Optimal control of SPDEs with delay and time-advanced backward stochastic partial differential equations

Bernt Øksendal ${ }^{11,2)} \quad$ Agnès Sulem ${ }^{3)}$

Tusheng Zhang ${ }^{4,1)}$
7 September 2010

MSC (2010): 93EXX, 93E20, 60H10, 60H15, 60H20, 60J75, 49J55, 35R60
Key words: Optimal control, stochastic delay equations, Lévy processes, maximum principles, Hamiltonian, adjoint processes, time-advanced BSDEs.

Abstract

We study optimal control problems for (time-) delayed stochastic differential equations with jumps. We establish sufficient and necessary (Pontryagin type) maximum principles for an optimal control of such systems. The associated adjoint processes are shown to satisfy a (time-) advanced backward stochastic differential equation (ABSDE). Several results on existence and uniqueness of such ABSDEs

[^0]are shown. The results are illustrated by an application to optimal consumption from a cash flow with delay.

1 Time-advanced BSPDEs with jumps

We now study time-advanced backward stochastic differential equations driven both by Brownian motion $B(t)$ and compensated Poisson random measures $\tilde{N}(d t, d z)$.

1.1 Framework

Let $B(t)=B(t, \omega)$ be a Brownian motion and $\tilde{N}(d t, d z):=N(d t, d z)-$ $\nu(d z) d t$, where ν is the Lévy measure of the jump measure $N(\cdot, \cdot)$, be an independent compensated Poisson random measure on a filtered probability space $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{0 \leq t \leq T}, P\right)$. Let D be a smooth domain in R^{n}. Consider the following general second order differential operator:

$$
A u=\frac{1}{2} \sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{i}}\right)+\sum_{i=1}^{n} b_{i}(x) \frac{\partial u}{\partial x_{i}}+c(x) u(x)
$$

where $a=\left(a_{i j}(x)\right): D \rightarrow R^{n \times n}(n>2)$ is a measurable, symmetric matrixvalued function which satisfies the uniform elliptic condition

$$
\begin{equation*}
\lambda_{1}|\xi|^{2} \leq \sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \leq \lambda_{2}|\xi|^{2}, \forall \xi \in R^{n} \text { and } x \in D \tag{1.1}
\end{equation*}
$$

for some positive constants $\lambda_{1}, \lambda_{2}, b=\left(b_{1}, \ldots b_{n}\right),: D \rightarrow R^{n}$ and $c: D \rightarrow R$ are bounded measurable functions. Set $H=L^{2}(D)$. Let $H_{0}^{1,2}(D)$ denote the Sobolev space of order one with zero boundary condition. In view of (1.1)
and the boundedness of b and $c(x)$, for $u \in H_{0}^{1,2}(D)$ we have

$$
\begin{align*}
-<A u, u>= & \frac{1}{2} \int_{D}\left(\sum_{i, j=1}^{n} a_{i j}(x) \frac{\partial u}{\partial x_{i}} \frac{\partial u}{\partial x_{j}}\right) d x \\
& -\sum_{i=1}^{n} \int_{D} b_{i}(x) \frac{\partial u}{\partial x_{i}} u(x) d x-\int_{D} c(x) u(x)^{2} d x \\
\geq & \frac{1}{2} \lambda_{1} \int_{D}|\nabla u|^{2}(x) d x-\frac{1}{4} \lambda_{1} \int_{D}|\nabla u|^{2}(x) d x-C_{\lambda_{1}} \int_{D} u^{2}(x) d x \\
= & \frac{1}{4} \lambda_{1} \int_{D}|\nabla u|^{2}(x) d x-C_{\lambda_{1}} \int_{D} u^{2}(x) d x \tag{1.2}
\end{align*}
$$

Given a positive constant δ, denote by $D([0, \delta], H)$ the space of all càdlàg paths from $[0, \delta]$ into H. For a path $X(\cdot): \mathbb{R}_{+} \rightarrow H, X_{t}$ will denote the function defined by $X_{t}(s)=X(t+s)$ for $s \in[0, \delta]$. Put $\mathcal{H}=L^{2}(R \rightarrow H ; \nu)$. Consider the L^{2} spaces $V_{1}:=L^{2}([0, \delta] \rightarrow H, d s)$ and $V_{2}:=L^{2}([0, \delta] \rightarrow \mathcal{H}, d s)$. Let

$$
F: \mathbb{R}_{+} \times H \times H \times V_{1} \times H \times H \times V_{1} \times \mathcal{H} \times \mathcal{H} \times V_{2} \times \Omega \rightarrow H
$$

be a predictable function. Introduce the following Lipschitz condition: There exists a constant C such that

$$
\begin{align*}
& \left|F\left(t, p_{1}, p_{2}, p, q_{1}, q_{2}, q, r_{1}, r_{2}, r, \omega\right)-F\left(t, \bar{p}_{1}, \bar{p}_{2}, \bar{p}, \bar{q}_{1}, \bar{q}_{2}, \bar{q}, \bar{r}_{1}, \bar{r}_{2}, \bar{r}, \omega\right)\right|_{H} \\
& \quad \leq C\left(\left|p_{1}-\bar{p}_{1}\right|_{H}+\left|p_{2}-\bar{p}_{2}\right|_{H}+|p-\bar{p}|_{V_{1}}+\left|q_{1}-\bar{q}_{1}\right|_{H}+\left|q_{2}-\bar{q}_{2}\right|_{H}\right. \\
& \quad+|q-\bar{q}|_{V_{1}}+\left|r_{1}-\bar{r}_{1}\right|_{\mathcal{H}}+\left|r_{2}-\bar{r}_{2}\right|_{\mathcal{H}}+|r-\bar{r}|_{V_{2}} . \tag{1.3}
\end{align*}
$$

