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Abstract

We present a path-space integral representation of the semigroup associated with the quadratic
form obtained by a lower order perturbation of the L2-infinitesimal generator £ of a general
symmetric Markov process. An illuminating concrete example for £ is Ap — (—A)%,, where D
is a bounded Euclidean domain in R?, s €]0,1[, Ap is the Laplacian operator in D with zero
Dirichlet boundary condition and —(—A)?%, is the fractional Laplacian operator in D with zero
exterior condition. The strong Markov process corresponding to L is a Lévy process that is the
sum of Brownian motion in R% and an independent symmetric (2s)-stable process in R¢ killed
upon exiting domain D. This probabilistic representation is a combination of Feynman-Kac
and Girsanov formulas. Crucial to the development is to use the extension of Nakao’s stochastic
integral for zero-energy additive functionals and the associated It6 formula, both of which were
recently developed in [3].
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1 Introduction

Let A(x) := (ai;(7))1<i j<d be a symmetric matrix-valued function on R" that is uniformly elliptic
and bounded. It is well-known that there is a conservative symmetric diffusion {Q, X, P,z € R%}
on R? with infinitesimal generator £ := %szzl 8%1_ (aij(a:)%). Moreover X has the following

Fukushima’s decomposition (see [10])
Xy = Xo + M; + Ny, t>0, (1.1)

where M = (M?",--- , M%) is a square-integrable martingale additive functional of X with quadratic
covariant (M, M7}, = fg aij(Xs)ds and N = (N1, | N9) is a continuous additive functional of X
locally of zero energy. Let b and b be two Ré-valued functions on R?, and ¢ a measurable function
on R? such that |b| + |3| € LPY(RY) for some p; > d (resp. p1 > 2) and ¢ € LP1(R?) for some
p2 > d/2 (resp. po > 1) under d > 2 (resp. d = 1). In [14], Lunt, Lyons and Zhang showed that the
semigroup {T},t > 0} of the following operator

d
Eo) =3 3 o (@2 ) 4 b00) - Vita) = div (Ba)o(o)) + cla)o(o)
Gg=1_"" J
is given by
Tif(z) = Ey [Zef(Xe)], (1.2)
where

Z, = exp </0t(A‘1b)(XS) - dM, + </0t(A‘1A)(X8) -dM8> ory

_%/Ot ((b_g) ) A—l(b_A)> (Xs) ds+/0tc(X8) ds> . (1.3)

Here r; is the time-reversal operator on {2 from time ¢ > 0, that is, given a path w € ),

w(t—s), if0<s<t,
w(0), if s > ¢,

re(w)(s) := {

Recently, Fitzsimmons and Kuwae [9] extended the above result from symmetric diffusions X on
R? associated with bounded uniformly elliptic divergence form operators to general symmetric
diffusions with no killings inside the state space. The purpose of this paper is to establish similar
results for general symmetric Markov processes which may have discontinuous sample paths and
killings inside the state space. An illuminating concrete example to keep in mind while reading
this paper is that X being a discontinuous symmetric Lévy process killed upon exiting a domain,
such as X is the sum of a Brownian motion on R? with an independent symmetric a-stable process
on R? that is killed upon leaving an open ball. When X is a discontinuous symmetric Markov
process, its martingale additive functional may be discontinuous. This discontinuity causes a lot
of challenges when studying the transformation of X of the form Z; given in analogous to (1.3).



One of the challenges is to define stochastic integral for zero-energy additive functionals of X and
to establish the associated Ité formula. Nakao [17] has defined such kind of stochastic integral
for a class of integrand but it is too restrictive for our investigation. In our recent paper [3], we
established the needed stochastic integration theory for zero-energy additive functionals of X as
well as the corresponding It6 formula via time-reversal technique. The main result of the current
paper extends not only the results in [14] and [9] but also Feynman-Kac transforms by continuous
additive functionals of zero energy studied in Chen and Zhang [8] and the pure-jump Girsanov
transforms and discontinuous Feynman-Kac transforms in Chen [1] and in Chen and Song [5]-[6].
The following is a more detailed description of this paper.

Throughout this paper, X = (Q, Foo, Ft, X4, (, Py, € E) is an m-symmetric right Markov
process on a Lusin space F, where m is a positive o-finite measure with full topological support on
E. Here Q := D([0,00[— Ep) is the totality of right-continuous, left-limited (rcll, for short) sample
paths from [0, 0o[ to E. For any w € Q, we set X(w) := w(t). Let ((w) := inf{t > 0 | Xy(w) =0}
be the life time of X. As usual, F, and F; are the minimal augmented o-algebras obtained from
FO =0{X, | 0<s < oo}, F?:=0{X, | 0<s <t} under P,; see Section 3 below for more
details. We sometimes use a filtration denoted by (M;) on (2, M) in order to represent several
filirations, for example, (F7), (F2) on (Q,FY), (F) on (£, Fso) and others introduced later. We
set Xy(w) := 0 for t > ((w) and use 0; to denote the shift operator defined by 0:(w)(s) := w(t + s),
t,s > 0. Let wy be the path starting from 0. Then wy(s) = 0 for all s € [0,00[. Note that
Oc(w)(w) = wy for all w € Q, {ws} € FY c F forallt >0 and P,({wg}) < Pu(Xo=0) =0
for x € E. For a Borel subset B of E, 7 := inf{t > 0 | X; ¢ B} (the exit time of B) is an
(F)-stopping time. If B is closed, then 75 is an (Fp, )-stopping time. Also, ¢ is an (Fy)-stopping
time because {¢ <t} ={X; =0} € F2, ¢t > 0.

The transition semigroup of X, {P;,t > 0}, is defined by

Pif(x) = Ex[f(Xt)] = Ex[f(Xt) < C]a t > 0.

Each P, may be viewed as an operator on L%(E;m); collectively these operators form a strongly
continuous semigroup of self-adjoint contractions. The Dirichlet form associated with X is the
bilinear form

1
= lim —(u — P,
E(u,v) tllnoﬂ ; (u — Pau,v)pm,

defined on the space

F = {u e L*(E;m) ‘ sug tHu — Pu,u)y, < oo} .
t>

Here we use the notation (f,g)m = [ f(x)g(x)m(dz). Since (€,€) is a quasi-regular Dirichlet

form, we know from [4] that (£, F) is quasi-homeomorphic to a regular Dirichlet form on a locally

compact metric space. Thus without loss of generality, we may and do assume that X is an m-

symmetric Hunt process on a locally compact metric space E, whose associated Dirichlet form

(€,F) is regular in L?(E;m) and m is a positive Radon measure with full topological support on



E. For notions such as quasi-continuous, quasi-everywhere (abbreviated as q.e. or £-q.e.), E-nest,
martingale additive functional, continuous additive functionals, Fj,c, etc. we refer the reader to
[10] and [15]. In particular, we recall that an increasing sequence of closed sets {F},} is called an
E-nest if Up2 | FF, is & 1/2_dense in F, where Fp, :={u € F: u=0m-ae on E\ F,}. A function
f is said to be locally in F (denoted as f € Fi,c) if there is an increasing sequence of finely open
Borel sets {Dy, k > 1} with U® | Dy, = E q.e. and for every k > 1, there is fj, € F such that f = fi
m-a.e. on Dy.

The main purpose of this paper is to establish a probabilistic representation (via a combination
of Girsanov and Feynman-Kac transformations) of certain lower-order perturbations of the Dirichlet
form £. To discuss these perturbations we need to establish some notation.

A positive continuous additive functional (PCAF in abbreviation) of X (call it A) determines
a measure u = p4 on the Borel subsets of E via the formula

/f p(de) =T lim E [/f ] (1.4)

in which f: E — [0,00] is Borel measurable. The measure p is necessarily smooth, in the sense
that u charges no exceptional set of X and there is an E-nest {F),} of closed subsets of E such
that pu(F),) < oo for each n € N. Conversely, given a smooth measure p, there is a unique PCAF
A" such that (1.4) holds with A = A*. In the sequel we refer to this bijection between smooth
measures and PCAFs as the Revuz correspondence, and to p as the Revuz measure of A*.

A smooth measure v is said to be of the Hardy class if there are constants § > 0 and v > 0
such that

/ﬂde§5~€(u,u)—|—7-(u,u)m for every u € F.
E

It is well known that for every u € F, u has a quasi-continuous m-version %. As a rule we take
u to be represented by its quasi-continuous version (when such exists), and drop the tilde from the

notation. Let /\3{ and N denote, respectively, the space of MAFs of finite energy and the space of
continuous additive functionals of zero energy. For u € F, the following Fukushima decomposition
holds:

u(Xe) —u(Xo) = M + N/ for ¢t € [0, 00|, (1.5)

P,-as. for £&-q.e. x € E, where M" E,/\il and N* e N.

