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Abstract

Using time-reversal, we introduce the stochastic integration for zero-energy additive func-
tionals of symmetric Markov processes, which extends an early work of S. Nakao. Various
properties of such stochastic integrals are discussed and an It6 formula for Dirichlet processes
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1 Introduction and Framework

It is well-known that stochastic integrals and It6’s formula for semimartingales play a central role
in modern probability theory. However there are many important classes of Markov processes

are not semimartingales. For example, symmetric diffusions on R% whose infinitesimal operator
d

are elliptic operators of divergence form £ = Zmzl 8%1, (aij (x)(%g) with meaurable coefficients

are not semimartingales. Even when X is a Brownian motion in R?, for u € W2(R?) := {u €
L*(R% dx) | |Vu| € L*(R%;dx)}, u(X;) is not a semimartingale in general. To study such kind of
processes, Fukushima obtained the following substitute for Ito’s formula (cf [7]): for u € W12(R?),

uw(Xy) = u(Xo) + M + N, (1.1)

where M" is a square-integrable martingale and N" is a continuous additive functional of zero
energy. The above decomposition is called Fukushima’s decomposition and holds for general sym-
metric Markov process X and for u € F, where (£, F) is the Dirichlet space for X. Process u(X)
is a Dirichlet process as it has finite quadratic variations on compact time intervals. Nakao intro-
duced stochastic integral fot f(Xs)dNY in [16] by using a Riesz representation theorem in a suitably
constructed Hilbert space. Nakao’s stochastic integral played an important role in the study of
lower order perturbation of diffusion processes by Lunt, Lyons and Zhang [14] and by Fitzsimmons
and Kuwae [5]. However Nakao’s definition of stochastic integral is too restrictive to the study of
lower order perturbation for symmetric Markov processes with discontinuous sample paths such as
stable processes. The purpose of this paper is to present a new way of defining stochastic integral
for Dirichlet processes associated with a symmetric Markov process. Our new approach uses only
the time-reversal operator for the process X;, and is thereby more direct and provides additional
insight into stochastic integration for Dirichlet processes. This approach enables us to define A(M)
( see (1.5) )for any locally square-integrable MAF M, subject to some mild conditions. Thus it
not only recovers Nakao’s results in [16] but also extends them significantly. The new stochastic
integral allows us to study various transforms for symmetric Markov processes, which is carried out
in a subsequent paper [2]. Below is a more detailed description of this paper.

Let X = {Q, Foo, Fit, X, 0:,(, Py, x € E} be an m-symmetric right Markov process on a Lusin
space E, where m is a o-finite measure with full support on E. Its associated Dirichlet space
(€,F) on L*(E;m) is known to be quasi-regular (see [15]). By [1], (£, F) is quasi-homeomorphic
to a regular Dirichlet space on a locally compact separable metric space. Thus using this quasi-
homeomorphism, without loss of generality, we may and do assume that X is an m-symmetric
Hunt process on a locally compact metric space E such that its associated Dirichlet space (&, F)
is regular on L2(E;m) and that m is a positive Radon measure with full topological support on E.

Without loss of generality, we can take {2 to be the canonical path space D([0,o00[— Ey) of
right-continuous, left-limited (rcll, for short) functions from [0, 0] to Ey. For any w € €, we
set X¢(w) := w(t). Let ((w) := inf{t > 0 | X¢(w) = I} be the life time of X. As usual, Fu
and F; are the minimal completed o-algebras obtained from FO := o{X, | 0 < s < oo} and
F) = o{Xs | 0 < s < t}, respectively, under P,; see the next section for more details. We



sometimes use a filtration denoted by (M;) on (2, M) in order to represent several filtrations, for
example, (F7), (F2) on (2, FL), (F) on (Q, Fs) and others introduced later. We set X;(w) := 0
for t > ((w) and use 6; to denote the shift operator defined by 6;(w)(s) := w(t + s), t,s > 0. Let
wp be the path starting from d. Then wy(s) = 0 for all s € [0, 00[. Note that 0 (,)(w) = wp for all
we N {wp} € F) c Fforallt > 0and P,({wsy}) < Pr(Xo =09) =0 forz € E. For a Borel subset
Bof E, 7 :=1inf{t > 0 | Xy ¢ B} (the exit time of B) is an (F;)-stopping time. If B is closed, then
7p is an (Fp, )-stopping time. Also, ¢ is an (F7)-stopping time because {¢ < t} = {X;, = 0} € F,
t > 0. The transition semigroup of X, {P;,t > 0}, is defined by

Bif(z) i= B [f(Xo)] = Ba[f(Xy) st < (], 20

Each P, may be viewed as an operator on L2(E;m); collectively these operators form a strongly
continuous semigroup of self-adjoint contractions. The Dirichlet form associated with X is the
bilinear form

1
E(u,v) = ltif{)l ;(u — Pou,v)m,

defined on the space

F = {u € L*(E;m) ‘ sup tH(u — P, u)m < oo} .
>0

Here we use the notation (f,g)m = [5 f( m(dz). Tt is well known that for v € F, u has

a quasi-continuous m-version u. As a rule we take u to be represented by its quasi-continuous
version (when such exists), and drop the tilde from the notation. We refer the readers to [7] and
[15] for notions such as quasi-continuous, quasi-everywhere (abbreviated as q.e. or £-q.e.), E-nest,
martingale additive functional, continuous additive functionals, etc.

Let ./\jl and N denote, respectively, the space of MAFs of finite energy and the space of con-
tinuous additive functionals of zero energy. For u € F, the following Fukushima decomposition
holds:

w(Xt) —u(Xo) = M + Nf, for every t € [0, 0], (1.2)

P,-as. for q.e. x € E, where M 6/\3{ and N* € N.

A positive continuous additive functional (PCAF) of X (call it A) determines a measure v = v4
on the Borel subsets of E via the formula

V() =1 lim By [/f ] (1.3)

in which f : E — [0, 00] is Borel measurable. The measure v is necessarily smooth, in the sense
that v charges no exceptional set of X and there is an E-nest {F,,} of closed subsets of E such
that v(F,) < oo for each n € N. (Here an increasing sequence of closed sets {F),} is called an
E-nest if US| FF, is 511/2-dense in F, where Fp, == {u € F | u =0 m-ae. on E\ F,} and a



family {F,} of closed sets is an E-nest if and only if it is a nest, that is, P, (lim, oo 77, = () =1
g.e. x € E.) Conversely, given a smooth measure v, there is a unique PCAF A" such that (1.3)
holds with A = A¥. In the sequel we refer to this bijection between smooth measures and PCAF's
as the Revuz correspondence, and to v as the Revuz measure of A”.

If M is a locally square-integrable martingale additive functional (MAF) of X on random
time interval [0, ([, then the process (M) (the dual predictable projection of [M]) is a PCAF
(Proposition 2.8), and the associated Revuz measure (as in (1.3)) is denoted by ;. More
generally, if M* is the martingale part in the Fukushima decomposition of u € F, then (M"“, M) is
a CAF locally of bounded variation, and we have the associated Revuz measure piysu 37y, which is
locally the difference of smooth (positive) measures. For u € F, the Revuz measure pi(psuy of (M")
will usually be denoted by fi(y)-

Let (N(x,dy), H;) be a Lévy system for X; that is, N(x, dy) is a kernel on (Ey, B(Ey)) and H;
is a PCAF with bounded 1-potential such that for any nonnegative Borel function ¢ on Fy x Ejy
vanishing on the diagonal and any = € Ejy,

t
E, X, . X)) | =E, X, y)N(Xs, dy)dH, ) .
> ot X (/0 [ SN Xy )

To simplify notation, we will write

Ne(z) := : ¢(x, y)N(z, dy)

and
t
(Nopx H), ::/ No(Xs)dHs.
0

Let pug be the Revuz measure of the PCAF H. Then the jumping measure J and the killing
measure k of X are given by

J(dz,dy) = %N(x,dy)uH(dx), and k(dzx) = N(z,{0})pm(dz).

These measures feature in the Beurling-Deny decomposition of £: for f,g € F,

E(f.g) = EO(f.g) + /

ExXE

(f (@) = f(y)(g(z) — 9(y))J (dx, dy) + [Ef(w)g(w)ﬁ(dfv),

where £(©) is the strongly local part of &.
For u € F, the martingale part M}* in (1.2) can be decomposed as

M = M" 4+ M" + M"" for every t € [0, 00|,



P,-as. for q.e. © € E, where M;" is the continuous part of the martingale M*, and

M = fim D (u(Xs) = w(Xe ) ju(x,)—u(Xoo ) >e} Ls<c}
0<s<t

- / < / (uly) - u(Xs»N(Xs,dy)) st},
0 {yeE: lu(y)—u(Xs)|>e}

t
MM = /Ou(XS)N(XS, {0} dHs — u(X¢-) 1>y

are the jump and killing parts of M in /\(;l, respectively. See Theorem A.3.9 of [7]. The limit in
the expression for M™J is in the sense of convergence in the norm of the space of MAF of finite
energy and of convergence in probability under P, for q.e. x € E (see [7]).