1.2 First existence and uniqueness theorem

We first consider the following time-advanced backward stochastic partial differential equation (BSPDE) in the unknown \mathcal{F}_{t} adapted processes $(p(t), q(t), r(t, z)) \int H \times$ $H \times \mathcal{H}$:

$$
\begin{align*}
d p(t)= & -A p(t) d t \\
+ & E\left[F \left(t, p(t), p(t+\delta) \chi_{[0, T-\delta]}(t), p_{t} \chi_{[0, T-\delta]}(t), q(t), q(t+\delta) \chi_{[0, T-\delta]}(t),\right.\right. \\
& \left.\left.q_{t} \chi_{[0, T-\delta]}(t), r(t), r(t+\delta) \chi_{[0, T-\delta]}(t), r_{t} \chi_{[0, T-\delta]}(t)\right) \mid \mathcal{F}_{t}\right] d t \\
+ & q(t) d B(t)+\int_{\mathbb{R}} r(t, z) \tilde{N}(d t, d z) ; t \in[0, T] \tag{1.4}
\end{align*}
$$

$$
\begin{equation*}
p(T)=G, \tag{1.5}
\end{equation*}
$$

where G is a given H-valued \mathcal{F}_{T}-measurable random variable.
Note that the time-advanced BSPDE (??)-(??) for the adjoint processes of the Hamiltonian is of this form.

For this type of time-advanced BSPDEs we have the following result:
Theorem 1.1 Assume that $E\left[G^{2}\right]<\infty$ and that condition (1.3) is satisfied. Then the BSPDE (1.4)-(1.5) has a unique solution $p(t), q(t), r(t, z))$ such that

$$
\begin{equation*}
E\left[\int_{0}^{T}\left\{|p(t)|_{H}^{2}+|q(t)|_{H}^{2}+\int_{\mathbb{R}}|r(t, z)|_{H}^{2} \nu(d z)\right\} d t\right]<\infty \tag{1.6}
\end{equation*}
$$

Moreover, the solution can be found by inductively solving a sequence of BSPDEs backwards as follows:

Step 0: In the interval $[T-\delta, T]$ we let $p(t), q(t)$ and $r(t, z)$ be defined as the solution of the classical BSPDE (see [?])

$$
\begin{gather*}
d p(t)=-A p(t) d t+F(t, p(t), 0,0, q(t), 0,0, r(t, z), 0,0) d t \\
+q(t) d B(t)+\int_{\mathbb{R}} r(t, z) \tilde{N}(d t, d z) ; t \in[T-\delta, T] \tag{1.7}\\
p(T)=G \tag{1.8}
\end{gather*}
$$

Step $k ; k \geq 1$: If the values of $(p(t), q(t), r(t, z))$ have been found for $t \in[T-k \delta, T-(k-1) \delta]$, then if $t \in[T-(k+1) \delta, T-k \delta]$ the values of $p(t+\delta), p_{t}, q(t+\delta), q_{t}, r(t+\delta, z)$ and r_{t} are known and hence the BSPDE

$$
\begin{align*}
d p(t) & =-A p(t) d t \\
& +E\left[F\left(t, p(t), p(t+\delta), p_{t}, q(t), q(t+\delta), q_{t}, r(t), r(t+\delta), r_{t}\right) \mid \mathcal{F}_{t}\right] d t \\
+ & q(t) d B(t)+\int_{\mathbb{R}} r(t, z) \tilde{N}(d t, d z) ; t \in[T-(k+1) \delta, T-k \delta] \tag{1.9}\\
& \quad p(T-k \delta)=\text { the value found in Step } k-1 \tag{1.10}
\end{align*}
$$

has a unique solution in $[T-(k+1) \delta, T-k \delta]$.
We proceed like this until k is such that $T-(k+1) \delta \leq 0<T-k \delta$ and then we solve the corresponding BSPDE on the interval $[0, T-k \delta]$.
Proof. The proof follows directly from the above inductive procedure. The estimate (1.6) is a consequence of known estimates for classical BSPDEs.

1.3 Second existence and uniqueness theorem

Next, we consider the following backward stochastic partial differential equation in the unknown \mathcal{F}_{t}-adapted processes $(p(t), q(t), r(t, z)) \int H \times H \times \mathcal{H}$:

$$
\begin{align*}
& d p(t)=-A p(t) d t \\
& +E\left[F\left(t, p(t), p(t+\delta), p_{t}, q(t), q(t+\delta), q_{t}, r(t), r(t+\delta), r_{t}\right) \mid \mathcal{F}_{t}\right] d t \\
& +q(t) d B_{t}+\int_{\mathbb{R}} r(t, z) \tilde{N}(d t, d z), ; t \in[0, T] \tag{1.11}\\
& \quad p(t)=G(t), \quad t \in[T, T+\delta] \tag{1.12}
\end{align*}
$$

where G is a H-valued given continuous $\mathcal{F}_{t^{-}}$-adapted stochastic process.
Theorem 1.2 Assume $E\left[\sup _{T \leq t \leq T+\delta}|G(t)|_{H}^{2}\right]<\infty$ and that the condition (1.3) is satisfied. Then the backward stochastic differential equation (1.11) admits a unique solution $(p(t), q(t), r(t, z))$ such that

$$
E\left[\int_{0}^{T}\left\{|p(t)|_{H}^{2}+|q(t)|_{H}^{2}+\int_{\mathbb{R}}|r(t, z)|_{H}^{2} \nu(d z)\right\} d t\right]<\infty .
$$

Proof.