If M is a locally square-integrable martingale additive functional (MAF) on [0,(] of X, then
the process (M) (the dual predictable projection of [M]) is a PCAF, and the associated Revuz
measure (as in (1.4)) is denoted by p(psy (see [3]). More generally, if M" is the martingale part in
the Fukushima decomposition (1.5) of u € F, then (M*, M) is a CAF locally of bounded variation,
and we have the associated Revuz measure ppru pry, which is locally the difference of smooth
(positive) measures.

Now let M and M be two locally square-integrable MAFs on I(() such that p s and p (77 are
of the Hardy class, and let A* be a CAF locally of bounded variation whose Revuz measure p has
total variation |u| of the Hardy class. Here () := [0, ¢[U[(;], where ¢; is the totally inaccessible
part of ¢ (see the comment before Definition 2.1). As the main result of this paper (Theorem 3.1),



we show that under a suitable condition on the ¢ coefficients in the Hardy inequality for pap,
13Ty and ||, the form perturbation (Q, F) of (€, F) defined by

Qf9) = £~ [ @ gy (@n) = [ a@ mean(an) = [ faota) i)
—/ExEf(y)g(fv)w(w,y)@b(y,fv)N(:r’dy)uH(de)-

determines a strongly continuous semigroup {T},¢ > 0} of operators on L?(E;m), where ¢ and 1)
are Borel functions bounded below and away from —1, coming from the jump part of M and M
respectively, and {T;,¢ > 0} admits the representation

Tif(z) == Eg [Zs f(X1)]

where
Zy = Exp(M; + A" + (M€, M®)) - Exp(M,) o re(1 + (X¢, X;—)), for t < C. (1.6)

Here r; is the time-reversal operator defined on the path space 2 of X as follows: Given a path
w e {t <},

r(w)(s) = {w((t —s)-), f0<s<t,

w(0), if s > ¢,

in which, for 7 > 0, w(r—) := limgy, w(s). (The restriction of the measure P, to F; is invariant
under 7, on QN{¢ > ¢}.) Alsoin (1.6), the symbol Exp denotes the familiar Doléans-Dade stochastic
exponential: if Y is a semimartingale with Yy = 0, then Z = Exp(Y) is the unique solution of the
SDE

t
Zt:1+/ Z,_ dYs,
0

and is given explicitly by the formula

1
Exp(Y;) = exp <Yt -5 Y0>t> I @+ Ay)e 2.
s€]0,t]

As mentioned previously, this result was first obtained by Lunt, Lyons and Zhang [14] when X is
a conservative symmetric diffusion on R? whose L2-infinitesimal generator is a bounded uniformly
elliptic divergence form operator, and then by Fitzsimmons and Kuwae [9] in case X is a diffusion
process on a Lusin space F with no killing inside £. The jumps of X, as allowed in the context of
the present paper, complicate the study. It calls for first to develop certain aspects of the stochastic
calculus of symmetric Markov processes (in particular a general enough version of 1t6’s formula) to
deal with these complications, which have been addressed very recently in our separate paper [3].
See section 2 below for a quick review

A special case (]/\4\ = 0 and M purely discontinuous) of the above result was obtained by Chen
and Song [5] (see also [1] and [6]) in the broader context of “nearly symmetric” right Markov
processes, under somewhat more stringent conditions on f1 5y and p (in [5] pary 1s assumed to be



in the Kato class while p is only assumed to satisfy the condition ||Gu™|s < 1). Recall that the
Revuz measure v of a PCAF A" is said to be of the Kato class provided

o
lim B (47 o =,

and that the Kato class is a subclass of the Hardy class. We write K(X) for the Kato class and
define Ko(X) := {v e K(X) | v(E) < c0}.

The remainder of the paper is organized as follows. A quick review of the needed stochastic
integration with respect to a continuous additive functional of zero energy is given in Section 2.
Section 3 contains the statement of our main result (Theorem 3.1) as well as some auxiliary lemmas
needed for its proof. The proof of Theorem 3.1 is completed in section 4. In section 5 we show that
the Feynman-Kac formula for zero-energy CAF perturbations (Theorem 2.1 of Chen and Song [6])
can be deduced from Theorem 3.1 of the present paper.

2 Stochastic integral for Dirichlet processes

In this section, we give a quick review of Nakao’s [17] definition of stochastic integral with respect
to a additive functional of zero energy and our time-reversal approach of stochastic integral for
Dirichlet processes developed in [3].

Let (N(z,dy), Hy) be a Lévy system for X; that is, N(z,dy) is a kernel on (Ey, B(Ey)) and H;
is a PCAF with bounded 1-potential such that for any nonnegative Borel function ¢ on Fy x Ejy
vanishing on the diagonal and any x € Fy,

t
E:E Z ¢(Xs—7Xs) = Ew </ gb(XSvy)N(XSv dy)dHS> *
s<t 0 JEy

To simplify notation, we will write

No(z) :== : ¢(z,y)N (z, dy)

and
t
(No + H), = / No(X,)dH,.
0

Let pp be the Revuz measure of the PCAF H. Then the jumping measure J and the killing
measure k of X are given by

J(dx,dy) = %N(m,dy)uH(da;), and k(dx) = N(z,{0})nm(dx).

These measure feature in the Beurling-Deny decomposition of &: for f,g € F,

E(f,9) = EO(f,g) + /

ExXE

(f(z) = f(y)(g(x) = g(y))J (dx, dy) + /Ef(w)g(ﬂf)fﬂ(dw),

6



where £(©) is the strongly local part of .
For u € F, the martingale part M}* in (1.5) can be decomposed as

M = M + M" + M"", Yt € [0, 00[, Pp-a.s. for E-q.e. z € E,

where M;"¢ is the continuous part of martingale M*, and

MM = lglflg D (u(Xs) — (X)) ju(xa)—u(Xoo) >e} Ls<c}
0<s<t

- / ( / (uly) u<X8>>N<X8,dy>> dﬂs},
0 {yeE: [u(y)—u(Xs)|>e}

4
]\4:“‘i = /O U(XS)N(XS7 {8})dH3 B U(XC—)l{tZQ}’

are the jump and killing parts of M*, respectively. See Theorem A.3.9 of [10]. The limit in

the expression for M%7 is in the sense of convergence in the norm of /\j{ and of convergence in
probability under P, for £-q.e. x € E (see [10]). The Revuz measure ji(puy of (M") will usually
be denoted by fi()-

Let N* C N denote the class of continuous additive functionals of the form N* + [ g(X,)ds

for some u € F and g € L?(E;m). Nakao [17] constructed a certain linear map I' from M into N7*
in the following way. It is shown in [17] that, for every Z € /\il, there is a unique w € F such that

1
&(w, f) = §M(Mf+Mf,~,Z>(E) for every f € F. (2.1)

This unique w is denoted by (Z). The operator T" is defined by
t (o]
r(2), = N)\% — / v(Z2)(Xs)ds — for Z EM . (2.2)
0
It is shown in Nakao [17] that I'(Z) can be characterized by the following equation

1 1
ltllI(I)l ZEg'm T(Z) = —§M<M9+Mg,n7z>(E) for every g € Fy. (2.3)

So in particular we have I'(M") = N" for u € F. Nakao [17] used the operator I' to define a

stochastic integral

1 . )
_ §<Mf,c+Mf7J, M“’C—I—M“’j>t, (2‘4)

t
/ f(X)dNY :=T(f « M"),
0
where u € F, f € F N L*(E; ) and (f + M%), == [ f(X,-)dMY. If we define
N = {NeN | N=N"+ A" for some u € F and some signed smooth measure p},

then we see by (2.2) that [, f(X,)dN¥ € NifueFand feFn L?(E; ). However Nakao’s
definition of stochastic integral places restrictions on the integrand f(X;) and on the integrator



N*" that are too stringent for our study of the perturbation theory of general symmetric Markov
processes. We now recall the definition of the stochastic integral introduced in our recent paper [3]
using time-reversal.

For T' an (F3)-stopping time, we will use T}, and T; to denote, respectively, the predictable and
totally inaccessible parts of the given (F;)-stopping time 1" of X, that is, T}, := Ty, and T; := T},
where Ay = {T < 00, X7— = X7}, Aj :={T < 00, X7_ € E,X7r_ # X7} (see Theorem 44.5 in
M. Sharpe [18]). It is shown in [18] that T}, and T; are (F;)-stopping times if T" is an (F;)-stopping
time. We set I(T) := [0, T'[U[T;].