Let N* C N denote the class of continuous additive functionals of the form N* + [ g(Xs)ds
for some v € F and g € L?(E;m). Nakao [16] constructed a linear map I' from ,/\(;l into N'* in the
following way. It is shown in [16] that, for every Z € /\3{, there is a unique w € F such that

1
&(w, f) = iﬂ(MerMfw,Z)(E) for every f € F. (1.4)

This unique w is denoted by (Z). The operator I' is defined by
t
r(2), = Ny —/ WZ)(Xg)ds  for Z € M. (1.5)
0

It is shown in Nakao [16] that I'(Z) can be characterized by the following equation

1 1
lglr(r)l EEg'm L(Z) = _§/J<Mg+Mg,n’Z>(E> for every g € Fy,. (1.6)

Here F := F N L (E;m). So in particular we have I'(M") = N* for v € F. Nakao [16] used the
operator I' to define a stochastic integral

t
1 . )
/ F(X)dNY :=T(f %« M™); — 5(vac + M5 M 4 MY, (1.7)
0

where u € F, f € F N L*(E; ) and (f * M%), == [ f(X,-)dMY. If we define
N:={NeN | N=N"+ A" for some u € F and some signed smooth measure p1}

then we see by (1.5) that [, f(X,)dN¥ € Nifue Fand f e Fn LQ(E;,uM). However, the
conditions on the integrand f(X;) and on the integrator N* in Nakao’s definition of stochastic
integral are too restrictive for applications, particularly when we study the perturbation theory of
general symmetric Markov processes (see [2]).

The purpose of this paper is to give a new way of defining I'(M) and Nakao’s stochastic integral
for zero energy AFs N“.



For a finite rcll AF M, it is known (see [3, Lemma 3.2]) that there is a Borel function ¢ on
Ey x Ey with ¢(x,x) = ¢(0,2) = 0 for all z € Ey so that

My — M- = (X, Xt) for every t €]0,(p[, Pm-a.s.

where (, is the predictable part of the lifetime (. We will call ¢ the jump function of M. (In
[3, Lemma 3.2], it is stated that ¢ is only defined on E X Ey, but its construction remains valid
by setting ¢(0,z) = 0 for z € Ey.) We have a similar result for locally square-integrable MAF's
on I(¢) := [0, ¢[U[¢] (see Definition 2.5(iii) for the definition of locally square-integrable MAF on
I(¢)), where (; is the totally inaccessible part of the lifetime (: Let M be a locally square-integrable
MAF on I(¢). Then there exists a jump function ¢ on Ey x Ey for M satisfying the same property
as stated so that My — M;_ = ¢(X,—, X;) for every t €]0, ([, Pm-a.s. (see Corollary 2.9). Assume

t
/0 /E (@21{‘¢‘§1} + |g/5|1{|;5|>1}) (Xs,y)N(Xs,dy)st < o0 for every t < C, (1.8)

P,-a.s. for q.e. € E, where ¢(z,v) := ¢(x,y) + ¢(y,x). Define, Pp,-a.s. on [0, (],

1
A(M); = D) (My+ Myory + (X, Xp-) + Ky)  fort €0, ¢,

where K; is the purely discontinuous local MAF on I({) with
K — Ky =—-9(X;—,Xy), t<(Pgas. forqe zek,

and r; is the time-reversal operator.

A function f is said to be locally in F (denoted as f € Fioc) if there is an increasing sequence
of finely open Borel set {Dy,k > 1} with U2, Dy, = E q.e. and for every k > 1, there is f, € F
such that f = f; m-a.e. on Dg. For two subsets A, B of E, we denote A = B q.e. if AAB :=
(A\B)U(B\ A) is exceptional. By definition, every f € Fo. admits a quasi-continuous m-version,
so we may assume all f € Fj,. are quasi-continuous. Then we have f = f; q.e. on Dy. For f € Fic,
M7 is well defined as a continuous MAF on [0, [ of locally finite energy. Moreover, for f € Fioc
and a locally square-integrable MAF M on I((),

t— (f*M) ::/O f(Xs-)dMs

is a locally square-integrable MAF on I(¢). For a locally square-integrable MAF M on I((), denote
by M€ its continuous part, which is also a locally square-integrable MAF on I({) (see Theorem 8.23
in [9]).

Definition 1.1 (Stochastic integral) Suppose that M is a locally square-integrable MAF on
I(¢) and f € Floc. Let ¢ : Eg X Eg — R be a jump function for M, and assume that ¢ satisfies
condition (1.8). Define P,,-a.s. on [0, ([ by,

/ F(Xo) dA(M),

1 t
= A M) = 50 0+ 5 [ [ ) = F) el XON (X dyha,
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whenever A(f * M) is well defined and the third term in the right hand side of (3.9) is absolutely
convergent.

When M € /\(;l, we can show that A(M) =I'(M) (see Theorem 3.5 below) and we will show that
the above stochastic integral enjoys a generalized Itd’s formula (see Theorem 4.7 below).

2 Additive functionals

In this section, we will prove some facts for additive functionals which will be used later. We
begin with some details on the completion of filtrations. Let P(E) (resp. M(E)) be the family
of all probability (resp. o-finite) measures on E. For each v € M(FE), let FY (resp. F}) be
the P,-completion of F2 (resp. P,-completion of F{ in F%) and set Fu, := Mvep(p) Foo and
Fi :=Nyepm) Fi - We further prepare another filtration G; contained in F¢: For each v € M(E),
let G¥ be the P,-completion of 7 and define G, := (vep(r) 9¢- Clearly, Gy C Fy C F&, and
Gt C Fi C Foo. Let F (vesp. F/™) be the P,,-completion of FO (resp. P,,-completion of F,
in F7) and G the P,,-completion of F. Although m is not necessarily a finite measure on Ej,
we do have Foo C F, Fy C F/™ and Gy C G, because for g € LY(E;m) with 0 < g < 1on E
satisfying gm € P(E), Pgym-negligibility is equivalent to P,-negligibility.

For a fixed filtration (M;) on (2, M), we recall the notions of (M;)-predictability, (My)-
optionality and (M;)-progressive measurability as follows (see [17] for more details): On [0, co[x (2,
the (My)-predictable (resp. (My)-optional) o-field P(M;) (resp. O(M,)) is defined as the smallest
o-field over [0,00[x€ containing all P, (M)-evanescent set for all v € P(Ep) and with respect
to which all M;-adapted lcrl (left-continuous, right-limited) (resp. rcll) processes are measurable.
A process ¢(s,w) on [0,00[x€ is said to be (My)-progressively measurable provided [0,t] x Q >
(s,w) — ¢(s,w) is B([0,t]) ® M-measurable for all ¢ > 0. It is well-known that (M, )-predictability
implies (M;)-optionality, which in turn implies (M;)-progressive measurability.

Definition 2.1 (AF) Fix a v € M(FE). An (F)-adapted (resp. (F})-adapted) process A =
(A¢)¢>0 with values in [—00, 00] is said to be an additive functional (AF in short) (resp. AF admitting
v-null set) if there exist a defining set = € F, and an exceptional (resp. v-null) set N satisfying
the following conditions;

(i) Py(E)=1forallz € E\ N,

(ii) 6;= C E for all ¢ > 0; in particular, wp € = and Py(Z) = 1, because of wy = O¢(,)(w) for all
w e Z,

(iii) for all w € 2, Ag(w) = 0, |[At(w)| < oo for t < ((w) and At s(w) = Ap(w) + As(Gw) for all
t,s >0,

(iv) for all £ > 0, A;(wp) = 0; in particular, under the additivity in (iii), A(w) = A¢(w)(w) for all
t>((w) and w € =.



An AF A (admitting v-null set) is called right-continuous with left limits (rcll AF in brief) if
t — Ai(w) is right continuous on [0, co[ and has a left limits on ]0, 00| for each w € E. An AF A
(admitting v-null set) is said to be finite (resp. continuous additive functional (CAF in brief)) if
|At(w)| < 00, t € [0,00] (resp. t— A(w) is continuous on [0, oo[) for each w € Z. A [0, oo[-valued
CAF is called a positive continuous additive functional (PCAF in short). Two AFs A and B are
called equivalent if there exists a common defining set = € F,, and an exceptional set N such
that Ai(w) = By(w) for all t € [0,00[ and w € E. We call A = (A;)i>0 an AF on [0, (] or a local
AF (admitting v-null set) if A is (F;)-adapted and satisfies (i), (ii), (iv) and the property (iii)’
in which (iii) is modified so that the additivity condition is required only for ¢ + s < ((w). The
notions of rcll AF, CAF and PCAF on [0, ([ are similarly defined. Two AF's on [0, ([, A and B, are
called equivalent if there exists a common defining set = € F, and an exceptional set IV such that
Ai(w) = B(w) for all t € [0,([ and w € =.

Remark 2.2 Any PCAF A on [0, ([ can be extended to a PCAF by setting

Ay(w) = {nmuTC Ay (W), ?ft > ((w) >0,
0, ift>((w)=0

for w € Z and setting A;(w) = 0 for w € E°. The (F;)-adaptedness of this extended A holds
as follows: for a fixed T' > 0, we know {4; < T} N {t < (} € F. From this, we have the F¢-
measurability of {A¢ < T}. Indeed, {A¢ < T} =(Yeq {A STt <} eFras{A <T 1 <(}€E
F¢ forany t > 0. Thus {A; <T}N{t>(} ={Ac <T}n{t >} € F. Therefore, {A; <T} € F
for any T' > 0, which gives the (F;)-adaptedness of A. Noting (o6, =(—tift < and (of, =0 if
t > ¢, we conclude that A; = A;+ A¢ 06, for any ¢ € [0, 00[ on Z. Consequently, A;s = A+ Ag06;
holds for any ¢, s € [0, c0[ on E.

Lemma 2.3 Let A, B be PCAF's such that for q.e. © € E, E [A] = E;[By] for allt > 0 and that
the Revuz measure pa has finite total mass. Then A is equivalent to B.