Step 1 Assume F is independent of p_{1}, p_{2} and p. Set $q^{0}(t):=0, r^{0}(t, x)=0$. For $n \geq 1$, define $\left(p^{n}(t), q^{n}(t), r^{n}(t, z)\right)$ to be the unique solution to the following backward stochastic partial differential equation equation:

$$
\quad t \in[T, T+\delta] .
$$

It is a consequence of the martingale representation theorem that the above equation admits a unique solution, see, e.g. [?]. We extend q^{n}, r^{n} to $[0, T+\delta]$ by setting $q^{n}(s)=0, r^{n}(s, z)=0$ for $T \leq s \leq T+\delta$. We are going to show that ($p^{n}(t), q^{n}(t), r^{n}(t, z)$) forms a Cauchy sequence. By Itô's formula, we
have

$$
\begin{align*}
0= & \left|p^{n+1}(T)-p^{n}(T)\right|_{H}^{2} \\
= & \left|p^{n+1}(t)-p^{n}(t)\right|_{H}^{2}-2 \int_{t}^{T}<A\left(p^{n+1}(s)-p^{n}(s)\right), p^{n+1}(s)-p^{n}(s)>d s \\
+ & 2 \int_{t}^{T}<p^{n+1}(s)-p^{n}(s),\left(E\left[F\left(s, q^{n}(s), q^{n}(s+\delta), q_{s}^{n}, r^{n}(s, \cdot), r^{n}(s+\delta, \cdot), r_{s}^{n}(\cdot)\right) \mid \mathcal{F}_{s}\right]\right. \\
& \left.-E\left[F\left(s, q^{n-1}(s), q^{n-1}(s+\delta), q_{s}^{n-1}, r^{n-1}(s, \cdot), r^{n-1}(s+\delta, \cdot), r_{s}^{n-1}(\cdot)\right)\right) \mid \mathcal{F}_{s}\right]>_{H} d s \\
+ & \int_{t}^{T} \int_{\mathbb{R}}\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2} d s \nu(d z)+\int_{t}^{T}\left|q^{n+1}(s)-q^{n}(s)\right|_{H}^{2} d s \\
+ & 2 \int_{t}^{T}<p^{n+1}(s)-p^{n}(s), q^{n+1}(s)-q^{n}(s)>_{H} d B_{s} \\
+ & \int_{t}^{T} \int_{\mathbb{R}}\left\{\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2}\right. \\
& \left.+2<p^{n+1}(s-)-p^{n}(s-), r^{n+1}(s, z)-r^{n}(s, z)>_{H}\right\} \tilde{N}(d s, d z) \tag{1.14}
\end{align*}
$$

Rearranging terms, in view of (1.3) and (1.2) we get

$$
\begin{align*}
& E\left[\left|p^{n+1}(t)-p^{n}(t)\right|_{H}^{2}\right]+\frac{1}{2} \int_{t}^{T}\left|\nabla\left(p^{n+1}(s)-p^{n}(s)\right)\right|_{H}^{2} d s \\
&+E\left[\int_{t}^{T} \int_{\mathbb{R}}\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2} d s \nu(d z)\right]+E\left[\int_{t}^{T}\left|q^{n+1}(s)-q^{n}(s)\right|_{H}^{2} d s\right] \\
& \leq 2 E\left[\int_{t}^{T} \mid<p^{n+1}(s)-p^{n}(s), E\left[F\left(s, q^{n}(s), q^{n}(s+\delta), r^{n}(s, \cdot), r^{n}(s+\delta, \cdot)\right)\right.\right. \\
&\left.\left.-F\left(s, q^{n-1}(s), q^{n-1}(s+\delta), r^{n-1}(s, \cdot), r^{n-1}(s+\delta, \cdot)\right) \mid \mathcal{F}_{s}\right]>_{H} \mid d s\right] \\
&+C \int_{t}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s \\
&+\varepsilon E\left[\int_{t}^{T}\left|q^{n}(s+\delta)-q^{n-1}(s+\delta)\right|_{H}^{2} d s\right]+\varepsilon E\left[\int_{t}^{T}\left(\int_{s}^{s+\delta}\left|q^{n}(u)-q^{n-1}(u)\right|_{H}^{2} d u\right) d s\right] \\
&+\varepsilon E\left[\int_{t}^{T}\left|r^{n}(s)-r^{n-1}(s)\right|_{\mathcal{H}}^{2} d s\right] \\
&+\varepsilon E\left[\int_{t}^{T}\left|r^{n}(s+\delta)-r^{n-1}(s+\delta)\right|_{\mathcal{H}}^{2} d s\right]+\varepsilon E\left[\int_{t}^{T}\left(\int_{s}^{s+\delta}\left|r^{n}(u)-r^{n-1}(u)\right|_{\mathcal{H}}^{2} d u\right) d s\right] \tag{1.15}
\end{align*}
$$