For a locally square-integrable MAF M, on I((), it is shown in [3] (cf. [2, Lemma 3.2]) that
there is a Borel function ¢ on Ey x Ey with p(x,z) = ¢(9,2) = 0 for all z € Ejy so that

My — M = p(X4—, X¢) for every t €]0,(p[, Pp-as.

Such a function ¢ is unique up to a measure J*-null set on Fy x Fy, where J* denotes the measure
SN (z,dy)pu(dz) on Ey x Ey. We will call ¢ the jump function of M.

Definition 2.1 Let M be a locally square-integrable MAF on I(¢) with jump function . Assume

/Ot/E (BP1gaeny + 1Bl gamn) (Xa y)N (X dy)dH, < 00, 't <, Pyas.  (25)
for £-q.e. x € E, where @(z,y) := ¢(x,y) + ¢(y,x). Define, P,-a.s. on [0, (],
A(M),; = —% (M + My o e+ o(X0, X0 ) + K1) for t € [0, ¢, (2.6)
where K is the purely discontinuous local MAF on I({) with

K, — K =—-9(X4—,Xy), t<(, Pgas. forE-qe ze€k. (2.7)

It is shown in [3, Theorem 3.5] that A(M) = I'(M) when M is a MAF of X having finite energy.
In other words, the above A operator extends Nakao’s I' operator.

Note that for f € Fioe, M7 is well defined as a continuous MAF on [0, {[ of locally finite energy.
Moreover, for f € Fj,. and a locally square-integrable MAF M on I((),

Fis (f % M), = /0 F(Xo_)dM,

is a locally square-integrable MAF on I(¢). For a locally square-integrable MAF M on I((), denote
by M€ its continuous part, which is also a locally square-integrable MAF on (¢) (see Theorem 8.23
n [11]). The following definition of stochastic integral is introduced in [3].



Definition 2.2 (Stochastic integral) Suppose that M is a locally square-integrable MAF on
I(¢) and f € Floe- Let o : Eg x Eyg — R be a jump function for M, and assume that ¢ satisfies
condition (2.5). Define P,,-a.s. on [0,(] by,

/0 (XY dA(M),

= A M) = 50 MY+ [ [ (1) = S el XON (K dgatt, (23)

whenever A(f x M) is well defined and the third term in the right hand side of (2.8) is absolutely
convergent.

It is shown in [3, Remark 3.8(ii) and Theorem 4.6] that the above defined stochastic integral
extends Nakao’s definition of stochastic integral (2.4) and enjoys a generalized [td’s formula.

3 Perturbation

Recall that a smooth measure p is in the Hardy class (write p € H(X)) if there are constants
d €]0,00[ and ~y € [0, 00[ such that

/ wldp < 6E(u,u) + 'y/ u dm, “u e F. (3.1)
E E

A well-known sufficient condition for p € H(X) is that for some § > 0 and [ > 0 the [-potential
UB is bounded above E-q.e. by 4, in which case v = 63 does the job in (3.1).

Let M, M be two locally square-integrable MAFs on I(¢). Let M ¢ and M¢ denote the continuous
parts of M and M respectively, and let ¢ and 1 be jump functions for M and M respectively; thus
@ and ¥ are Borel functions on Fy x FEy, vanishing on the diagonal, such that

M; — M, = o(X;—,X;) and M, —M,_ =(X,_,X;), "t€]0,¢y] P-as.

—~

We assume ¢ > —1 and ¢y > —1 on Ey X Ey. Let (M) and (M) denote the dual predictable

o~

projections of [M] and [M] respectively. Note that

t
(M), = (M), + /0 /E P(XoryPN(Xy dy)dHs, ¢ <C,

and
o o t
(V) = (V%) + / WX, y)’N(X, dy)dHs, £ < C.
0o JE,

Let @ be a signed smooth measure; thus p uniquely determines a continuous additive functional A*
of bounded variation on each compact time interval. Let p sy and p () be the smooth measures

associated with the PCAFs (M); and <]/\4\ )t. Then

1y = Barey + N(o*)pn and Pary = Bagey N@?)pn.



We assume fi(pry, ) and |p| are in H(X). Let 6((M)), 6((]\7}), §(AMT)Y, 8(p?) and 6(1?) denote
the coefficient of £(u) and ~({M)), 7((]/\4\>), ~(ART), (%) and ~(¥2) the coefficient of ||ul|2 in the
estimate (3.1) for u(ppy, 13y ut, N(1pxg - ©®)pug and N(1gxg - ¥?)um, respectively. We assume
that

= /20((M)) + \/26((M)) + 6(A*") + /3(¢2)3(4?) < 1. (3.2)

Given these elements, we define a quadratic form Q on F: For f,g € F,

Qf9) = S(f,g)—/Egdef,m—/Efduwg@—/Efgdu
- /E gl y.2)N . dyus (d). (3.3)

It is easy to check that there is a constant C' > 0 that

|Q(fvg)‘ SCﬁl(f?f)l/2gl(g7g)l/27 f?gef' (34)
Moreover,
Qul(f, f) = (1= 00)E(f, f) + (@ — o)l fI3, € F, (3.5)
where
a 2/6({M)) + (¢ 2/5((M))

. 1¢?)  2@?)
+y(AR) + /(p?)o(1?) {5(902) v 5(42?) }

The quadratic form (Q, F) is closed as a form on L?(E;m). Standard resolvent theory now yields the
existence of a strongly continuous semigroup (Q;)¢>o of operators on L?(E;m) with ||Qy|l2—2 < e
for all ¢ > 0.

Define a multiplicative functional Z = (Z;) by

Z, = Exp(M,) o r; Exp (Mt + AP 4 (M, 1\7%) (14 ¢(Xy, X)), (3.6)

and an operator
Tif (x) := By [Z; f(X1)].- (3.7)

The main result of this paper is the following.

Theorem 3.1 Assume that 1My Py and |p| are all in the Hardy class H(X) and that §y defined
in (3.2) is less than 1. Then {T},t > 0} defined by (3.7) coincides with the strongly continuous
semigroup {Qq,t > 0} on L?(E;m) associated with (Q, F).

The rest of this section is devoted to the statement and proof of two lemmas needed for the
proof of Theorem 3.1.

10



Lemma 3.2 (i) If [0y ey lel, N(leDpr and N(|0|)pg are measures in K(X), then the
semigroup {Ty,t > 0} defined by (3.7) is a bounded linear operator in L*(E;m).

(ii) Let F be a closed set and G its fine interior under X . If
Lp(parey + M<ﬁc> + |l + N(leDpwa + N([9)pm) € K(X),
and if A(M®); = Nf — fo s)ds Pp,-a.s. on {t < 7¢} for some p € F bounded on G such that

Lrpgy € K(X), then there ea:zsts a constant k > 0 such that for non-negative f,g € L*(G;m)

Em f(Xt)g(XO) sup Zs

s€[0, tATG [

<ke|fl2llglz  fort=o.

Proof. (i): Since log(1+1t) <tt(:=tV0), for t < ¢

1
Exp(M;) = exp | My — §<Mc>t + Mtd + Z (log(1 + p(Xs—, X)) — o(Xs—, Xy))
0<s<t
= exp | Mf Mct—/N Xo)dH,+ ) log(1 + ¢(X,—, X))
0<s<t

1 t

< exp Mf——(MC>t+/ N(p™)(Xs)dHs + Z g0+(X8,X5)). (3.8)
2 0

0<s<t
where we use the fact that m; := s<t P o(Xs—, Xs) fo s)dH is a purely discontinuous

martingale and coincides with M{ because N (|o|)un € K(X ) Slmllarly

Exp (J\/Zt) ory- (14 E(Xt—aXt))

— — t J—
— exp Mfort—%<Mc>t—/0 N(@)(X)dH, + Y log(l+ $(X,—, X))
0<s<t

—_ —_~ t J—
< exp Mfort—%<Mc>t+ / N@) (X )dHs + Y ' (Xem, Xo) | (3.9)
0 0<s<t

where ¥(z,y) = ¥ (y, x), EJF (z,y) := ¢ (y,z). Decompose the CAF A¥ as the difference A#" — A~
of PCAFs with mutually singular Revuz measures u™ and u~, respectively. Then p™ < |u|, and
because funrey + g7y + lu| + N(leDpr + N(|0|)pg € K(X), so also

9 _ _
1= Sk + 1] + 3ut +3N(p 7 )um + 3N (Y7 )um € K(X). (3.10)

Let f and g be non-negative elements of L?(E;m). Then by Hélder’s inequality and the ex-
pression (3.6) for Z;,