Proof. Let py (resp. pp) be the Revuz measure associated with A (resp. B). In view of the
Revuz correspondence, (4, h) = (1, h) for any a-excessive function h (see (5.1.11) in [7]). So in
particular, we have p4(E) = up(E) < oo. For every non-negative bounded continuous function f,
by dominated convergence theorem,

(a; f) = lim (pa,aRof) = lim (up, aRaf) = (us; f)-

This implies that 4 = up and so A = B. |

Remark 2.4 The above lemma may fail if the condition p(F) < oo is not satisfied. For example,
take £ = RY, X be Brownian motion on R? and ju4(dz) = |z|~% 'dz. Then p is a smooth measure
and it corresponds to a PCAF A of X. Let B; = A;+t, which is a PCAF of X with Revuz measure
pa(dz) + dx. However

t
E.[A] = /0 </Rd p(s,m,y)|y_d_1dy> ds = oo = E;[B] for every x € R? \ {0}.
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Here p(s,z,y) = (2mt) =42 exp (—|z — y|?/(2t)) is the transition density function of X. O

As usual, if T' is an (F};)-stopping time and M a process, then M7 is the stopped process defined
by M := M;,r. Following [9], we give the notion of local martingales of interval type:

Definition 2.5 (Processes of interval type) Let D be a class of (F;)-adapted processes and
denote by Dy, its localization (resp. Dy-ioc its localization by a nest of finely open Borel sets); that
is, M € Dioc (resp. M € Dy.yoc) if and only if there exists a sequence M"™ € D and an increasing
sequence of stopping times T;, with T;, — oo (resp. a nest {G,,} of finely open Borel sets) such that
M = (M™)Tr (resp. My = M} for t < 7, ) for each n. Here a family {G,} of finely open Borel
sets is called a nest if P, (lim, .o 7g, = () = 1 for q.e. x € E. Clearly, D C Do (resp. D C Di-1oc)
and (Dioe)ioc = Dioc (resp. (Df-toc) f-loc = Dy-loc). We assume D # Dy.. If D is a subclass of AFs,
then so is Dy (for if M € Dy, then there exists M™ and T, as above, and for each w and ¢, s > 0,
there exists n € N with s +¢ < T),(w) and s < T,,(6w), hence My4(w) = My(w) + Ms(6iw)), while
Dy_1oc is contained in the class of AFs on [0, ([.

(i) B C [0,00[x$ is called a set of interval type if there exists a non-negative random variable
S such that for each w € Q the section B, := {t € [0, 00]| (t,w) € B} is [0, S(w)] or [0, S(w)[
and B,, # 0.

(ii) Let B be an (F;)-optional set of interval type. A real-valued stochastic process M on B
(that is, M1p = (My(w)1p(t,w))i>o is a real-valued stochastic process) is said to be in DB
if and only if there exists N € D such that M1p = N1pg, and is said to be locally in D on B
(write M € (Dy,e)?) if and only if S := Dpe is the debut of B¢ and there exists an increasing
sequence of (F;)-stopping times {S,,} with lim, ., S, = S and a sequence of M™ € D such
that B, C U224[0,5,(w)] Prras. w € Q and (M1p)5» = (M™1p)% for all n € N and
t >0, Ppras. w € Q for qe. © € E. Clearly, DP C (Dj.)?. Moreover, DP? ¢ DBt and
(Dioe) P2 C (Dyye )Pt for any pair of (F;)-optional sets By, By of interval type with By C Ba.

(iii) Let B be an (F;)-optional set of interval type. We set
M= {M | M is a finite rcll AF, E,[|M;|] < oo, Ez[M;] = 0 for £-q.e. z € E and all t > 0},

and speak of an element of (M')P (resp. (ML .)P) as being an MAF on B (resp. a local MAF
on B). Similarly,

M :={M | M is a finite rcll AF, E,[M}] < oo, E[M;] = 0 for &-q.e. x € F and all t > 0},

and an element of M® (resp. (Miec)?) is a square-integrable MAF on B (resp. locally square-
integrable MAF on B). We further set

ME:={M e M| M is a CAF},
ME:={M € M| M is a purely discontinuous AF},



and an element of (M )P (vesp. (M )P) is called a locally square-integrable contin-
uous MAF on B (resp. locally square-integrable purely discontinuous MAF on B). For
M € (M), M admits a unique decomposition M = M€ + M? with M¢ ¢ (M )P

loc

and M? € (M{ )P (see Theorem 8.23 in [9]). In these definitions, we omit the usage “on

loc

B” when B = [0, co[x (.

For [0, oo]-valued functions S, T on Q with S < T', we employ the usual notation for stochastic
intervals; for example,

[S, 7] :={(t,w) € [0,00[xQ | S(w) <t <T(w)},

the other species of stochastic intervals being defined analogously. We write [S] := [S, S] for the
graph of S. Note that these are all subsets of [0, co[x €. If S and T are (M,)-stopping times, then
[S, 7], [S,T[, - -, and [S] are (M;)-optional (see Theorem 3.16 in [9]). For a [0, oo]-valued function
RonQand ACQ, Ry :=R-14+ (4+00)- 14 is called the restriction of R on A. Clearly, R < Ry4.

We will use T, and T; to denote, respectively, the predictable and totally inaccessible parts of
the given (F3)-stopping time 7' of X, that is, T, := Ty, and T; := T},, where A, := {T < o0, X7_ =
Xrh, Ai = A{T < 00, X7_ € E,Xpr_ # Xr} (see Theorem 44.5 in M. Sharpe [17]). It is shown
in [17] that T), and T; are (F;)-stopping times if 7" is an (F;)-stopping time. In the case that T
is a stopping time with respect to another filtration, we have a similar result: Suppose that X; is
M-measurable for any ¢ > 0. By Chapter IV 1.7 (iv) in [15], X7 is Mr-measurable. Hence, we
can confirm {X7r_ € E}, {X7r_ = Xr}, {T < oo} € Mqp. Consequently, {T' = T,,} and {T = T;}
belong to Mp. Therefore, T, and T; are (M;)-stopping times by Theorem 3.9(1) in [9]. If T is a
prefect terminal time (that is, t + T'0 6y = T on {t < T'}), then so are T, and T;. In particular, for
the lifetime ¢, both ¢, and (; are (F))-stopping times and perfect terminal times.

Remark 2.6 When B = [0, R[ for a given (F;)-stopping time R, there is another notion of
“locally in D on B”, obtained by replacing (M1p)% = (M"1p)%" with M 1p = (M™)%1p
in our definition; this is a weaker notion than ours, because t — 1p(t,w) is decreasing and
1p(t,w)lp(s,w) = 1p(t,w) for s <t and w € Q. This weaker notion is described in [17].

Let T be an (F)-stopping time. We set I(T') := [0, T[U[Ti] = {(t,w) | t < T'(w) or t = T;(w)}.
Then we easily see that I(7T') is an (F;)-optional set of interval type. Indeed, [0, 7] and [T;] are (F)-
optional, and I(T'), = [0,T(w)] if w € Ay, otherwise, I(T), = [0, T(w)[. We see Dy(pyc(w) = T(w).
The inequality Dy(p)e(w) > T(w) follows immediately from the definitions. If T'(w) < Dy(r)e(w),
thereis at €]T(w), D) (w)[, which implies T'(w) < t = T;(w) < Dy(r)e(w). This is a contradiction,
because T'(w) < T;(w) yields T;(w) = oo. Clearly [0,T[C I(T) C [0,T]. By a slight abuse of
notation, we shall often write “t € I(T)”to mean “(t,w) € I(T)”, where w is the sample path.
Then we see I(T) = [0,T(w)] if T;(w) = o0, and I(T) = [0, T(w)] if T;(w) < oo.
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Definition 2.7 (MAF locally of finite energy) Recall that _/\(;l is the totality of MAF's of finite
energy, that is,

Vi T 2
Mi= {M e M ) (M) = lim 5B, [M7) < oo} .

We say that an AF M on [0, ([ is locally in /\31 (and write M € /\il f-loc)) if there exists a sequence

{M"} in M and a nest {G,,} of finely open Borel sets such that M; = M* for t < 7¢,, for eachn € N.
In case X is a diffusion process with no killing inside F, we can define the quadratic variation (M)

for M € M f-10c as follows: M . o = M., for n < m because of the continuity of M". Owing
to the uniqueness of Doob-Meyer decomposition, we see (M")irre, = (M™)iprg, - The quadratic

variation (M) of M E/\ilf_loc as a PCAF is well-defined by setting (M), = (M™), t < 7,, n € N,
with Remark 2.2 and by choosing an appropriate defining set and exceptional set of (M), where
M" GJ\jl and {Gy,} is a nest of finely open Borel sets such that M; = M}, t < 7¢,,.

Proposition 2.8 (M) Q) C (M) 0<l C,/\(;lf-loc. More precisely, for each M € (M),

there exists a nest {Gy} of finely open Borel sets such that 1g, * M €M for each k € N, and the
quadratic variation process (M) can be constructed as a PCAF.