Note that

$$
\begin{equation*}
E\left[\int_{t}^{T}\left|q^{n}(s+\delta)-q^{n-1}(s+\delta)\right|_{H}^{2} d s\right] \leq E\left[\int_{t}^{T}\left|q^{n}(s)-q^{n-1}(s)\right|_{H}^{2} d s\right] \tag{1.16}
\end{equation*}
$$

Interchanging the order of integration,

$$
\begin{align*}
& E\left[\int_{t}^{T}\left(\int_{s}^{s+\delta}\left|q^{n}(u)-q^{n-1}(u)\right|_{H}^{2} d u\right) d s\right]=E\left[\int_{t}^{T+\delta}\left|q^{n}(u)-q^{n-1}(u)\right|_{H}^{2} d u\left(\int_{u-\delta}^{u} d s\right]\right. \\
& \quad \leq \delta E\left[\int_{t}^{T}\left|q^{n}(s)-q^{n-1}(s)\right|_{H}^{2} d s\right] . \tag{1.17}
\end{align*}
$$

Similar inequalities hold also for $r^{n}-r^{n-1}$. It follows from (1.15) that

$$
\begin{align*}
& E\left[\left|p^{n+1}(t)-p^{n}(t)\right|_{H}^{2}\right]+\frac{1}{2} \int_{t}^{T}\left|\nabla\left(p^{n+1}(s)-p^{n}(s)\right)\right|_{H}^{2} d s \\
& \quad+E\left[\int_{t}^{T} \int_{\mathbb{R}}\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2} d s \nu(d z)\right]+E\left[\int_{t}^{T}\left|q^{n+1}(s)-q^{n}(s)\right|_{H}^{2} d s\right] \\
& \quad \leq C_{\varepsilon} E\left[\int_{t}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s\right]+(2+M) \varepsilon E\left[\int_{t}^{T}\left|q^{n}(s)-q^{n-1}(s)\right|_{H}^{2} d s\right] \\
& \quad+3 \varepsilon E\left[\int_{t}^{T}\left|r^{n}(s)-r^{n-1}(s)\right|_{\mathcal{H}}^{2} d s\right] . \tag{1.18}
\end{align*}
$$

Choose $\varepsilon>0$ sufficiently small so that

$$
\begin{align*}
& E\left[\left|p^{n+1}(t)-p^{n}(t)\right|_{H}^{2}\right]+\frac{1}{2} \int_{t}^{T}\left|\nabla\left(p^{n+1}(s)-p^{n}(s)\right)\right|_{H}^{2} d s \\
& \quad+E\left[\int_{t}^{T} \int_{\mathbb{R}}\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2} d s \nu(d z)\right]+E\left[\int_{t}^{T}\left|q^{n+1}(s)-q^{n}(s)\right|_{H}^{2} d s\right] \\
& \quad \leq C_{\varepsilon} E\left[\int_{t}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s\right]+\frac{1}{2} E\left[\int_{t}^{T}\left|q^{n}(s)-q^{n-1}(s)\right|_{H}^{2} d s\right] \\
& \quad+\frac{1}{2} E\left[\int_{t}^{T}\left|r^{n}(s)-r^{n-1}(s)\right|_{\mathcal{H}}^{2} d s\right] . \tag{1.19}
\end{align*}
$$

This implies that

$$
\begin{align*}
-\frac{d}{d t} & \left(e^{C_{\varepsilon} t} E\left[\int_{t}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s\right]\right)+\frac{1}{2} e^{C_{\varepsilon} t} \int_{t}^{T}\left|\nabla\left(p^{n+1}(s)-p^{n}(s)\right)\right|_{H}^{2} d s \\
& +e^{C_{\varepsilon} t} E\left[\int_{t}^{T} \int_{\mathbb{R}}\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2} d s \nu(d z)\right]+e^{C_{\varepsilon} t} E\left[\int_{t}^{T}\left|q^{n+1}(s)-q^{n}(s)\right|_{H}^{2} d s\right] \\
\leq & \frac{1}{2} e^{C_{\varepsilon} t} E\left[\int_{t}^{T}\left|q^{n}(s)-q^{n-1}(s)\right|_{H}^{2} d s\right]+\frac{1}{2} e^{C_{\varepsilon} t} E\left[\int_{t}^{T}\left|r^{n}(s)-r^{n-1}(s)\right|_{\mathcal{H}}^{2} d s\right] . \tag{1.20}
\end{align*}
$$

Integrating the last inequality we get

$$
\begin{align*}
& E\left[\int_{0}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s\right]+\int_{0}^{T} d t e^{C_{\varepsilon} t} E\left[\int_{t}^{T}\left|q^{n+1}(s)-q^{n}(s)\right|_{H}^{2} d s\right] \\
& +\int_{0}^{T} d t e^{C_{\varepsilon} t} E\left[\int_{t}^{T} \int_{\mathbb{R}}\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2} d s \nu(d z)\right] \\
& +\frac{1}{2} \int_{0}^{T} d t e^{C_{\varepsilon} t} \int_{t}^{T}\left|\nabla\left(p^{n+1}(s)-p^{n}(s)\right)\right|_{H}^{2} d s \\
& \leq \frac{1}{2} \int_{0}^{T} d t e^{C_{\varepsilon} t} E\left[\int_{t}^{T}\left|q^{n}(s)-q^{n-1}(s)\right|_{H}^{2} d s\right]+\frac{1}{2} \int_{0}^{T} d t e^{C_{\varepsilon} t} E\left[\int_{t}^{T}\left|r^{n}(s)-r^{n-1}(s)\right|_{\mathcal{H}}^{2} d s\right] \tag{1.21}
\end{align*}
$$