Enlg (Xo)th( t)

[;( ]i)) [ (X0)2 3MC—(9/2)<MC>1§]1/3 (3'11)

SO/ AN]SR, [g(Xo)eB D1 F(X,)]1,
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where D; := 320<5§ta+(X3_,XS) and
3

3 —~ t
B, := 5<MC>t+§<J\4C>t+3Ai‘++3/ N(p™ +97)(Xo)dHs +3 3 o7 (X, X,)
0 0<s<t

is the sum of the PCAF associated with the Revuz measure 1 and the discontinuous increasing AF

3> 0cs<t ¥ (Xs—, Xs). Note that Dy = 3 0cs<t ¥ (Xs—, Xs) = Dyory Prp-as. on {t < (}.
Now e3Mi=(/2(M): ig o positive supermartingale, so Ew[e3Mtc_(9/2)<Mc>t] <1 for &-qe. x € E.
Thus the first factor on the right side of (3.11) is no bigger than || gHg/ 3. Because (M°€) is even, the

middle factor on the right side of (3.11) is equal to
Em[f(Xt)2631\//7§ort—(9/2)(M\C)tort]1/3 _ Em[f(X0)2e3J\//ff—(9/2)(JT/[\5>t]1/3 < ||f||§/3, (3.12)

because 63 —(9/2)(M): is also a positive supermartingale. Finally, by Proposition 2.3 in Chen and
Song [5], the cube of the last factor in (3.11) is estimated by

Egn[e?5 (X)) Egn [P F(X)]V? = Eple?? f(X0)g(Xo)]*Ep[e?P f(Xo)g(X,)])

< B P B PN 2 gl
< ko™ || fll2llgll2
for some ko > 0. Hence, (3.10) implies that (3.11) is no bigger than kl/gekot/3\\f\|l/3Hng/3 Com-
bining these estimates we find that
Eulf (X)) Zig(Xo)] < k- P f]l2] e, (3.13)

which proves the assertion.
(ii): By (3.8) and (3.9), we have that P,-a.s. on {t < 7¢}

Z

IN

exp (—ZA(]/W\C)t) Exp (Mtc — ]\//[\tc)
t
X exp Z (0T + 0 ) (Xoey Xo) | exp <Af —|—/ N(p~ +1/J_)(X8)dH8>
0<s<t 0

t
— exp <2p(X0) — 2p(X;) + 2 / p(X,)ds + 2Mf> Exp (Mf - Mf)
0

X exp Z (o +E+)(X8_,X8) exp <Af+/0 N(p~ —i—l/)_)(Xs)dHS).

0<s<t

12



Then, Pp,-a.s. on {t < 7¢}

sup Z, < exp[(4+2t)]pllc,oo] sup exp [2(1p * MP)] (3.14)
0<s<t 0<s<
1
X sup exp <(1F * KOs — —(1p % KC>S> (3.15)
0<s<t 2
xexp | Y 1p(Xe o (X, X,) (3.16)
0<s<t

xexp | (LpAP ), + /0 t Lr(Xo)N(p™ + 9 ) (Xo)dHy + Y 1p(Xeo)p™ (oo, Xo) |, (3.17)

0<s<t

where K¢ := M°— M¢ and 1p+ K¢ := [} 1p(X,_)dK¢ and (1pA*"), = [ 1p2(X,)dAY" . Applying
Doob’s inequality to the submartingale exp(1r % M?); together with Lemma 4.1(i) in Chen and
Zhang [8] we see that, because 1ppu, € K(X), the expectation of the eighth power of the second
factor of (3.14) is estimated by

16\ 16
E. [ sup exp (16(1p * Mp)s)} < <1—5> |E. [exp (16(15 = Mp)t)]Hoo
0<s<t o

for some k1 > 0. Since 1ppgey € K(X), exp ((1p * K) — +(1p * K°)) is a martingale. Applying
Doob’s inequality to exp ((1F * K¢) — 1(1p * K¢)), the expectation of the eighth power of (3.15) is
estimated by

8
E, || sup exp((1p * K¢ — $(1p * K°),) ]
0<s<t
8\ 8
< <?> Ex[exp(S(lp*Kc)t—4<1F*Kc>t)]

< )8 B, [exp(16(15 % K€); — 128(1p * K¢),)]"2 E,[exp(120(15 * K°¢),)]'/?

8
< <§> ek /2)1 (3.18)

for some ko > 0, because exp(16(1p * K¢); — 128(1p * K€);) is a martingale. Noting 1pN(|o| +
[Y|)pr € K(X), by using Proposition 2.3 in [8] again, the expectations of the eighth power of (3.16)
(after time reversion with respect to the part process on G) and (3.17) are estimated by kzek3! for
some k3 > 0. Denote by Ct(l), Ct(2), Ct(?’) and Ct(A‘), the second factor of (3.14), (3.15), (3.16) and
(3.17) respectively. Then

N
~J| co

4
Eigm | F(X)g(Xo) sup Zs it <rg| < e+l TTE1omllC711F(X0)g(Xo) = t < 76]"/2.
0<s<t im1

13



For 1 =1,2,4,
E C(Z) 4 X Xa) : < E O(Z) 8 .
1om | 1O (X g(Xo) <t < 7| < (I fll2llgll2[[E[C7° - t < 7¢]llG 00,
while for i = 3,
E 0(3) 4 X Xa) : < E 0(3) 8.
1om ||C T f(X)g(Xo) « ¢ <7a| < [|fll2llgl2E[IC™ ore® - T < 76]ll 600
Here r; is the time reverse operator under the part process on G. Therefore we have the desired

estimate. O

Under the assumptions of Theorem 3.1, it is easy to show that the bilinear form (Q,F) is a
closed, lower-bounded quadratic form. Therefore there exists a strongly continuous semigroup,
{Qs,t > 0}, associated with (Q,F). Let (L2, D(L?)) be its corresponding L>-generator. On
the other hand, it can be shown that the operators {T%,¢ > 0} defined in (3.7) forms a strongly
continuous semigroup on L?(E;m). Denote the L2-generator of {T},t > 0} by (L, D(L)).

Lemma 3.3 Suppose puny + gy + [l + N(leDpn € K(X), p g7 (E) + Je N([¢)dpg < oo and
—1<c1 <, <o < oo for some constants c1,ca. Then, for f € D(LQ)

t —_~
200%) = 50+ [ Zeduf +Ul)+ [ 2 f06d08 - T+ W)
0
t
+/ Z,L2f(X,)ds, (3.19)
0
where W and U are purely discontinuous local MAFs on I(¢) with

Wt — Wt_ = gO(Xt_,Xt) + TZJ(Xt,Xt_) + (,O(Xt_,Xt)T/}(Xt,Xt_), t < é- (320)

and
U/ - UL = (f(Xy) — f(X42) (W = Wi), t<C. (3.21)

Proof. Putting ¢(z,y) = ¥(y,z), we see [ N(1gxp[¢|*)duny = [z N(lpxe|Y[*)dun < oo
and fE (Lexel¥))dpr = [ N(1pxpl¢])dug < co. In view of Theorem 5.1.3 in [10], we have
fo (exe([¥] + [¥|?)(Xs)dHs] < oo for m-a.e. ¥ € E for each t > 0. On the other hand,
N(le)pr € K(X) implies E,[ fo (lp)(Xs)dHs] < oo for m-a.e. x € E for each ¢t > 0. Thus,
we have the purely discontinuous local MAF W (resp. U/) on I(¢) with the property (3.20)
(resp. (3.21)). Since M(J\7>(E) < o0, M is a MAF having finite energy and so by (2.2) and [3,
Theorem 3.5] there is some p € F such that

- t ¢
A(M); = Nf — / p(Xs)ds = p(Xy) — p(Xo) — Mf —/ p(Xs)ds Pp-as. on {t < (}.
0 0
By Definition 2.1,

M,or, = —20N(M), — M, — (X, X;_) — K; Pp-as. on {t <},
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where K is a purely discontinuous local MAF on I (¢) with
Ky — Ko = —(Xom, Xy) — (X, X)), t < C

The condition [, N(|¢|)duy = fE (|4 dpp € K(X)
implies the integrability of K hence, Kisa martingale. Therefore on {t < (},

Exp(l\/f\t) ory (1 + (X, Xem))