Proof. It suffices to show (M, )[0<I C/\jlf_loc. Take M € (Mioo)l9¢l. Then there exists an
increasing sequence {T},} of stopping times with lim,, .. T, = (, (Pg-a.s. w € Q for q.e. z € E)
and M™ € M. such that Mt/\Tnl[O,g[<t NT,) = MtnATnl[O,C[(t AT,) holds for all t > 0 P,-a.s. for
qge. = € FE. We may assume that it holds for all w € Q by changing whole space. Note that
[0, C(W)[C UpZi[0, Tn(w)] for all w € Q. Hence, My 1gcf(t A Ty) = Mp lioc(t A Tp) for
n < m. As noted in Definition 2.5, we see that M is an AF on [0,([. Owing to the uniqueness of
Doob-Meyer decomposition for semimartingale on I(¢) (see [9]), we have (M™)in1, Ljoc[(t A Tn) =
(M™)inr, Lot A'Ty) for n < m. Thus, we have (M™); = (M"); for t < T,, and n < m. The
quadratic variation (M) of M is therefore well defined by setting (M), := (M"); for t < T,,. As
such (M) is a PCAF by setting (M); := (M) := limg (M), for any t > ¢ because of Remark 2.2.
Let pu(psy be the Revuz measure corresponding to (M) and {Fj} an E-nest of closed sets such that
pry(Fy) < oo for each k, and let Gy be the fine interior of Fj. Then {G}} is a nest. In view
of the proofs of Theorem 5.6.1 and Lemma 5.6.2 in [7], the stochastic integral 1g, * M is of finite
energy with e(lg, * M) = %M(M}(Gk) and its quadratic variation (1¢, * M) is a PCAF. Let
(resp. vy) be the Revuz measure corresponding to (1g, * M) (resp. (1, * M, M)). By Lemma 5.6.2

in [7], for M; e M and f; € L2(E;M<Mi>) (i = 1,2), we have f1fofiin ) = H(f«My, fo M), hence
[y (fif2)(Xs)d(My, Ma)s = (fi% My, fox Ma). From this, we see (uy, f2) = (v, f2) = (Lay s £2)
for any f € L*(E; tiary), consequently we have py = vy = 1, fiiary by peary(Gy) < oo. This yields

(g, * M)y = (g, * M, M)y = [} 1, (X)d(M), for t < {, hence (M — 1g, * M); = 0 for t < 7¢,.
Therefore, My = (1, * M), for t < 7, and 1g, * M E/\jl. O
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Corollary 2.9 Let M be a locally square-integrable MAF on I1(¢), that is, M € (Moe)'©). Then
there exists a Borel function ¢ on Ey x Ey with p(z,x) = ¢(x,0) =0 for all x € Ey so that

My — My = o(Xy—, Xy) for every t €]0, ([, Pry-a.s.

Proof. By the proof of Proposition 2.8, there exists an E-nest {F}} such that for each &k € N
Mk = 1p, * M e/\it and M; = Mtk, t < 7p,. Let ¢ be the jump function corresponding to
MPF. Then we have @p(X;—, X;) = @o(Xi—, Xy), t < TF, Pm-a.s. for kK < £. From this, we see
pr = @p J-a.s. on Fy x Fi. We construct a Borel function ¢ on E x FE in the following manner.
We set Fy := 0, o(x,y) := ox(z,y) for (z,y) € Fi X F, \ (Fp—1 X Fyx_1), k € N, p(x,y) := 0 if
(z,y) € ExXE\ (Upey Fi X Up— Fi). Then ¢ satisfies p(x,z) = 0 for z € E. We also have ¢ = ¢y,
J-a.s. on Fy, x Fy. Consequently, o(X;—, X;) = ¢p(Xi—, Xy), t < 75, Pp-a.s. This means that
My — M- = (X, Xy), t < 75, Ppp-as. Therefore My — My = o(Xy—, Xt), t < ( Ppy-as.

To extend this as stated, we shall show that M;_ exists in R at ¢t = (; P,,-a.s. For each a,b € R
with a < b, we set Tf’b = inf{t € [O,C[ | My < a}, Tf’b = (if {t € [0,¢[ | My < a} = 0, and set
ng = inf{t € [r™°,¢[| My > b}, 750 := ¢ if {t € [7*°,¢[ | M; > b} = 0. Inductively, we can define
T§k+1 = inf{t € [mx, ¢ [ | My < a} 7‘2kJrl = Cif {t € [mox,C[ | My < a} =0, and 7';,’;;2 = inf{t €
[Toks1,C[ | My > b}, T2k+2 = Cif {t € [rarg1,C[ | My > b} = 0. Then {7 | n € N} is an increasing
sequence of (F;)-stopping times. Let 3% := sup{k | T;,;b < ¢} Then limy - My < a <b< limy e My
implies % = 0o, conversely %? = oo implies limy o My <a<b< limyy¢ My. Suppose that M;_(w)
does not exist at t = (;(w)(< o0). Then there exist a,b € Q with a < b such that 3%°(w) = oo,
hence 72" (w) < ¢(w) for all n € N. We then see that 7%°(w) := limy e 70" (w) = (;(w) for such w,
because of the existence of the left hand limit of M in R up to ¢, where we use the facts M _a» > b,

Ton,
M ap < aunder 77 < (. This yields

2n+1
{w € Q| My_(w) does not exist in [—o0,00] at t = (;(w)}
C U {we Q| 1%(w) < ¢(w) for each n and lim 72%(w) = ¢(w)}.

n—00
a,beQ,a<b

Since (; is not (F{")-predictable, we obtain that M;_ exists in [—o00, 0] at t = (; Pyy,-a.s. Next we
eliminate the case M¢,_ = +oo, simultaneously. We set O'(:)t := 0 and for each k € N, 0’2: = inf{t €
[0 | Cl| My > kY if {t € [0 |, ¢[| £My > k} # 0, and o == C if {t € [0 |, ¢[| £M; > k} =0,
and 3% := sup{k | U,f < (}. Then {0 | n € N} is an increasing sequence of (F:)-stopping times.
Suppose M;_(w) = oo for t = ¢;(w). Then f*(w) = oo, hence o (w) < ¢i(w) for each k € N. We
then see 0% (w) := lim,, o0 05 (w) = ¢;(w) for such w, because of the existence of the left hand limit
of M in R up to {, where we use the fact +M, + >n under o < ¢. This yields

{we Q| ltiTr?Mt(w) = +o0 if (j(w) < oo}

C{we| af(w) < (i(w) for each n and lim o, £w) = Glw )}

n—oo

By the same reason as noted above, we obtain that M:_ exists in R if ¢; < oo Pp,-a.s.
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We can extend ¢ on Ey x Ey so that p(x,z) = p(x,0) =0, x € Ey and My —M;— = (X4, Xy),
t < (p Pyy-a.s. as in Lemma 3.2 in [3]. This completes the proof. O

We recall the definition of the shift operator 6 and the time-reversal operator r; on the path
space €. For each s > 0, the shift operator 5 is defined by sw(t) := w(t + s) for t € [0, 00[. Given
a path w € {t < (}, the operator ry is defined by

(2.1)

w((t—s)—), if0<s<t,
w(0), it s > ¢.

Here for 7 > 0, w(r—) := limgy, w(s) is the left limit at r, and we use the convention that w(0)_ :=
w(0). For a path w € {t > (}, we set r(w) := wy. We note that

liﬂgl ri(w)(s) = w(t—) = r(w)(0) and li%lrt(w)(s) =w(0) = re(w)(t). (2.2)
Definition 2.10 For any ¢ > 0, we say two sample paths w and w’ are t-equivalent if w(s) = w/'(s)
for all s € [0, ¢]. We say two sample paths w and ' are pre-t-equivalent if w(s) = w'(s) for all

s €0, t[.

Lemma 2.11 For each t > 0, ry : Q@ — Q is FP/FY -measurable and G™/G™-measurable. For
t,s>0,0s:Q— Qs Gt /G -measurable.

Proof. Let F; € B(Ey) and s; € [0,00[, 1 = 1,2,--- ;n with 51 < s9 < -+» < s <t < Spq1 <

- < sy, for some k € {1,2,---,n}. Then r; '(N}, X HF)) = Niey (X, o) 7H(F) is equal to
N ({Xims, € Bt < QUL € Bt > NNy ({Xo € Fit < CYU{d € Fit > () € F
Next we show the G/ /G/"-measurability of r, and the G} ,/G/"-measurability of 65 simultaneously.
Take C € G". Then there exists D, N € F? such that C A D C N and P,,(N) = 0. Since
P,.({ws}) = 0, by deleting {wy} = {w € Q | {(w) = 0} € FJ C F?, we may assume wy ¢ CUDUN.
Then, r;*(C) a 77 1(D) C rt_l(N), r (D), r;Y(N) € F2 and P, (r _I(N)) =P, (N)N{t <

(H + In(ws)Pm(t > () =P (NN {t < (}) =0. We also see 0;1(C) A 071(D) C 074(N),
0;1(D), 0.1 (N) € Fy, and P (071(N)) = En[Px, (N)] = En[Px,(N) : 5 < (] = En[Px,(N) :
s < (] <EnPx,(N)]=Ppn,(N)=0. O

For an rcll AF A; adapted to (Fp)i>0, At(w) = Ax(w') if w and w’ are t-equivalent and A;— (w) =
A (') if w and ' are pre-t-equivalent. These conclusions may fail to hold if the measurability
conditions are not satisfied. We need the following notion:

Definition 2.12 (PrAF) Fix v € M(E). A process A = (A;)¢>0 with values in R := [—00, 0] is
said to be a progressively additive functional (PrAF in short) (resp. PrAF admitting v-null set) if A
is (Gi+)-adapted (resp. (G¢, )-adapted) and there exist defining sets 2 € Foo, Z¢ € Gy (resp. E € FY,
=t € G/) for each t > 0 and an exceptional (resp. a v-null) set N satisfying the following condition;

(i) Px(E) =1forallz € E\ N, for every t > s> 0,2 C Z; C E, and Z = (), Z,
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(ii) ;= C = for all t > 0 and 0;_4(Z;) C =5 for all s €]0,¢[; in particular, wg € = C =Z; and
Ps(E) = Py(E) = 1 under (i),

(iii) for all w € Z;, A.(w) is defined on [0,¢[ and its left limit As_(w) exists for all s €]0,¢] such
that Ag(w) = 0, on {t < (¢} |As(w)| < 00 and |As—(w)| < oo for s €]0,t], and Apy4(w) =
Ap(w) + Ay(6pw) for all p,qg > 0 with p+¢ < t,

(iv) for all ¢t > 0, A¢(wg) =0,

(v) for any ¢ > 0 and pre-t-equivalent paths w,w’ € Q, w € Z; implies ' € =, A5(w) = As(w')
for any s € [0,¢[ and A;_(w) = A;_ (&) for any s €]0,t].