In particular,

$$
\begin{align*}
& \int_{0}^{T} d t e^{C_{\varepsilon} t} E\left[\int_{t}^{T} \int_{\mathbb{R}}\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2} d s \nu(d z)\right] \\
& \quad+\int_{0}^{T} d t e^{C_{\varepsilon} t} E\left[\int_{t}^{T}\left|q^{n+1}(s)-q^{n}(s)\right|_{H}^{2} d s\right] \\
& \quad \leq \frac{1}{2} \int_{0}^{T} d t e^{C_{\varepsilon} t} E\left[\int_{t}^{T}\left|q^{n}(s)-q^{n-1}(s)\right|_{H}^{2} d s\right]+\frac{1}{2} \int_{0}^{T} d t e^{C_{\varepsilon} t} E\left[\int_{t}^{T}\left|r^{n}(s)-r^{n-1}(s)\right|_{\mathcal{H}}^{2} d s\right] \tag{1.22}
\end{align*}
$$

This yields

$$
\begin{align*}
& \int_{0}^{T} d t e^{C_{\varepsilon} t} E\left[\int_{t}^{T} \int_{\mathbb{R}}\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2} d s \nu(d z)\right]+\int_{0}^{T} d t e^{C_{\varepsilon} t} E\left[\int_{t}^{T}\left|q^{n+1}(s)-q^{n}(s)\right|_{H}^{2} d s\right] \\
& \quad \leq\left(\frac{1}{2}\right)^{n} C \tag{1.23}
\end{align*}
$$

for some constant C. It follows from (1.21) that

$$
\begin{equation*}
E\left[\int_{0}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s\right] \leq\left(\frac{1}{2}\right)^{n} C . \tag{1.24}
\end{equation*}
$$

(1.18) and ((1.21) further gives

$$
\begin{equation*}
E\left[\int_{0}^{T} \int_{\mathbb{R}}\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2} d s \nu(d z)\right]+E\left[\int_{0}^{T}\left|q^{n+1}(s)-q^{n}(s)\right|_{H}^{2} d s\right] \leq\left(\frac{1}{2}\right)^{n} C n C_{\varepsilon} \tag{1.25}
\end{equation*}
$$

In view of (1.18), (1.21) and (1.22), we conclude that there exist progressively measurable processes $(p(t), q(t), r(t, z))$ such that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} E\left[\left|p^{n}(t)-p(t)\right|_{H}^{2}\right]=0 \\
& \lim _{n \rightarrow \infty} \int_{0}^{T} E\left[\left|p^{n}(t)-p(t)\right|_{H}^{2}\right] d t=0, \\
& \lim _{n \rightarrow \infty} \int_{0}^{T} E\left[\left|\nabla\left(p^{n}(t)-p(t)\right)\right|_{H}^{2}\right] d t=0, \\
& \lim _{n \rightarrow \infty} \int_{0}^{T} E\left[\left|q^{n}(t)-q(t)\right|_{H}^{2}\right] d t=0, \\
& \lim _{n \rightarrow \infty} \int_{0}^{T} \int_{\mathbb{R}} E\left[\left|r^{n}(t, z)-r(t, z)\right|_{H}^{2}\right] \nu(d z) d t=0 .
\end{aligned}
$$

Letting $n \rightarrow \infty$ in (1.13) we see that $(p(t), q(t), r(t, z))$ satisfies

$$
\begin{align*}
p(t) & -\int_{t}^{T}<A p(s), p(s)>d s \\
& +\int_{t}^{T} E\left[F\left(s, q(s), q(s+\delta), q_{s}, r(s, \cdot), r(s+\delta, \cdot), r_{s}(\cdot)\right) \mid \mathcal{F}_{s}\right] d s \\
& +\int_{t}^{T} q(s) d B_{s}+\int_{t}^{T} \int_{\mathbb{R}} r(s, z) \tilde{N}(d s, d z)=g(T) \tag{1.26}
\end{align*}
$$

i.e., $(p(t), q(t), r(t, z))$ is a solution. Uniqueness follows easily from Ito's formula, a similar calculation of deducing (1.14) and (1.15), and Gronwall's Lemma.