0<s<t

i (eXp (8 - 57 ) TT (1405 X5 ’X5)>°Tt<1+w<xt,xt>>

<s<t

= o (Woon - 51 ) < [Ta+ w<XS,Xs_>>e-w<stXs—>) (1+ (X0, X))
0

—~ —_ o~ 1 —~
= exp —2A(M)t—Mt—Kt—§<Mc>t> IT (4w, Xo))evXeXe)
0<s<t

— exp <_2A(]\A4)t) Exp (_]\ZC) Exp (—M\td _ IAQ)
(

= exp —2A(J\//.7)t> Exp (—J\//.Tt — IAQ> .
We see
W= M- M- Rt 3 (0 B)(Xs, X,) /Nso P)(Xa)dH,, t<C.
0<s<t
Thus
Zt = exp <—2A t) Xp( Mt Kt) EXp (Mt‘i‘Au <MC,]/\ZC>t>
= exp(—ZA t) Xp (Mt Kt—I—A” [Md, M\d—l—l?]t)
- exp(—zA t)EXp My~ M, — Ko+ A+ Y (o 9)(Xom, X))
0<s<t
— exp (—zA t) Exp <Mf ME + W, + AP +/ N(p w)(Xs)dm) (3.22)
= exp(—2p(Xy)) Z, (3.23)
with

t ¢
Z! = exp <2p(X0) +2Mf + 2/ p(XS)ds> Exp <Mtc — Mf+ W+ AY +/ N(p- @)(XS)dH5>
0 0

(3.24)
Note that

L+ Wy = Wie = (14 o(Xi—, Xi)) (1 + 9(Xe, Xi—-)) > 0.
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Let f € D(L9) C F. Then

&0 = [ ~LeP@a@mido) + [ eyl /E 9@ gurr any(da)

/f / </ fy N(z, dy)) pp (de).

Applying (2.3) to the MAF f x M having finite energy, we have
hm Egm 2F (f * M / f(z H M (dx) for every g € Fp, (3.25)
where (f * J\//.T)t = fot f(XS_)dMS. By (3.24)-(3.25) above and Theorem 5.2.4 in [10],

N/ = /LQf( )ds+2F(f*M)t—<MfMt—/f )dAH

/</f Xs)N (Xs,dy)> dH,. (3.26)

Note that it was shown in [3, Remark 3.8(ii)] that I'(f = M) = A(f x J\//.T) and that by Definition 1.2,

A(f + B), = /0 F(Xom ) AT, + (M BT, — / / (9, X, )N (X, dy)dH,
(3.27)
It follows from (3.26)-(3.27)

NS = /LQf( ds+2/f dNﬂ—z/f ds + (M7, Me — t—/f )dA!
t
- [ ([ (00 = st ) + wecx, >w<y,x>) (Xoody) ) .
0 E
By [3, Theorem 4.2],
t t
/ —2p(Xs )de /G_QP(XS_)f(XS_)dNSP
0 0
t t
= [ L (as ~2 [ DX )p(X.)ds
0 0
t t
e~ 2r(Xs) f re _ —2p(Xs) AM
+/0 d(M7, M — M), /Oe f(Xs)dAL
_ / ' —20(x.)
0

([ (5 = FCCDB0 )+ F oK)l X)) N (Ko )) ..
E
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Now by the Itd’s formula in [3, Theorem 4.7] and the above identity, we have
e~ 2PX0) £ X)) — e 2P(X0) £ X))

t t
_ / 205 g\ 4 NIY = 2 / e~20Xe0) F(X, )d(MP + N?)
0 0

t t
—2 / “2 X q( M M) 42 / e 2PX) f(X, ) d(MPe, MPe)

0
+ Y (AP (X)) + 272 F(X ) A(p(X) — e DA (F(X)]
0<s<t
t t t
- / e 2P Xs)qapml — 2 / e~ 2PXes) £ (X, )dMP + / e 2P X L9 f (X, )ds
0 0 0

t t t
-2 / e 2P £(X ) p(Xs)ds + / e X a(M) M — M), — / e ) F(X,)dAY
0 0 0

_/ e~ 20(Xs) </ (f(y) = F(X))W(y, Xs) + F(@)o(Xs, )0y, Xs ))N(dey)) dH,
0 E

t t
—2 / “2 X q( P M) 42 / e 2PX) £(X, ) d(MPe, MPe)
0

+ D0 (A F(X,)) 4 2072 F(X,)A(p(X,) — e P DAF(X))], (3.28)
0<s<t

which is a semimartingale. Note that Z} can be rewritten as

t t

Z! = Exp <Mf — M+ W, + A —I-/ N(p-9)(Xs)dHs + 2/ p(Xs)ds> exp (Zp(Xo) + ME’J) :

0 0
Now by Ito’s formula for semimartingales,
zZ} - 7,
t s s
_ / Z1-d(Mg — NI+ Wi+ 2M + AL+ / N(g - )(Xa)dH, + 2/ (X, )du
0 0 0

t —~
+2 / ZL_d(MP€ + MC — M°, MP) + S Z) <e2A<P<X5>> 1 2A(p(Xs))> (3.29)
0 0<s<t

+ 3 2L (X, X)) + (K, Koo)X, X (X, X)) (220059 - 1),
0<s<t

Applying It6’s formula to
Zif (Xe) = 24 - (e f(Xy))

and using (3.28)-(3.29), we get (3.19) after many terms cancel out. This calculation is tedious
and must be done with care. It is fairly easy to calculate out the martingale part, the quadratic
variation part and continuous additive part while applying It6’s formula. However the calculation
of the jump part of Z} - (e=2?(Xt) f(X;)) using It6’s formula can be frustrating. The best way to
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calculate Z;f(X:) — Zi— f(X;—) directly is perhaps the following. It follows from (3.22) and that
the Doléans-Dade’s exponential solve an SDE, we see that

Ty — Zp = Zy (Wy — W)
and so
Zf(X0) = Ze- f(X2) = Zo (14 We = Win) F(X) = f(Xi))
= Zo ((1L+ Wy = Wi )ACF(X0) + F(X ) (Wh = Wi)).

4 Proof of Theorem 3.1.

Lemma 4.1 Under the conditions of Theorem 3.1, the quadratic form (Q,F) defined in (3.3)
possesses the positivity preserving property in the sense of [16].

Proof. By Proposition 1.3(i) in [16], it suffices to show Q(f*, f7) <0 for f € F. Let Q)+ be
the sum of continuous part and killing part of Q:

[ Iy 570@0) = | a@hqasse ey (i) / Fa)g(@yu(dr)
+ [ 1@ N {0} (d) + [ F@)a@)pla, 0N, (0} ().
Then we see QO+F)(f+ =) = 0 because uip(f = 0) = 0 and pfp (f < 0) = pfpy(f >
0) = 0, where Wiy = Hpuey for u e F. If we let QU)(f,g) == Q(f,g9) — QUWT®)(f g)

ED(f.9)+2 [ malf(2) = FW))g(@)p(x,y) I (da, dy) +2 [, g o(9(x) = 9(W)) f ()0 (2, y) ] (dz, dy),
then QU (fF,f7) = =2 [ p FH W)~ (@) (1 + o(z,9)(1 + ¢y, 2))J (dz,dy) < 0. O

Lemma 4.2 Let G be a finely open (nearly) Borel subset of E and consider the part space (Eq, Fc)
of (§,F) on L*(G;m). Then Q on Fg has the following expression: For f,g € Fg,

f.g) = / PGy 57 () ~ /G 9@,y apy () — /G F(2)g()uC (do
- /G (@)l a) N g (d), (41)
where
Wiy 7y (02) = M<Mg,c,ﬁc>(dw)+(/Ga(g(y)—g($))¢(w,y)N(fB,dy))uH(dw),
iarantda) = masreans @)+ ([ (F) = 1@l )N dy)) ),

pO(de) = nldn) ~ ([ (14 plany) + 00w, 0) N, dy) ) (o).
E\G
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Proof. The proof is an easy calculation. We also note that for f,g € Fg, E(f,g9) = E°(f,9) +

Jaxa(f(@) = Fu)(9() = g(y))J(dw,dy) + [, f(2)g(2)r (dw), where K% =k + 5N (z, B\ G)pn.
O

Proof of Theorem 3.1. As in the analogous argument in [9], we can construct a common &-
nest {F, }nen (of compact sets) such that (i) 1r, (1(ar) +ian T lu|) € Ko(X) for each n € N and (ii)

there exists p, € F such that A(M¢), = N/" — fg pn(Xs)ds for 0 <t < 7p. Py-as., pulp, € C(Fy)
and 15, f1(,,) € Ko(X) for each n € N. Here we use the fact A(1p, x M), = A(M¢); for 0 <t < 7,
P,,-a.s. and M(M\c>(Fn) < oo. The latter implies that 15, * Me¢ is a MAF of finite energy under X

and there exists a p, € F such that A(1p, * M\C)t =T(1p, * M\C)t = N/ — fg pn(Xs)ds.

