

Rd

(g(y) − g(x))ϕ2(x, y)
dy

|x − y|d+α
)
dx

−A(d,−α)

∫

Rd×Rd

f(y)g(x)ϕ1(x, y)ϕ2(y, x)
dxdy

|x − y|d+α .

Example 5.2 Let X = (Xt,Px)x∈D be the symmetric censored α-stable process on a bounded

Lipschitz domain D with d ≥ 2 > α > 1 and (E ,F) the corresponding Dirichlet form on L2(D).

(E ,F) on L2(D) is given by

E(u, v) =
A(d,−α)

2

∫

D×D

(u(x) − u(y))(v(x) − v(y))

|x− y|d+α dxdy,

F = W
α/2,2
0 (D),
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where W
α/2,2
0 (D) is the completion of C∞

0 (D) with respect to the E1/2
1 -norm and A(d,−α) is the

constant appear in the previous example. X has Lévy system (N,H), where Ht = t, N(x, dy) :=

A(d,−α)|x − y|−(d+α)dy on D and N(x, {∂}) = 0, x ∈ D.

Then the following Hardy inequality holds by Chen-Song [7]

∫

D

u(x)2

d(x, ∂D)α
dx ≤ CD,αE(u, u), u ∈ F .

Let ε > 2(2 +
√

6)CD,α and for each i = 1, 2 and γi > α set

ϕi(x, y) :=

(
sup
x∈D

∫

D−x
|z|γi−α−1dz

)−1/2 ( 1

A(d,−α)
· 1

(CD,α + ε)

|x− y|γi

d(x, ∂D)α

)1/2

.

Then N(ϕ2
i )(x) = (CD,α + ε)−1d(x, ∂D)−α, hence δ(ϕ2

i ) ≤ CD,α/(CD,α + ε) We have

δ0 :=
√

2δ(ϕ2
1) +

√
2δ(ϕ2

2) +
√
δ(ϕ2

1)δ(ϕ
2
2) < 1.

Let M , M̂ be locally square-integrable MAFs with ∆Mt = ϕ1(Xt−, Xt) and ∆M̂t = ϕ2(Xt−, Xt)

for t ∈]0, ζ[. Then Ttf(x) := Ex[Ztf(Xt)] with Zt := Exp
(
M̂t

)
◦ rtExp(Mt)(1 + ϕ2(Xt, Xt−)) is

associated with

Q(f, g) := E(f, g) −A(d,−α)

∫

D
g(x)

(∫

D
(f(y) − f(x))ϕ1(x, y)

dy

|x − y|d+α
)
dx

−A(d,−α)

∫

D
f(x)

(∫

D
(g(y) − g(x))ϕ2(x, y)

dy

|x− y|d+α
)
dx

−A(d,−α)

∫

D×D
f(y)g(x)ϕ1(x, y)ϕ2(y, x)

dxdy

|x− y|d+α .
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[16] Z.-M. Ma and M. Röckner, Markov processes associated with positivity preserving coercive forms,
Canad. J. Math. 47 (1995) 817–840.

[17] S. Nakao, Stochastic calculus for continuous additive functionals of zero energy, Z. Wahrsch. verw. Ge-
biete 68 (1985) 557–578.

[18] M. Sharpe, General theory of Markov processes. Academic Press, Inc., Boston, MA, 1988.

30