Step 2. General case. Let $p^{0}(t)=0$. For $n \geq 1$, define $\left(p^{n}(t), q^{n}(t), r^{n}(t, z)\right)$ to be the unique solution to the following BSDE:

$$
\begin{align*}
d p^{n}(t) & =-A p^{n}(t) d t+q^{n}(t) d B_{t}+r^{n}(t, z) \tilde{N}(d t, d z) \\
& +E\left[F\left(t, p^{n-1}(t), p^{n-1}(t+\delta), p_{t}^{n-1}, q^{n}(t), q^{n}(t+\delta), q_{t}^{n}, r^{n}(t, \cdot), r^{n}(t+\delta, \cdot), r_{t}^{n}(\cdot)\right) \mid \mathcal{F}_{t}\right] d t \tag{1.27}
\end{align*}
$$

$$
p^{n}(t)=G(t) ; \quad t \in[T, T+\delta] .
$$

The existence of $\left(p^{n}(t), q^{n}(t), r^{n}(t, z)\right)$ is proved in Step 1. By the same arguments leading to (1.18), we deduce that

$$
\begin{align*}
& E\left[\left|p^{n+1}(t)-p^{n}(t)\right|_{H}^{2}\right]+\frac{1}{2} E\left[\int_{t}^{T} \int_{\mathbb{R}}\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2} d s \nu(d z)\right] \\
& \quad+\frac{1}{2} E\left[\int_{t}^{T}\left|q^{n+1}(s)-q^{n}(s)\right|_{H}^{2} d s\right]+\frac{1}{2} \lambda_{1} E\left[\int_{t}^{T}\left|\nabla\left(p^{n+1}(s)-p^{n}(s)\right)\right|_{H}^{2} d s\right] \\
& \quad \leq C E\left[\int_{t}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s\right]+\frac{1}{2} E\left[\int_{t}^{T}\left|p^{n}(s)-p^{n-1}(s)\right|_{H}^{2} d s\right] \tag{1.28}
\end{align*}
$$

This implies that

$$
\begin{equation*}
-\frac{d}{d t}\left(e^{C t} E\left[\int_{t}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s\right]\right) \leq \frac{1}{2} e^{C t} E\left[\int_{t}^{T}\left|p^{n}(s)-p^{n-1}(s)\right|_{H}^{2} d s\right] \tag{1.29}
\end{equation*}
$$

Integrating (1.29) from u to T we get

$$
\begin{align*}
& E\left[\int_{u}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s\right] \leq \frac{1}{2} \int_{u}^{T} d t e^{C(t-u)} E\left[\int_{t}^{T}\left|p^{n}(s)-p^{n-1}(s)\right|_{H}^{2} d s\right] \\
& \quad \leq e^{C T} \int_{u}^{T} d t E\left[\int_{t}^{T}\left|p^{n}(s)-p^{n-1}(s)\right|_{H}^{2} d s\right] . \tag{1.30}
\end{align*}
$$

Iterating the above inequality we obtain that

$$
E\left[\int_{0}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s\right] \leq \frac{e^{C n T} T^{n}}{n!}
$$

Using above inequality and a similar argument as in Step 1, it can be shown that $\left(p^{n}(t), q^{n}(t), r^{n}(t, z)\right)$ converges to some limit $(p(t), q(t), r(t, z))$, which is the unique solution of equation (1.11).

Theorem 1.3 Assume $E\left[\sup _{T \leq t \leq T+\delta}|G(t)|^{2 \alpha}\right]<\infty$ for some $\alpha>1$ and that the following condition hold:

$$
\begin{align*}
& \left|F\left(t, p_{1}, p_{2}, p, q_{1}, q_{2}, q, r_{1}, r_{2}, r\right)-F\left(t, \bar{p}_{1}, \bar{p}_{2}, \bar{p}, \bar{q}_{1}, \bar{q}_{2}, \bar{q}, \bar{r}_{1}, \bar{r}_{2}, \bar{r}\right)\right| \\
& \quad \leq C\left(\left|p_{1}-\bar{p}_{1}\right|_{H}+\left|p_{2}-\bar{p}_{2}\right|_{H}+\sup _{0 \leq s \leq \delta}|p(s)-\bar{p}(s)|_{H}+\left|q_{1}-\bar{q}_{1}\right|_{H}+\left|q_{2}-\bar{q}_{2}\right|_{H}+|q-\bar{q}|_{V_{1}}\right. \\
& \left.\quad+\left|r_{1}-\bar{r}_{1}\right|_{\mathcal{H}}+\left|r_{2}-\bar{r}_{2}\right|_{\mathcal{H}}+|r-\bar{r}|_{V_{2}}\right) . \tag{1.31}
\end{align*}
$$

Then the BSPDE (1.11) admits a unique solution $(p(t), q(t), r(t, z))$ such that

$$
E\left[\sup _{0 \leq t \leq T}|p(t)|_{H}^{2 \alpha}+\int_{0}^{T}\left\{|q|_{H}^{2}(t)+\int_{\mathbb{R}}|r|_{H}^{2}(t, z) \nu(d z)\right\} d t\right]<\infty .
$$

Proof.
Step 1 . Assume F is independent of p_{1}, p_{2} and p. In this case condition (1.31) reduces to assumption (1.3). By the Step 1 in the proof of Theorem 1.2 , there is a unique solution $(p(t), q(t), r(t, z))$ to equation (1.11).