Let E,, denote the fine interior of F,, and define 7" := {u € F | u=0 &E-q.e. on ES}, and let
Q) denote the restriction of Q to F(™. Clearly (Q(") , F (")) is a quasi-regular positivity preserving
coercive closed form on L%(E,;m) satisfying the same hypothesis as (Q,F). In fact, (Q™, F(™)
is related to the restriction of £ to F () (which is the Dirichlet form of the part process X ) in
exactly the same way that (Q,F) is related to (€, F).

(1) First assume that |p| and [¢| are bounded above and below away from 0. Note that
1, N(l¢|+ |¢|)pr € Ko(X) because of the boundedness of |¢| and |¢| away from 0. Then the con-
ditions of Lemmas 3.2 and 3.3 are satisfied by X #» and (Q), F(™). Let (an))bo and (Va(”))a>a0
be the semigroup and resolvent on L2(E,;m) associated with (Q™, F(™). Let (L2 D(L2 ™))
denote the infinitesimal generator of (an)).

Consider a bounded f € D(L2 ™). Let 7, be the first exit time of X from F,. Then by
Lemma 3.3 (applied to X#» and (Q™, F(")),

tATn
FXerm) oy = FOX0) + [ 2o df®) 1 U0
Ar AT (4.2)
[ Ze gy aup ) - NI w4 [ 2,905, ds,
0 0

because f(X,,) = 0, P,,-a.s. Here was used the fact that Z( (resp. M) W™ /() the
analog of Z (resp. M¢, W, U/) with respect to X~ and (Q("),}"(”)), coincides with Z (resp. M€,
W, Uf) on [0,7,]. Let {Tx} be an increasing sequence of (F;)-stopping times with T}, 1 ¢ as k — oo

reducing the local martingale terms on the right hand side of (3.19). Replacing ¢ by ¢t A T} in (4.2)
and taking expectations we obtain

tATE ATy,
By [ (Xontinm) Zintnn] = £(x) + s [ [ 2w ds] , (4.3)

for m-a.e. x € E,. Hence, for non-negative g € L%(E,;m) we have

tATK AT,
Byl (Xentinm ) Zintsm] = (£19) 12 (5,m) + B [ /0 Z(L2™ f)(X,) ds} (4.4)

Because f is bounded, Lemma 3.2(ii) for 1, , g € L?(E,;m) permits us to conclude that, as k — oo,
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the left side of (4.4) converges to E g [f(Xiar, ) Ziar,]. On the other hand, because

tATh t
E, [ / Zs(LQ’(”)f)(Xs)dS] < [ T2 (@) ds, (45)
0 0

the left hand side of (4.5) is in L?(E,;m) from Lemma 3.2(i), where
Ts(n)f(x) = E:c[f(Xs)Zs HERS Tn]' (4.6)

Passing to the limit in (4.4) as k — oo, we obtain

tATn
Egm [f(Xt/\Tn)Zt/\Tn] = (f, Q)LQ(En;m) + Egm [A ZS(LQ’(”)f)(Xs) d8:| (47)

first for non-negative, and then for all g € L?(E,,;m). Then

E.[f(Xiar,) Zins,] = f(z) + Ey [/0 " ZS(LQ(n)f)(XS) ds}, (4.8)

for m-a.e. € E,, provided f € D(L2™) is bounded. For f € D(LZ(™) of the form Vogn)g
(0 < g € L?(E,;m)), by the construction of the nest {F},}, there is a sequence {g;} of non-negative
elements of L?(E;m) such that f, := Vogn)gk is in L>®(E,;m), fi converges in L?(E,;m) to f and
LM f = afy — gp converges to L™ f in L?(E,;m). [The boundedness of f comes from the
inequality VOE") f <1g, -V,f for all non-negative f € L?(E;m), which is a consequence of the fact
that these resolvents are associated with quasi-regular positivity preserving forms (see the argument
in [9]). Substituting fj for f in (4.8) and then passing the limit as k — oo, we see that (4.8) is
valid for all f € D(LQ’(”)), since any such f can be written as VCS”) g1 — VOE”) go for non-negative
g1, 92 € L?(E,;m). That is, we have,

Tt(")f(:n) = f(z) + /Ot TM(L2M ) () ds, m-a.e. v € Ey, (4.9)

for all f € D(L%(™). This implies the strong continuity of Tt(") on D(L2™M), hence on L?(E,;m).
Note that Tt(n) maps L?(E,;m) into itself by Lemma 3.2(i), because

g, (ony + gy + NUeDpa + N pm + |p)

is a Kato class smooth measure with respect to X ¥». Hence

(n)
lim 2 =S pom
10 t

f (4.10)

Thus, using (L™, D(L(™)) to denote the infinitesimal generator of (Tt(n))t>0,

D(L2™) c D(L™) and L™ = L™ on D(L™). (4.11)
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Let G&n) = fooo e‘o‘tTt(n) dt be the resolvent operator associated with L. Fix u € L?(E,;m) and
define, for o > ag, v := Vi"u. Then v € D(LL™) c D(L™) and L™y = L™y = av — u. But
D(L™) coincides with G (L*(E,;m)), so there exists g € L?(E,; m) such that v = G&”)g, in which
case LMy = qv — ¢g. Tt follows that u = g, and then that G&n)u = Vogn)u, for all u € L?(E,;m).
This identity of resolvents implies that the associated semigroups (Tt(n)) and (an)) coincide under
the boundedness of |p|, |1| away from 0.

(2) Secondly, we assume only that v is bounded below away from 0. For general ¢ > —1, define

eo(@,y) = (1{%<|¢|<e}90)($7y)-

Clearly ¢y satisfies the condition for ¢ in step (1). Let M % be a purely discontinuous MAF on
I(¢) such that AMM = oy(X—, Xy), t €]0,¢[, and set M? := M€+ M*¢. Then we sce fae—ry =
N((pe — ©)*)pr < N(p?)pg. Hence we see that M converges uniformly to M on any compact
subinterval of [0, 7, [ P.s-a.s., because of the convergence of energy e(1p, * (M* — M)) — 0. By
replacing M with MY, we consider QF, Qf, Zf, Ttg, Gﬁl instead of Q, Q¢, Z;, T3, G, respectively and
also consider Qf’(n), T f ’("), Gé’(") instead of an), Tt("), G&n) respectively. From (1), we already know
that Qf’(") coincides with Tf (™) Ty show the coincidence, we first prove that T, t(") f € L*(E,;m)
and Tf o(n) f weakly converges to T, t(") f for any Borel function f € L?(E,;m).

In order to prove this weak convergence, we will follow the approach in Chen and Zhang [8]
by showing that there exists a constant &g independent of ¢, ¢y with ¢ > /¢y such that for any

nonnegative Borel f,g € L?(E,;m)

2 ;
s B | F(Xa(X0) 2 (1) 50 < 1] < ol (112)
ZX£0

-1 -1
where Y/ := Z} (Zfo) = Exp (Mtd’é) Exp (Mtd’éo) = Exp (Mtd’é - Mtd’éo) for ¢ > o > 1. Here
we use [M %0 MaE — pdh], = 0 for £ > £y > 1. From (4.12) we see the uniform integrability of
{Y/}f, ¢ > (o} under the law 1{t<7n}f(Xt)g(X0)Zf° P,,,, which implies the desired weak convergence.

Indeed, from (1), we can conclude ||Tf’(n)||2_>2 < e™t, hence |\G§’(”)||2_>2 < 1/(a—ap). By Fatou’s
lemma we have for Borel f € L?(E,;m)

/mew%mmmg ™ f(2) Pm(dz) < e £3-
E,

l—oo J Ey

Hence |]Tt(")||2_>2 < et and ||Gg")||2_,2 < 1/(a — ap). By (4.12), for each f € L%(E,;m), Tf’(")f
converges to T, t(") f weakly on L?(E,;m) and consequently Gé’(") f converges to G&”) f weakly on
L?*(E,;m) as £ — oc.
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We now prove (4.12). Since

() = (B (as )y
= exp (20 = 2010) T] (14 AQI - M%), exp(-2A (% - M), )

0<s<t

= exp (2Mtd7é . 2Mtd,éo> H (1 + (1 + A(Md,é i Md,€0)5)2 N 1)
0<s<t

X exp (1 - (14 A(Md’g — Md’go)s)2) exp ((A(Md’g - Md’éo)s)Q)

= Exp (K{) exp (N (s pectpisyjtotostol<ne®) * He)

where K is the purely discontinuous MAF on I(¢) with

AK! = (1+ AMDE — ppdhoy )2 1
= 2A(Md,€ _ Md’£0)5 + (A(Md,e o Md7€0)5)2
= L ecipl<i/to to<lpl<e} (20 + ¢°)(Xs, X), s €]0,C].