Furthermore, A is called an rcll PrAF (or an rcll PrAF admitting v-null set) if for each ¢ > 0
and w € Z¢, s — Ag(w) is right continuous on [0,¢[ and has left hand limits on ]0,¢] and a PrAF
(or a PrAF admitting v-null set) is said to be finite (resp. continuous) if |As(w)| < oo, Vs € [0,¢]
(resp. continuous on [0, t[) for every w € Z;.

We say that an AF A on [0, ([ (resp. AF A on [0, ([ admitting v-null set) is called a PrAF on
[0,¢[ (vesp. PrAF on [0,C[ admitting v-null set)) if A is (Gi4)-adapted (resp. (G¢, )-adapted), and
there exist = € Fuo, Z¢ € Gt (resp. 2 € FY, Z¢ € GY) for each t > 0 and an exceptional (resp. v-null)
set IV such that (i’), (ii), (iii’), (iv) and (v’) hold: (i’): Py(E) =1forallz € E\ N, E C E; for all
t>0,2 =)o and Z;N{t <} CEsN{s < (} for s < t. (iii’): For each w € Z;N{t < (}, the
same conclusion as in (iii) holds. (v’): For any ¢ > 0 and pre-t-equivalent paths w,w’ € QN {t < (},
the same conclusion as in (v) holds.

The notion of rcll PrAF on [0,(] (or rcll PrAF admitting v-null set) is similarly defined.

Remark 2.13 (i) Our notion of PrAF is different from what is found in Walsh [18].
(ii) Every PrAF (resp. PrAF on [0,(]) is an AF (resp. AF on [0, (]).

(iii) The MAF M" and the CAF N* of 0-energy appearing in Fukushima’s decomposition (1.2)
can be regarded as finite rcll PrAF's in view of the proof of Theorem 5.2.2 in [7]. In this case,
the defining sets for M* as PrAF are given by

= = {weQ| M (w) converges uniformly on |0, ] for V¢t > 0} € Fo
= = {weQ|Mi(w) converges uniformly on ]0,¢]} € G;

for every t > 0, where M := up(X;) — un(Xo) — fg(un(Xs) — fn(X5))ds with f, == n(u —
nRy11u) and uy, := Ry f,, = nRy,11u. Hence a MAF of stochastic integral type fot g(Xs—)dMY
(g9,u € F with g € L*(E; fi(uy)) can be regarded as a finite rcll PrAF. Consequently, any MAF
of finite energy also can be regarded as PrAF, in view of the assertion of Lemma 5.6.3 in [7]
and Lemma 2.14 below.

(iv) Every M E/\ilf_]oc can be regarded as a PrAF on [0, ([, hence, M € ML s so.

loc
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Lemma 2.14 Let (A™) be a sequence of finite rcll PrAFs with defining sets 2" € Foo, ZF € Gy.
For each t > 0, set

=, — =n

neN

A" converges uniformly on [O,t[} €qG

and

E::{we ="

neN

A" converges uniformly on [0,t[ for every t € [0, oo[} € Foo-

Suppose that there exists an exceptional set N such that P,(Z) = 1 for x € E\ N. If we define
As = lim A} on Q, then A s a finite rcll PrAF with its defining sets 2, Zy.

N —00

Proof. We only show that for any ¢ > 0 and pre-t-equivalent paths w,w’, w € Z; implies W’ € Z;.
Suppose that w € Z; and w is pre-t-equivalent to w’. It easy to see that w' € MNpen EF- We then
see the uniform convergence of A7 (w') = A?_(w) for s €]0,t]. Therefore v’ € Z;, As(w') = A5(w)
for s € [0,¢[ and As—(w') = As_(w) for s €]0,¢]. 0

Recall that {6;,¢ > 0} denotes the time shift operators on the path space for the process X.

Lemma 2.15 Fort,s > 0,
(1) Opreysw is s-equivalent to rsw if t +s < ((w) or s > ((w);

(i) rfsw is pre-t-equivalent to ryisw. Moreover, if w is continuous at s, then r0,w is t-equivalent

1o Ti4sw.
Proof. (i): We may assume ¢t + s < ((w). For v € [0, s],
Oirirsw(v) = w((s —v)—) = rsw(v)

and so 6r¢ysw is s-equivalent to rsw.
(ii): Note that t + s < ((w) is equivalent to ¢ < ((fsw). It follows from the definition, if

t+s < ((w),

w((t+s—v)—), if0<v<t,

w(s) ifo=t 23)

(rifsw)(v) = {

while 74 sw(v) = w((t + s —v)—) for 0 < v < t. Hence typically 6w is only pre-t-equivalent to
Ti4sW. Od

Fix t > 0. Set H. := G, for s € [0,t]; and H. := G, for s €]t,00[. Then (H!)s>0 is a filtration
over (Q, Fs), and Gs C H? for all s > 0.

Lemma 2.16 The following assertions hold for any fized t > 0:
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(i) Let ¢ be a Borel function on E x E and set Xo— := Xo. Then [0,00[xQ > (s,w) —
Ljo.c,[(8,w)Ir, (W) (Xs—(w), Xs(w)) is (H)-optional for any Ty € Gy.

(ii) Let A be an rcll PrAF with its defining sets 2 € Foo, Z¢ € Gy If we set Ag—(w) := 0
and Al(w) = 1z,(w)(1jo,q(s)As(w) + 1j,00/(5)At(w)) for w € Q, then [0,00[xQ > (s,w) —
Ljoc, (8, w)(AL(w) — AL_(w)) is (HL)-optional.

Proof. (i): Note that 1jo [ is (H%)-predictable. The assertion is clear if p = f ® g for continuous
functions f,g on E. The monotone class theorem for functions tells us the desired result.

(ii): Since A!is (H!)-adapted and rcll on Q and A% is (H!)-adapted and lerl on €, (s,w) — As(w)
is (H%)-optional and (s,w) — AL_(w) is (HL)-predictable. Consequently, (s,w) — AL(w) — AL_(w)
is (H!)-optional.

a

By Lemma 3.2 of [3], for a finite rcll AF A = (A;)>0, there is a Borel function ¢ : Ey x Eg — R
with ¢(z,z) = ¢(0,x) =0 for all x € Ey such that

A — A = o(Xy—, Xy), for every t €]0, (p[, P-a.s. (2.4)

Moreover, if ¢ is another such function, then J*(p # @) = 0. Here J* denotes the measure
%N(:L’, dy)pp(dx) on Eg x Eg. We shall refer to such a function ¢ as a jump function for A. Recall
that if M € MIIO(CO, then there exists a jump function ¢ so that My — My = p(X;—, Xy), t €]0,(pl,
P,,-a.s. Such ¢ is unique in the above sense.

Lemma 2.17 Let A be a finite rcll PrAF with defining sets {2, Z;, t > 0}. Then there exists a
real valued Borel function ¢ on Ey X Eg with o(x,z) = ¢(0,x) = 0 for x € Ey such that A with
defining sets

[
|

= {w e B AW) - A (@) = p(Xy- (), Xo(w)) for s €]0,G(w)]
5 = {weB | Adw) - A @) = p(Xo (@), X)) for s €]0,1[10, G ()] },

is again an rcll PrAF admitting m-null set. For M € M (E), we also have the same assertion.

Proof. Let ¢ : F5 x Eg — R be a Borel functlon vanishing on the diagonal and define = =, Et in
terms of ¢ as above Clearly, = = ﬂt>0 2, 2 C Zg for s < t. Moreover, we see that Qt_ C E for
t >0, 9,5_5(%) C Z, for s < t. For two pre-t-equivalent paths w,w’, we see that w € Z; implies
W' € =

By the previous lemma,

L= {(s,w) | Lo, [(s: @)1z, (W) (Af(w) — AL (w) — o(Xs—(w), Xs(w))) # 0}

is (H%)-progressively measurable for any fixed ¢ > 0 and the debut of T is

Dr(w) = inf{s > 0] 1jo¢, (s, w)1z, (w) (AL(w) — AL (w) — o(Xs—(w), Xs(w))) # 0},
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which is an (H!)-stopping time by (A5.1) in [17]. In particular,

{we Q| 1[[07<p[[(s,w)15t(w)(As(w) — A (w) — p(Xs— (w), Xs(w))) =0 for s € [0,t[}
:{w€Q|t<Dr(w)}€H§=gt.