Step 2. General case. Let $p^{0}(t)=0$. For $n \geq 1$, define $\left(p^{n}(t), q^{n}(t), r^{n}(t, z)\right)$ to be the unique solution to the following BSDE:

$$
\begin{align*}
& d p^{n}(t)=-A p^{n}(t) d t+q^{n}(t) d B_{t}+r^{n}(t, z) \tilde{N}(d t, d z) \\
&+E\left[F\left(t, p^{n-1}(t), p^{n-1}(t+\delta), p_{t}^{n-1}, q^{n}(t), q^{n}(t+\delta), q_{t}^{n}, r^{n}(t, \cdot), r^{n}(t+\delta, \cdot), r_{t}^{n}(\cdot)\right) \mid \mathcal{F}_{t}\right] d t \tag{1.32}\\
&(1.32) \\
& p^{n}(t)=G(t), \quad t \in[T, T+\delta] .
\end{align*}
$$

By Step $1,\left(p^{n}(t), q^{n}(t), r^{n}(t, z)\right)$ exists. We are going to show that $\left(p^{n}(t), q^{n}(t), r^{n}(t, z)\right)$ forms a Cauchy sequence. Using Itô's formula, we have

$$
\begin{align*}
& \left|p^{n+1}(t)-p^{n}(t)\right|_{H}^{2}+\int_{t}^{T} \int_{\mathbb{R}}\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2} d s \nu(d z)+\int_{t}^{T}\left|q^{n+1}(s)-q^{n}(s)\right|_{H}^{2} d s \\
& \quad-2 \int_{t}^{T}<A p^{n}(s), p^{n}(s)>d s \\
& \quad=-2 \int_{t}^{T}<p^{n+1}(s)-p^{n}(s), \\
& {\left[E \left[F\left(s, p^{n}(s), p^{n}(s+\delta), p_{s}^{n}, q^{n+1}(s), q^{n+1}(s+\delta), q_{s}^{n+1}, r^{n+1}(s, \cdot), r^{n+1}(s+\delta, \cdot), r_{s}^{n+1}(\cdot)\right)\right.\right.} \\
& \left.\left.\quad-F\left(s, p^{n-1}(s), p^{n-1}(s+\delta), p_{s}^{n-1}, q^{n}(s), q^{n}(s+\delta), q_{s}^{n}, r^{n}(s, \cdot), r^{n}(s+\delta, \cdot), r_{s}^{n}(\cdot)\right) \mid \mathcal{F}_{s}\right]\right]>_{H} d s \\
& -2 \int_{t}^{T}<p^{n+1}(s)-p^{n}(s), q^{n+1}(s)-q^{n}(s)>d B_{s} \\
& -\int_{t}^{T} \int_{\mathbb{R}}\left[\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2}+2<p^{n+1}(s-)-p^{n}(s-),\left(r^{n+1}(s, z)-r^{n}(s, z)>_{H}\right] \tilde{N}(d s, d z)\right. \tag{1.33}
\end{align*}
$$

Take conditional expectation with respect to \mathcal{F}_{t}, take the supremum over the interval $[u, T]$ and use the condition (1.31) to get

$$
\begin{align*}
& \sup _{u \leq t \leq T}\left|p^{n+1}(t)-p^{n}(t)\right|_{H}^{2}+\sup _{u \leq t \leq T} E\left[\int_{t}^{T}\left|q^{n+1}(s)-q^{n}(s)\right|_{H}^{2} d s \mid \mathcal{F}_{t}\right] \\
&+\sup _{u \leq t \leq T} E\left[\int_{t}^{T} \int_{\mathbb{R}}\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2} d s \nu(d z) \mid \mathcal{F}_{t}\right] \\
&+\sup _{u \leq t \leq T} E\left[\int_{t}^{T}\left|\nabla\left(p^{n+1}(s)-p^{n}(s)\right)\right|_{H}^{2} d s \nu(d z) \mid \mathcal{F}_{t}\right] \\
& \leq C_{\varepsilon} \sup _{u \leq t \leq T} E\left[\int_{u}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s \mid \mathcal{F}_{t}\right] \\
&+C_{1} \varepsilon \sup _{u \leq t \leq T} E\left[\int_{u}^{T}\left|p^{n}(s)-p^{n-1}(s)\right|_{H}^{2} d s \mid \mathcal{F}_{t}\right] \\
&+C_{2} \varepsilon \sup _{u \leq t \leq T} E\left[\int_{u}^{T} E\left[\sup _{s \leq v \leq T}\left|p^{n}(v)-p^{n-1}(v)\right|_{H}^{2} \mid \mathcal{F}_{s}\right] d s \mid \mathcal{F}_{t}\right] \\
&+C_{3} \varepsilon \sup _{u \leq t \leq T} E\left[\int_{t}^{T}\left|q^{n+1}(s)-q^{n}(s)\right|_{H}^{2} d s \mid \mathcal{F}_{t}\right] \\
&+C_{4} \varepsilon \sup _{u \leq t \leq T} E\left[\int_{t}^{T} \int_{\mathbb{R}}\left|r^{n+1}(s, z)-r^{n}(s, z)\right|_{H}^{2} d s \nu(d z) \mid \mathcal{F}_{t}\right] \tag{1.34}
\end{align*}
$$

Choosing $\varepsilon>0$ such that $C_{3} \varepsilon<1$ and $C_{4} \varepsilon<1$ it follows from (1.34) that

$$
\begin{align*}
& \sup _{u \leq t \leq T}\left|p^{n+1}(t)-p^{n}(t)\right|_{H}^{2} \leq C_{\varepsilon} \sup _{u \leq t \leq T} E\left[\int_{u}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s \mid \mathcal{F}_{t}\right] \\
& \quad+\left(C_{1}+C_{2}\right) \varepsilon \sup _{u \leq t \leq T} E\left[\int_{u}^{T} E\left[\sup _{s \leq v \leq T}\left|p^{n}(v)-p^{n-1}(v)\right|_{H}^{2} \mid \mathcal{F}_{s}\right] d s \mid \mathcal{F}_{t}\right] \tag{1.35}
\end{align*}
$$