Thus Z{ := Z/Y{ = ZéO (YZ) is of the same form as Z{. Indeed,

Z; = Exp (J\Z) o r¢Exp (Mfo + K + A + (N(L1 e o<1 /00y #7) * H)i + (MC,J\?C%)
X (14 (X, X))

and the corresponding form Of on F™ is given by

o(f.g) = / F@ B, @) = [ 0@ )
/f (1" + N(Lg, o L1 j0<|01<1 00 b0 < ol <y 1im) (dz)  (4.13)

/E ; T 9(@) 111 /0<)101<1 /00 00< )<y (T, ) (y, )N (2, dy) o (d)

for f,g € F™. Then the constant 58 corresponding to Of on F( is given by

5 = \J28((M 4+ KY)) + [ 28((1)) + (A"

(L1 o< ol <1/t o< ol <0} P) T \/5(1{1/f<|90|§1/f07éo§|90|<5}902) 5(¢?)

and it is estimated by

do = V/20(10(M)) + 1/285((M)) + 5(A*") +8(%) + V/6(9%)/3(12).

Here we use [M%, KY] = 0, (M%) < (M) and (K') < (3M). Note that dy can be taken to be less
than 1 because 1z, (1) + foany lpe|) € K(X). Therefore by (1) we have (4.12). Here ¢ is given
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do = Y(10(M))\/2/5(10{M)) +~(M)\/2/5((M))
_|_,-)/(AH+) + ’}’(902) + (5(902)5@2))1/2 {7(902) v/ ’YWQ) }

0(?) (¢

Next we show that {G((l"),a > g} is the resolvent associated with (Q(, F(")). Fix a bounded
Borel f € L?(E,;m). We easily see

E1(G £, GH £) < MOE™ (G £.GL™ ) = M(F.G5™ ) < —

T a— Qg

I£113-

So {Gi’(”) fin € N} is 511 2 bounded. Taking a subsequence if necessary, Gﬁ}(n) f converges weakly

to some fo € F and its Cesaro mean strongly converges to fo. Hence fo = G&n) f.

Since
Qe’(n) ('LL, U) - Q(n) ('LL, U)
= - /En VA pgta gy /Eann u(y)v()((pe = ) - ) (2, y)N(z, dy)pa (dx),
we have
|Qé7(n) (u7 U) - Q(n) (u7 U)|
1/2 1/2
< ( / v2N<so2>duH> ( JCCE u<y>>21{|@|§1/e,eg.¢.}<x,y)N(a:,dymH(dw))

1/2 1/2
+</ vQN(so2)duH> (/E U2N(1{so|<1/e,e<|so|}¢2)dﬂH>

Taking u := G&n)f, vi= gy = Gﬁ;(n)f — G((ln)f and noting supycy €1(g¢, g¢) < 00, we have

S(GEMf—aM . GhM - at)f)
< MOM(GEW -G r,Gh™ - ai )
= M (G .90 — Q5(G f g0 )
— M‘Qe’(”)(Gé”)f, o)~ QG S, ge)‘

— 0 as¥f— oo.
We also see
QNG fv) = Jlim Q(GE™ f,v)

= Kli{go <Qg¢n) (Gé(n)f7 'U) - Qﬁ;(n) (Gg(n)fa 1))) + (f7 U)LQ(En;m)

- (f7 U)LQ(En;m) .
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Now GS{‘) f= VCS”) f holds for any Borel f € L?(E,;m). Therefore, we have the desired result for
general ¢ > —1 and the lower boundedness of ¢ away from 0.

(3) Finally, we show the coincidence for general o, > —1. By duality, it suffices to prove the
coincidence G f Va f for Borel f € L?(E,;m), where Gof = foo e T, fdt and th( ) =

E.[Z; orf(Xy) : t < 7). Considering the approximation 1, := Ljy>1/00% for ¥, we can apply

the result in (2) and the proof is quite similar with (2) [The boundedness of @ZJ avvay from 0 in (2)
is only used for the application of (1)]. Therefore, we have the coincidence G f Va f , hence
ng)f = Vogn)f for any Borel f € L?(E,;m).

As in [9], by using Lemma 3.6 in [12], we have that G, coincides with V,, consequently T}
coincides with Q¢ by use of the positivity preserving property of (Q,F) (see Lemma 4.1). a

5 Feynman-Kac type formula for A(M)

In this section, we show that Theorem 3.1 yields an extension of Feynman-Kac formula for zero
energy CAF N", studied by Chen and Zhang in [8], where u is a function in F having Kato class
energy measure fipgu).

Let M be a locally square-integrable MAF on I({). Let ¢ be the jumping function for M, that
is, ¢ vanishes on the diagonal of Ey x Ey and AM; = ¢(X;_, X;) for 't €]0, ([, Pm-a.s. We assume
that ¢(x,y) + ¢(y,z) = 0 for z,y € Ey, which includes the case M = M* for u € F,. Under this
assumption, we have P,,-a.s.

1
A(M) = ) (M + Myory + o( Xy, Xi)) for t €]0,C|.

We further assume that p ), the energy measure of quadratic variation process (M), is of Hardy
class and satisfies

So 1= AMN]2 + A2 + S < 1, (5.1)

where M7 is the purely jump part and M* is the killing part of M, respectively. Actually, M ¢, MJ
and M* can be expressed as follows:

M= Jim lim D e (X ) (@1 ppse)) (Ko s Xo) = (e, N(@lpey) * H)e |
s€]0,t]

Mt] = klggogli% Z 1Gk 901{|30|>£})(X8  Xs )1{5<§} (1GkN(1E><E901{|30|>£})*H)t >
s€]0,t]

t
Mtk = lim lim <1Gk(XC—)(@1{|30|>£})(XC—7a)l{t>Ci} _/0 1Gk (XS)(1{|30|>£}90)(X87a)N(XS7 {a})dH8> :

k—o00e—0

Note M? = M7 + MF¥. Here {G}} is a nest of finely open Borel sets such that lg, * M 6/\3{
(see Proposition 2.17 in [3]). We also see (M7); = fot ([ e(Xs,9)?N(Xs,dy)) dH,, (M*), =
T (Xa, 02N (X, {0))dH, and pugppoy (d) = N(Lps e jura (d2), pugapi(dz) = o, 0)° N, {0} s (dr).
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We consider the following quadratic form Q on F: For f,g € F,
1 1
/ gapnrre vy + 5 /E Jdpare.e e
o) ( [0 = @)tV ) o
w5 [ 1@ ([0 - sohele. )N ) ) putan) 62
- [ He)gl)ote.0)N @ (0hyn (o)

From (5.1), we have (3.4) and (3.5) with

Q(f,9) == E(f.9) +
1
3

0 1= (M) (/DTN + (1) (2/0(07)) " + La(ar®)) (1/60005) 7 (53)

Note that for f,g € F

O(f,0) = £(7,9) + g¥arss.any(E). (5.4)

where the signed measure vy ny for locally square-integrable MAFs M, N on [0, <] (more strongly,
on I(()) is defined by v ny = pare,ney + B Niy T 2pae nry- We have the following result
extending Theorem 1.2 in [8].

Theorem 5.1 Suppose that punyy € H(X) and satisfies (5.1). Then P f(x) := E. [eAMe f(X,)] is
the semigroup associated with (Q, F).

Proof. We consider an adequate nest {F},} such that all objects pnreys N (©?)py restricted to F,
are of Kato class as in the proof of Theorem 3.1 and recognize the fine interior F,, of F;, as the
whole space for each n.

First we assume the boundedness of |¢|, that is, 1/L < |¢| < L for some L > 0. Note that
le? —1| < |x|© L/2_1 for |x| < L/2. Let J; be the purely discontinuous locally square-integrable MAF
on I(¢) satisfying AJ;, = exp[—3¢(Xi—, Xy)] — 1, t €]0,¢[ and set M, := —1M¢ + J, for t € I(C).
Then we see AM; = AJ; > —1 for t €]0,([.

We then see on {t < (}

e_%Mt = Exp (Mt) e 4

where

wu(dz) == /E <1 - SO(Z’ v _ 6_¢(12,y)> N(z,dy)ug(dz) — éILL(Mc>(d.'E).