Hence,
{we B | As(w) = As— () — p(Xs—(w), Xs(w)) = 0 for s €]0,¢[N]0, (p(w)[}
= {weE|Aw) — As- () — p(Xs—(w), Xs(w)) = 0 for s € [0,¢[N[0, ((w)[}
= {we | 1pgls, w><A5<w> Ao (@) = p(Xom (@), Xs())) = 0 for s € [0, 1]}
€ G.
Therefore, Et € G and =€ Fso- The proof for the case M € MIIO(E) is similar. We omit it. O

The following theorem is a key to our extension of Nakao’s operator I'. Its rigorous proof is
pretty involved due to the measurability issues but the idea behind it is fairly transparent. We will
use the convention Xo_(w) := Xp(w).

Theorem 2.18 (Dual PrAF) Let A be a finite rcll PrAF on [0, ([ with defining sets E, Z; ad-
mitting m-null set. Suppose that there is a Borel function ¢ on Eg x Eg vanishing on the diagonal
set with p(Xs—, Xs) = As — As—, Vs €]0,¢[N]0, ([ on =;. Set

Rw) = Aulry()) + 9(Xiw), Xo_ (@) fort € [0, 0]
Then A is an rcll PrAF on [0, ¢ admitting m-null set such that
Et = A or+ (X, Xio) and /Alt — Et_ = (X, Xio)
for all t €]0,¢[, Pp,-a.s.

Proof. Let = € Foo, Z¢ € Gi", t > 0 be the defining sets of A admitting m-null set. We easily see
r H(Zy) N {t<¢cr;i(Z)Nn{s< for s €]0, ¢ by use of Lemma 2. 15( ) and 6;_ 5t C Zs.

Set =, := r;'(5;) for t > 0 and = := (},.qZ;. Then, we see = = (o e =t by use of
N (E) N {t > ¢} = {t > ¢} and the monotonicity of r;*(Z;) N {t < ¢}. Indeed, we have
EC MNi>0.tc0 2 C (és N{s < C}) U{t > ¢} for any 0 < s < t with ¢t € Q. Taking the intersection
over t €]s, 00[NQ, we have ZcC ﬂt>0,t€@ =, C E, for all s > 0, which yields the assertion.

We prove Hté C = for each t > 0, in particular, Hté C Qsi, equivalently 9;1/5\ C Qt_lé if s € [0, t].
Suppose w € =. Then Tiysw € Epys. If t+ s < ((w), then ryqw € Zg, otherwise 4w = wy € Es.
Hence we have rs6w € Eg by Lemma 2.15(ii). Therefore rs6w € =g for all s > 0, which implies
Oiw € =,

Next we prove Ht_s(ét) c E, for s €]0,t[. Take w € Z,. Then 7.0, sw is pre-s-equivalent to
rw € Z¢ C 2 by Lemma 2.15(ii), hence rs6;_sw € Zg. Therefore 6;_ w € és for all s €]0,¢[.
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From Z; € G, C G, we get Z; € G™ by Lemma 2.11. Since (5,)¢ = r; ' ((2,)) = r; 1((E)¢) N
{t < ¢} holds by noting wy € ¢, we have P, ((Z4)°) = P ((E)°) = 0.

By (2.2), v — 75(w)(v) is continuous at v = s. Hence, on Z,N{t < ¢}, we have p(X,_, X,)ors =
o(Xs, Xs—) orsg =0, in particular, Agorys = As_ org for s €0, t[.

The remainder of the proof is devoted to showing that A is an rell PrAF on [0, ¢[ with defining
sets =, 2 such that on Z,N{t < ¢}, Ay = Ay_ors+(Xs, Xs_), s €]0,t[. First note that for w € Z,
|44 (w)| < oo for any t €]0,((w)], because by taking T €]t, ()], rrw € Zp implies rw € Zy, hence
| A (rw)| < oo. Moreover, for w € Zy N {t < ¢}, we see row € B N {s < ¢} and |A,_ (row)| < oo
for all 0 < s < t.

For two pre- t-equivalent paths w,w’ € QN {t < ¢} with ¢t > 0, we show w €= =; implies w’ €= =t
and A,(w) = A (W) for s € [0,t]. Recall w € E,N{t < ¢} C E4N{s < ¢} for s € [0,] and note that
w and W' are s-equivalent for any s € [0,¢[. On the other hand, s < {(w) is equivalent to s < {(w’)
for any s € [0,t[. Then we see rsw € Zg is s-equivalent to rqw’ for any s € [0,¢], which implies
rsw’ € Zg for any |0,¢] and As_(rsw) = As_(rsw') for any s € [0,t].

Fix t > 0. On 5, N {t < ¢} and for any p,q > 0 with p + ¢ < ¢, by Lemma 2.15,

-~

Aprq = Aprg)- OTptg + O(Xptq, X(p+q)f)
(Ap + Ag— 0 6p) o rpg + 0(Xptg, X(p+q)f)
Aporprg+ Ag-00p0rpiq+ (Xprg: X(prg)-)
= (Ap- o Tprq + 9(Xp—, Xp) 0 1pig) + Ag— 0 1q + 0(Xptg, X(piq)-)
(Ap—orpoby + p(Xg, Xg-)) + (A\q — o(Xq, Xq—)) + SO(Xp—&-q?X(p-Fq)—)
= (A= (X Xp)) 00y + Ay + 9(Xpra Xprg)-)
A, 00, + A,.

On = N {t < (}, again by Lemma 2.15 and (2.2), for any s > 0 and u €]0, s],

A\s — A\s,u = A\u 00s_y
= (Au—ory+ o(Xy, Xy)) 0 b5y
= Au om0yt (X Xs )
Ay—ors+ o(Xg, X,).

So

~

B%(As - A\s—u) = QO(X& Xs—)-

This shows that A has left limit at s €]0,t[ and A, — A, = o(Xs, Xso).
To show the right continuity of A on =; N {t < {} at any s €]0, ¢[, note for any u €]0, t — s[, by
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Lemma 2.15 and (2.2),

o~ ~

Ay — Ay = A,o00,
= (Au—ory+@(Xy, Xy )) 00
= Ay o7y 00s + o(Xopu, X(su)-)
= Ay orsiu+ P( Xspu, X(su)—)-

Since (Ay — Ay—) 0751y = ©(Xy—, Xyy) 0 sy = p(Xs, Xs—), while by Lemma 2.15 and (2.2),

(Ay — Ap_) orgpy =lim(Ay — Ay—y) 0Ty = lim Ay 0 0y_y 0 Tspy = lim Ay 0 rypy + (X, Xs-).
ul0 ul0 ul0

we conclude that

lgﬁ)l Ay_orgyy, =0.

On the other hand, for any s > 0

13?01 P(Xstu X(spu)—) = lﬁg (X (v—u)—r Xv—u) © Tstv = lgfrol(Av—u — A@—u)-) © Tstv
= (Ay- —Ay_)ors, =0.

Hence we have for s > 0

~

lim(Agyy — Ag) = 0.
%[0
In other words, A is right continuous at any s €]0,¢[ on Z; N {t < ¢}. We also see

li Agpu —A) =0.
u<s,5%,ul0( st s)

Thus we can define the limit Eg(w) := limg ) A, (w) for w € 2N {t < ¢} for any t > 0. We also see

~

Ap(w) = limgo A,_(w) for w € E, N {t < ¢} for any ¢ > 0, because limg g p(Xs, Xs—) = 0. Next we
prove Ag(w) =0 for w € Z, N {t < ¢} for any t > 0. Take w € Z; N {t < (} for some fixed ¢ > 0. It
suffices to show that lim, g As—y(Ouw) = As(w) for s € [0,t[. Owing to Lemma 2.15(ii), we have

A u(uw) = Apu) (re—ubuw) + o(Xs(w), Xs— (W)
As—u)-(rsw) + o(Xs(w), X (w))

= Apu(rw) — (X (®), Xue (@) + P(Xo(@), Xo (@)

= Agu(raw) = Au(w) + Ay (@) + o(Xo(w), X (w))

— As_(rsw) + p(Xs(w), Xs—(w)) asu]0

= Aw).

Finally, we show the G\ -measurability of ES. The argument is quite similar to one used

by Walsh [18], but we provide the details for the convenience of the reader. First there exists

an (]—'&)-adapted process B such that A and B are P,,-indistinguishable. Indeed, since A is
also (F;")-adapted and F;* = F/? is the P,,-completion of F7, in F2, for each rational ¢ > 0,
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we can take .77?+-measurable B; such that B; is a P,,-modification of A;. For general t > 0,
By = lim,cq 4+ Bs satisfies the condition. For each so > 0, we set Dy, := {w € /E\SO | Bu(w) #
Ay(w) for Fu € [0, s0[}. Then Dy, € G and Py, (Ds,) = 0, because Dy, = {w € Zyy | Bu(w) #
Ay(w) for Fu € [0,50[NQ}. Hence Cy, 1= r5,'(Ds,) € G and Py (Csy N {50 < ¢}) = 0. Fix ¢ > s.
By Lemma 2.11, we have that for sg €]0, s], 9;_180 (Cso N{s0 < (}) is a GI*-measurable P,,-null

set. By Lemma 2.15(ii), rs,0s_s,w is pre-sp-equivalent to rsw, so we see that 9;130(030 N{so <

() =Aw GAGS__ISOESO | s < C(w), Bu(rsw) # Ay(rsw) for Fu € [0, so[}. Since Z, C 9;_150(330), we
have that =5 N {s < ¢} N {Bu(rsw) # Ayu(rsw) for Fu € [0,s0[} is a G-measurable P,,-null set
for any s € [0,¢[. Then Z, N {s < ¢} N {Bu(rew) # Au(rsw) for 3u € [0,s[}, hence, E, N {s <
(N {As— org # lim,cq 5 Bu o s} is a G'-measurable Py,-null set for any s € [0,¢[. Thus,
ét N{t <(tnN{Asors = As_ors # lim,cq 15 Bu © rs} is a GY-measurable P,-null set for any
s € [0,¢[. Hence, {u < (} N{Asors # lim,cq 5 Bu o s} is so for s < u < ¢, consequently,
{s < n{Asors #lim,cq 15 Buors} is a Gt -measurable P,,-null set. Then for any D € B(R),
{s <IN (Asors) (D) € G and {s > (} N (Asors) }(D) = {s > (} N {0 € D} € G, which
implies the G -measurability of Asors. We have the desired assertion. This proves the theorem.
g

3 Stochastic integral for Dirichlet processes

Recall that any locally square-integrable MAF M on I({) admits a jump function ¢ on Ey x Ey

vanishing on the diagonal such that AM; = ¢(X;—, Xy), t €]0, ([ Pry-a.s. When M 6/\31, we can
strengthen this statement by replacing |0, ¢,[ with |0, co[ in view of Fukushima’s decomposition and
the combination of Theorem 5.2.1 and Lemma 5.6.3 in [7].