Note that $E\left[\int_{u}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s \mid \mathcal{F}_{t}\right]$ and $E\left[\int_{u}^{T} E\left[\sup _{s \leq v \leq T}\left|p^{n}(v)-p^{n-1}(v)\right|_{H}^{2} \mid \mathcal{F}_{s}\right] d s \mid \mathcal{F}_{t}\right]$ are right-continuous martingales on $[0, T]$ with terminal random variables $\int_{u}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s$ and $\int_{u}^{T} E\left[\sup _{s \leq v \leq T}\left|p^{n}(v)-p^{n-1}(v)\right|_{H}^{2} \mid \mathcal{F}_{s}\right] d s$. Thus for
$\alpha>1$, we have

$$
\begin{align*}
& E\left[\left(\sup _{u \leq t \leq T} E\left[\int_{u}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s \mid \mathcal{F}_{t}\right]\right)^{\alpha}\right] \leq c_{\alpha} E\left[\left(\int_{u}^{T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2} d s\right)^{\alpha}\right] \\
& \quad \leq c_{T, \alpha} E\left[\int_{u}^{T} \sup _{s \leq v \leq T}\left|p^{n+1}(v)-p^{n}(v)\right|_{H}^{2 \alpha} d s\right] \tag{1.36}
\end{align*}
$$

and

$$
\begin{align*}
& E\left[\left(\sup _{u \leq t \leq T} E\left[\int_{u}^{T} E\left[\sup _{s \leq v \leq T}\left|p^{n}(v)-p^{n-1}(v)\right|_{H}^{2} \mid \mathcal{F}_{s}\right] d s \mid \mathcal{F}_{t}\right]\right)^{\alpha}\right] \\
& \quad \leq c_{T, \alpha} E\left[\int_{u}^{T} E\left[\sup _{s \leq v \leq T}\left|p^{n}(v)-p^{n-1}(v)\right|_{H}^{2 \alpha} \mid \mathcal{F}_{s}\right] d s\right] \\
& \quad \leq c_{T, \alpha} E\left[\int_{u}^{T} \sup _{s \leq v \leq T}\left|p^{n}(v)-p^{n-1}(v)\right|_{H}^{2 \alpha} d s\right] \tag{1.37}
\end{align*}
$$

(1.35), (1.36) and (1.37) yield that for $\alpha>1$,

$$
\begin{align*}
& E\left[\sup _{u \leq t \leq T}\left|p^{n+1}(t)-p^{n}(t)\right|_{H}^{2 \alpha}\right] \leq C_{1, \alpha} E\left[\int_{u}^{T} \sup _{s \leq v \leq T}\left|p^{n+1}(v)-p^{n}(v)\right|_{H}^{2 \alpha} d s\right] \\
& \quad+C_{2, \alpha} E\left[\int_{u}^{T} \sup _{s \leq v \leq T}\left|p^{n}(v)-p^{n-1}(v)\right|_{H}^{2 \alpha} d s\right] \tag{1.38}
\end{align*}
$$

Put

$$
g_{n}(u)=E\left[\int_{u}^{T} \sup _{t \leq s \leq T}\left|p^{n}(s)-p^{n-1}(s)\right|_{H}^{2 \alpha}\right]
$$

(1.38) implies that

$$
\begin{equation*}
-\frac{d}{d t}\left(e^{C_{1, \alpha} u} g_{n+1}(u)\right) \leq e^{C_{1, \alpha} u} C_{2, \alpha} g_{n}(u) \tag{1.39}
\end{equation*}
$$

Integrating (1.39) from t to T we get

$$
\begin{equation*}
g_{n+1}(t) \leq c_{2, \alpha} \int_{t}^{T} e^{C_{1, \alpha}(s-t)} g_{n}(s) d s \leq C_{2, \alpha} e^{C_{1, \alpha} T} \int_{t}^{T} g_{n}(s) d s \tag{1.40}
\end{equation*}
$$

Iterating the above inequality we obtain that

$$
E\left[\int_{0}^{T} \sup _{t \leq s \leq T}\left|p^{n+1}(s)-p^{n}(s)\right|_{H}^{2 \alpha} d t\right] \leq \frac{e^{C n T} T^{n}}{n!}
$$

Using above inequality and a similar argument as in step 1 , we can show that $\left(p^{n}(t), q^{n}(t), r^{n}(t, z)\right)$ converges to some limit $(p(t), q(t), r(t, z))$, which is the unique solution of equation (1.11).

[^0]: ${ }^{1}$ Center of Mathematics for Applications (CMA), University of Oslo, Box 1053 Blindern, N-0316 Oslo, Norway. Email: oksendal@math.uio.no
 ${ }^{1}$ The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/20072013) / ERC grant agreement no [228087].
 ${ }^{2}$ Norwegian School of Economics and Business Administration (NHH), Helleveien 30, N-5045 Bergen, Norway.
 ${ }^{3}$ INRIA Paris-Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, Le Chesnay Cedex, 78153, France. Email: agnes.sulem@inria.fr
 ${ }^{4}$ School of Mathematics, University of Manchester, Oxford Road, Manchester M139PL, United Kingdom. Email: tusheng.zhang@manchester.ac.uk