Then we have on {t < (}

P(Xe, X))

MM — Exp (M) o riExp (M) e e 2

Recall that 1, 1157, and 1, |p| are of Kato class. Hence g for M, A", (e=%/2 —1)? and (e¥/? —1)?
as in (3.2) strictly less than 1 over (Q™, F™). Here Q™ := Q on F™ := Fp . Therefore,
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by Theorem 3.1, we have the desired result for (@™, F(™) on L?(E,;m), that is, an)f(x) =
E,[eAMt £(X;) : t < 7,] is the semigroup of (Q™), F™) on L?(E,;m). Let E((ln) = [y e_o‘tﬁgn)dt
be the resolvent of {an),t > 0}.

For general ¢, we approximate it by g := 111 /p<|p|<eyp- We let Mf = M+ Mtd’e, where Mf’z
is the purely discontinuous locally square-integrable MAF on I(() satisfying

AM = (11 jeciplcey )Xo, Xi) - for ¢ €]0,¢[

We have e(1g, (M — M%) = 3 fEn (L1 e<|p|<eye®®)dpm — 0 as £ — oo. Consequently, A(ME),
converges uniformly to A(M )t on each compact subinterval of [0,7,[ under P, by taking some
subsequence of £. We consider (Qe’(”),ﬁf’(n),ﬁi’(n)) instead of (Q(”),an),ﬁgn)) by replacing M

with ME In particular, Ff’(n)f(:r) = By [P f(X,) : t < 7,]. Then by the above argument
Q™ (R, f,9) = (f, 9)12(B,:m) for a > ap, f € L*(Ey;m), g € F™.

The proof of the uniform integrability of A ynder the law Literay f(Xt)g(Xo) P, for non-
negative Borel f,g € L?(E,;m) is very similar to the analogous part of the proof of Theorem 3.1.
Actually, we can prove that there exists a constant 3y > 0 independent of ¢ (possibly depending on
n) such that for any nonnegative Borel f,g € L?(E,;m)

sup By [£(X)g(X0)e MM 8 < 7] < | ol (5.5)
€

Then we have that an) maps L2(E,;m) to itself with the bound e®?  where aq independent of /

bin) _(n) As in the proof of Theorem 3.1(3),
for each Borel f € L?(E,;m), Re( ") f is weakly convergent to R f for some subsequence of ¢ and

E((ln) f e F™_ We only show that Ra( ") strongly converges to R; ") on L2 (En;m). Note that Q™)
has the following expression: For u,v € F™,

comes from (5.3) and the weak convergence of P’

1

1
Q(n) (’LL7'U) = 5(u,7)) + 5/; 'Ud/,L<Mu,c’Mc> + 5/ udM<Mv,c7Mc>

n

1 (u(y) — u(@))o(e, )N (z,dy) ) ur(dz)
1 (0(y) — v(@)) oz, y)N (@, dy) | prr(de)

—/ u(z)o(z) (/ w(wvy)N(fcady)+¢($73)N($7{3})> fum (d).
En, i
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Similarly, Q%(") has the same expression by replacing ¢ with ¢,. Since
Qé’(n) (’LL, U) - Q(n) (u7 U)
1
3 o) ([ ) = w1t eto )N dy) ) )

2
+ % /En u(x) </n(v(l/) - U(l‘))l{l/g<|w|<g}cg0($,y)N(fB,dy)) o (dz)

- / u@)o(a) ( /E ", 1{1/e<|go|<e}cs0(:r,y)N(%dy)) urr(dz),

Q1 (u,v) = Q" (u, v)|

1 1/2 1/2
<3 ([ eNtmnsiann) ([ ) = )P Lyien-N o dyn(a)
En EnxEn
1 1/2 )
+5 ([ @V s o= ) 20"
En
1/2 1/2
+ </E UQN(lEnxE;u{a}1{1/e<|¢|<e}c802)duH> (/E v(z)*N(z, B U {3})MH(d$)>
Taking u = Rgb)f and v:=gy:= R f R f and noting supyey £1(g¢, g¢) < 00, we have
Z n n Z n —(n
&R f - R( LR =R
< Mgk <_“”)f R R /- Rp)
= M (QU (R, f, 9) — QX (RS f.90))
M‘Qe R f.90) - QRS ge)‘
— 0 as { — oo.
Therefore, we obtain the desired result for (@™, F(™). The rest is the same as before. O
6 Examples

Example 5.1 Let X = (X¢,P,),cpa be the symmetric a-stable process with a €]0,2[ and (€, F)
the corresponding Dirichlet form on LQ(Rd), and K a compact subset of R?. It is well-known that
X is transient and has Green function given by G(z,%) := A(d, a)|z —y|~(¢=®) under d > «, where

BT ()
21+67d/2D(1 4 )’

A(d,B) == B <d
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and (&, F) is given by
Ald, —« u(xr) —u v(z) —v

J R .

|$ _ y|d+a

F o= {ueL2(Rd)

X has a Lévy system (N, H), where N(z,dy) := A(d, —a)|x —y| @ dy and H; = t. So py(dz) =
dz.

We say that a measurable function f on R? is of Kato class (resp. Hardy class) if the measure
|f(x)|dx is of Kato class (resp. Hardy class) and write f € K(X) (resp. f € H(X)). Since there
exists C' > 0 such that p(z,y) < Ct~%« for all z,y € R, we have LP(RY) ¢ K(X) c H(X) if
p > d/a (resp. p > 1) for the case d > « (resp. for d = a = 1) (see [13]). For d > «, we have the
following Sobolev inequality

[ull 21 < Caal(u,u).

In this case we see L%*(R%) ¢ H(X) and the coefficient §(|f|) for f € L%*(R?) can be taken to
be arbitrarily small.
We assume one of the following:

e Let ¢; > —1 be a Borel function on R% x R? such that |o;(z,y)| < Cilx(2)1k(y)|z — y|*
with 9; > /2 and C; > 0, i = 1,2. Then N(¢?) is bounded, hence in K(X).

o Take f; € LF (R?) with p > d/a for d > «, or with p > 1 for d = a = 1 and set v; > /2, i =
1,2. We let ¢;(z,y) := fi()' P 1x (@)1 (y)lz =y (vesp. pi(z,y) := fi(2) 1k (y)|z — y[")
when p > d/a (resp. p = d/a), i = 1,2. Then N(¢?) € LY*(R?) ¢ H(X).

Let M, M be locally square-integrable MAFs with AM,; = ¢1(X;—, X;) and AJ\//E = o(X¢—, X¢)

for t > 0. Then Tjf(z) := Eu[Zf(X;)] with Z; = Exp<1\7t) o rExp(M) (1 + a(Xe, Xp_)) is
associated with

O(f.g) = E(f.g)— Ald—a) /

Rd

~att=a) [ 1) ([ 60 = geaten) s )

A=) [ S el

o) ([ G0 - 1@erten =) as

|.73 _ y|d+a

Example 5.2 Let X = (X;,P;)zep be the symmetric censored a-stable process on a bounded
Lipschitz domain D with d > 2 > a > 1 and (€,F) the corresponding Dirichlet form on L?(D).
(€,F) on L?(D) is given by

Ald, —a) (u(@) — u(y))(v(z) — v(y))
) = T

F o= WD),
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where WOO‘/Q’Z(D) is the completion of C§°(D) with respect to the 511/2—n0rm and A(d, —«) is the

constant appear in the previous example. X has Lévy system (N, H), where H; = t, N(x,dy) :=
A(d, —a)|z — y|~@**dy on D and N(z,{0}) =0, = € D.
Then the following Hardy inequality holds by Chen-Song [7]

u(z)?
- 7 < A
/D d(a;,(?D)adw <Cpl(u,u), uwekF

Let € > 2(2+ \/E)CD,O[ and for each i = 1,2 and v; > « set

—1/2 1 1 |z — y| 12
4 — “/i—a—ld . y
pi(z,y) : <jlelg /D—ac %] Z> <A(d> —a) (Cp,a+e)d(z, 8D)a> .

Then N(?)(x) = (Cpa +¢€) " td(z,0D)~%, hence §(¢?) < Cp.o/(Cp o +¢) We have

80 = 1/ 26(2) +/20(03) + \/3(D)(3) < 1.

Let M, M be locally square-integrable MAFs with AM,; = ¢1(X;—, X}) and AJ\//E = o(X¢—, X¢)
for t €]0,¢[. Then Tif(x) := E;[Z,f(X})] with Z; := Exp (]\Z) o rExp(M;)(1 + po(Xy, Xy—)) is
associated with

dy
o) ([ 00 - faDertoa) 2 ) o

~att=a) [ 1@ ([ ) - steneaton 2o ) do

—Ad.=o) [ gt e nealy.a)

Of.g) = E(f.g)— Ald—a) /
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