Lemma 3.1 Let ¢ be a Borel function on E x E vanishing on the diagonal. Suppose that

N(exp(6l* Al¢l))pm € S.

Then there exists a purely discontinuous local MAF K on I1(¢) such that Ky — K;— = ¢(Xy—, Xy)
for allt < (, Py-a.s. for qe. x € F.

Proof. The hypothesis implies that the compensated process

t
(2 ._
K= ¢(XsaXS)'1{|¢>(XS,Xs)>1}1{s<g“}_/0 /EN(Xs,dy)éb(Xs,y)'1{|¢(Xs,y)>1} dH

0<s<t

is alocal MAF on I((). Indeed, we can construct a nice £-nest { F.} with 15 N(1pxg|o|1{g>1})pn €
Soo for each k € N, which implies fot 5 1F, (Xo)| 0| (X, Y1 6(x,0)>131V (Xs, dy)dHs is P-integrable
for q.e. © € E, hence A := ZO<s§t Lp, (Xs—-)o(Xs—, Xs) - Lqjgex,_ x,)>13 L{s<¢y is so. Here Spo
denotes the family of finite measures of finite energy with bounded 1-potentials (see (2.2.10) in
[7]). By putting A¢ := 3 &(Xs—, Xs) - 1{jg(x. x.)>111{s<¢}, We have Aypr, = AfATFk, hence
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At/\TFk iyt ATR,) = AfATFk 17(¢)(t A TR,), which implies that A is an (F¢)-adapted process with
locally integrable variation on I(¢). Then by Theorem 8.26 in [9], we have the desired assertion.
We also have that

t
A= /0 /EN(XS’ dy)[d(Xs,9)]* - L{jo(xa)i<1y AH

is a PCAF.
Now if L is a locally square-integrable MAF with jump function ¢, the formula

t
D(L)¢ = /0 /Eqﬁ(Xs,y) Llo(Xs )< (Xs, y) N (X, dy) dHs
defines a (signed) CAF locally of finite variation, and
[@(L))* < (L) A,  0<t<(,

by the Cauchy-Schwarz inequality. A result of Kunita (Proposition 2.4 in [11]) now tells us that
there is a local MAF K such that ®(L) = (KM, L) for all L. The local MAF K := K 4+ K(2)
on I(¢) does the job. O

Definition 3.2 Let M be a locally square-integrable MAF on I({) with jump function ¢. Assume
that for q.e. x € E, P, -a.s.

t
/0 /E (@21{@51} + |@\1{|@|>1}) (Xs,y)N(Xs,dy)dHs < 00 for every t < (, (3.1)

where ¢(z,y) = ¢(x,y) + ¢(y, ). Define, Pp,-a.s. on [0, (],

A(M)t = (Mt + Miors + QD(Xt, Xt,) + Kt) for t € [0, C[, (32)

1
2
where K is the purely discontinuous local MAF on I(¢) with
K — K- = —p(X¢—,X;) foreveryt<(, Pg-as. (3.3)
for qe. z € E.
Remark 3.3 (i) The condition (3.1) is nothing but N(1gxg(|@? A |@]))uu € S. In particular,
condition (3.1) is satisfied by the jump function of any element of /\i{

(ii) It follows from Theorem 2.18 that ¢ — A(M); is continuous on [0, {[. In view of Theorem 2.18,
it is then clear from the definition that A is a linear operator that maps locally square-
integrable MAFs on [0, ([ with (3.1) into even CAFs on [0, ([ admitting m-null set, that
is, A(M); = A(M)ory Ppas. on {t < (}. Indeed, —K; := Y o (X5, Xo)lseqy —
fg [ ?(Xs, y)N (X, dy)dH, t < ¢ satisfies Ky = K; o7y Ppp-a.s. on {t < ¢} for fixed t > 0.
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(iii) If {M™ n > 1} is a sequence of MAFs having finite energy and converging in probability to
M, then it is easy to see that M} o1, p"(Xi—, Xy) = M — M}~ and ¢" (X, Xy—) converge
to Myory, o(Xe—, X¢) = My — My— and ¢(X;, X¢—) in probability, respectively, under P,,.
Hence we have A(M™); converges to A(M); in probability for each ¢ > 0.

(iv) For u € F,

1
AM®)e = =5 (Mg’ + M ore + u(Xe-) — u(Xy)) = —5 (M + My* o) = Ny

1
2
P.,-a.s. on {t < (} for each fixed ¢t > 0. Since both A(M"); and N{* are continuous in ¢, we

have P,,-a.s.
AM")y = N forall t <.

In other words, A(M) coincides on [0, ¢[ with I'(M) defined in (1.5) with M = M" for u € F.
We are going to show that A(M) defined above coincides on [0, ([ with I'(M) defined in (1.5)
by Nakao when M is an MAF of finite energy. An AF Z is called even (resp. odd) if and only if

Zyory = Zy (vesp. Zyory = —Zy) P-as. on {t < (} for each t > 0. For a rcll process Z with
Zy =0 and T > 0, we define

RTZt = (RTZ)t = ZT_ - Z(T—t)— for 0 S t S T,
with the convention Zy_ = Zy = 0. Note that RrZ; so defined is an rcll process in ¢ € [0, T7.

Lemma 3.4 Suppose that Z is an rcll PrAF. Then Pp,-a.s. on {T < (},

for every t € [0, T1. (3.4)

Zyory, if Z is even
Ry Z, — torT fZ i
—Zyoryp, if Z is odd

Proof. Let Z be an rcll PrAF and let T' > 0. By Lemma 2.15,

ZtOTT:(ZT_ZTftoet)OTT:ZTOTT_ZTftOTT*t fOl" a11t<T (35)

When Z is even,
Zyorp=2r —Zr—t = Zr- — Zir—t)—- = RrZ;

P,,-a.s. on {T < (} for each fixed 0 <t < T'. Since both sides are right continuous in ¢ € [0, T[, we
have P,-a.s. RpZy = Zyorp for every t € [0,T]. When Z is an odd AF of Z, (3.4) can be proved
similarly. O

Theorem 3.5 For an MAF M of finite energy, A(M) defined above coincides with I'(M) defined
in (1.5), Ppy-a.s. on [0, C[.
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Proof. For u € F and 0 <t < T, since N" is an even CAF, by Lemma 3.4,
(M + 2N orr = (u(X;) —u(Xo) + Ni*)ory
w(X(r—t)-) —w(Xr-) + Np_ — Nip_y_
= M(qut)f — Mf_
= —RpM/.
Since both (M} 4+ 2N}*) o rp and RpM}* are right continuous in ¢, we have P,-a.s. on {T' < (},
RrM{ = — (M +2N{) orp for every ¢ € [0, T. (3.6)

For u € D(L) C F and v € Fp, define M; = f(f v(Xs—)dMY, which is a MAF of finite energy. Note
that, since u € D(L), N} = fg Lu(X)ds is a continuous process of finite variation. For each fixed
0 <t<Tandn > 1, define t; = it/n and s; = T —t + t;. Using the standard Riemann-sum
approximation of the Itd integral and of the covariance process [MY, M"], we have P,,-a.s. on

{T'<¢

MT - MT—t + [M’U’ MU]T - [M’U’ MU]T—t

n—1
= lim (; o(Xy,) (M2, - M)+ (a2, - ) (ar, - M“))
n—1
= lim (i:o 0(Xoy) (M, =) = (N2, = N2 (ar, - M“))
n—1
= lim ;v(xw) (az,, —m2)
n—1

= lim S w(X7_par,) (RTM;:U—RTM;:QH)

i1

= lim v(Xi—t;.,) (le—t

— M, + 2N/, - zNg_ti)> ory
=0

_ (/Otv(Xs_)d(Mg‘ 4 2N§)> o,

where in the third equality we used the fact that N* has zero energy, while in the second to the
last equality we used (3.6). Note that the stochastic integral involving N in the last equality is
just the Lebesgue-Stieltjes integral since N* is of finite variation. Note also that X; = X;_ a.s. for
each fixed ¢t > 0. So we have for each fixed t < T, P,-a.s on {T' < (},

t
RrM; + Rp[M"Y, M"]; = — (/ (X )d(MY + 2N;‘)> ory.

0
Since both sides are right continuous in ¢ € [0, 7], we have P,-a.s. on {T < (},

t
RrM; + Rp[MY, M"]; = — (/ v(Xso)d(ME + 2N§‘)> oryp for every t € [0, T. (3.7)
0
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By Theorem 3.1 and (3.8) in Nakao [16],
t t 1 ) .
/ v(Xs— )ANY = / v(Xs) o dNY¥ =T'(M); — §<M”’C + MY MY+ M™7),.
0 0

It follows that P,,-a.s. on {T < (},

Ry My + Rp[M?, MY,
= — (M +20(M), — (MY° + M7, M™¢ + M"7),) orp
= — (M +20(M), — (MY°, M™©), — (M", M"™7);) orp forallt <T.

Recall that

(MY, MYy = (M, M™%, + Y (MY = M{)(M = M)
s<t
= M), + 3 (0(X) — v(Xe ) (u(X) — u(X, ).
s<t
Taking ¢ = T and noting that both I'(M) and (M"¢, M™¢) are continuous even AFs, we have from
above that P,,-a.s. on {t < (},

1

D(M)e = —

(Mt + Mt ory + ’U(Xt)(U(Xt_) — ’U,(Xt)) + Kt) N

where
K= (0(X) = v(Xe)) (u(Xs) = u( X)) = (M™T, M),
s<t
is the purely discontinuous MAF with K; — Ky~ = (v(X;) — v(X—)) (w(Xt) — u(Xy—)). Observe
that My — My— = p(Xi—, Xy), where o(z,y) = v(z)(u(y) — u(x)), and that

Ki— Ki = —o(Xi—, Xt) — o(Xt, Xi).

This shows that I'(M); = A(M); Pyy-a.s. on {t < (} for each fixed ¢ > 0. Since both processes are
continuous in ¢ € [0, [, we have P,,-a.s.

['(M) = A(M)  on [0, ¢

for an MAF M of the form M; = fot v(Xs—)dMY with w € D(L) and v € Fp. By Lemma 5.4.5 in
[6], such MAFs form a dense subset in the space of MAFs having finite energy. Thus by Lemma
3.1 in Nakao [16] and Remark 3.3(iii) we have for a general MAF M of finite energy, P,,-a.s.
(M) = A(M); Pp-as. on {t < (} for every fixed t > 0. Since both processes are continuous in
t € [0, ¢], it follows that T'(M) = A(M) on [0, ([ Pp-a.s. O
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Theorem 3.6 Let M be a locally square-integrable MAF on I1(C) with jump function ¢. Suppose
that ¢ satisfies condition (3.1). Then for every t > 0, Py,-a.s. on {t < (},

nll)rgo Z (A(M)(ﬁ-‘rl)t/n - A(M)Zt/n)z =0, (38)

where the convergence is in probability with respect to P, for m-a.e. x € F.

Proof. By (1.5) and Theorem 3.5, (3.8) clearly holds when M is a MAF of finite energy. For
a locally square-integrable MAF M on I((), there is an E-nest {F)} of closed sets such that

1p, * M Ej\il for each k£ > 1 in view of the proof of Proposition 2.8 and so (3.8) holds with 1p, * M
in place of M. For each fixed k > 1,

1
AM)y =A(1F, « M), — in P,,-a.s. on [0, 75,],

where K} is a purely discontinuous local MAF on I(({) with K} — K} = Lpe (X )p(Xi—, Xt) +
1F]§(Xt)<,0(Xt,Xt,), t < (. Since 1, * M E/\jt, we have

/ N(1p,xp9”)dpm = / N(1pxp, @ )dpm < oo
E E

Consequently, by Lemma 3.1, we have the existence of purely discontinuous local MAF on I(¢{) with
jumps given by 15, (X;—)o(Xi—, X¢) 4+ 15, (X) (X, Xi—), t < (. So we obtain the existence of such
K[. Since the square bracket of K* is given by Esgt 1F£(Xs_)g02(Xs_,Xs) + 1F£(Xs)<p2(Xs,Xs_)
and it vanishes at t < 75, , we have for each fixed ¢ > 0,

n—1
: 2
nlingo Z (A(M) o1yt /m — A(M)gt/n) =0 P,,-a.s. on {t < 7, }.
=0
Passing to the limit as k T oo establishes (3.8). O

Before introducing the stochastic integrals against A(M) as integrator, we prepare the following

lemma for later use.

Lemma 3.7 The following assertions hold.

(i) Let {Gy} be an increasing sequence of finely open Borel sets. Then the following are equiva-
lent.
(a) {Gn} is a nest, that is, Py(limy oo 0p\g, AN(=C) =1 for g.e. z € E.
(b) E =2, Gn g.e.
(¢) Py(limy .o op\g, = 00) =1 for m-a.e. x € E.
)

(d) Py(limy o op\g, =00) =1 for ge. z € E.
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(ii) For a function f on E, f € Fioc if and only if there exist an E-nest {F} of closed sets and
{fr | k € N} C Fp such that f = fi g.e. on F}.

Proof. (i): For the implications (ia)<=>(ib), see Theorem 4.6 in [13]. The implication (id)<=-(ia)
is clear. Next we show (ib)==-(ic). Since each G,, is finely open, it is strictly £-quasi-open by
Theorem 4.6.1(i). So there exists a common strictly E-nest { Ay} of closed sets such that (E\Gy)NA,
is closed for all n,¢ € N. (See Chapter V. §2 in [15] for the strict £-quasi-notions.) Set o :=
limy 00 0p\G,- We then have that for all n € N X, € E \ G, Pz-as. on {0 < oo} for
q.e. * € E. By Chapter V. Lemma 2.21 in [15], we have P, (limy .o 0p\4, = 00) =1 qe. v € E.
Since o < oo implies 0 < o g\ Ag, for some ¢y € N, we may assume that there exists £y € N such
that op\q,, < og\a, for all n > £ > fy, Py-as. on {0 < oo}. This means

P,(oc < 0) <P, (hm {XUE\Gn € (E\Gp)NAyforalln>{ o< oo})

l—o00

< lim Pm(XoE\cn E(E\Gy)NAsforalln>{t o< oo)

{—00

< lim Pac(XU € (E\Gg)ﬂAg, ‘7<OO)
l—o0

< lim P, (X, € E\ Gy, 0 < 0)
{—00

o0
:Px<Xg€E\UGg,a<oo>:0

(=1

for m-a.e. x € E, because of the exceptionality of E'\|J;2, G¢, where we use the quasi-left continuity
of X up to oo and the closedness of (£ \ G¢) N A;. The implication (ic)<=(id) follows from the
fact that z +— P,(0 < 00) is a decreasing limit of excessive functions and Lemma 4.1.7 in [7].

(ii): The “if”part is clear by (i) because 7p, = 7¢,, where G is the fine interior of Fj. We
only prove the “only if”part. Take f € Fioc. Then there exist {fx | k € N} C F and an increasing
sequence {Gy} of finely open sets with E = |J;2; G, q.e. such that f = f; m-a.e. on Gy. We may
take fr € Fp for each k € N, by replacing f with (—k) V fx Ak, and Gy, with G N{|f| < k}. Note
that f and fi are quasi-continuous, so f = fi q.e. on Gy. Taking an £-quasi-closure Gikg of Gg,
we have f = fj q.e. on Gikg (see [12] for the definition of £-quasi-closure). Let {4, } be a common
E-nest of closed sets such that for each k,n € N, G7kg N A, is closed. Set Fj := Gikg N Ag. By

(i), {Gk} is a nest, hence CTkg is a nest of q.e. finely closed sets, because of 7, < Tt Here we

recognize CTkg as a finely closed Borel sets by deleting an exceptional set. Since {A,} is a nest of
closed sets, {Fj} is so, that is, Py, (limy_o 7F, # ¢) = 0. Therefore {F}} is an E-nest of closed
sets. We easily see that for each k € N, f = fr q.e. on F}. O

We are now in a position to define stochastic integrals against A(M) as integrator. Note that for
f € Fioe, M7 is well defined as a continuous MAF on [0, ¢ of locally finite energy (see Theorem 8.2
in [9]). Moreover, for f € Fj,. and a locally square-integrable MAF M on I((),
t
t— (fx M) = /0 f(Xs—)dM;,
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is a locally square-integrable MAF on I(().

Definition 3.8 (Stochastic integral) Suppose that M is a locally square-integrable MAF on
I(¢) and f € Floc. Let ¢ : Eg X Eg — R be a jump function for M, and assume that ¢ satisfies
condition (3.1). Define P,,-a.s. on [0, ([ by,

/0 (XY dA(M),

= A M) = 50 0+ 5 [ [ ) = F)el XON (K dy)dIT, (39

whenever A(f * M) is well defined and the third term in the right hand side of (3.9) is absolutely
convergent.

Remark 3.9 (i) Here are some sufficient conditions for every term on the right hand side of
(3.9) to be well defined. In addition to the conditions in Definition 3.8, we assume that

P,,-a.s. .
/ / (f(Xs) — f(¥))?’N(X,,dy)dHs < 0o for every t < ¢ (3.10)
0 JEy
and that .
/ / o(y, Xs)?N(Xs, dy)dHs < oo for every t < (. (3.11)
0o JE
Then the first and third terms on the right side of (3.9) are well defined. This is because
N(lpxel@)pn € S implies N(1pxp|f@|)pn € S, and
f@)e(@,y) + [(y)ely, ) = f(2)o(z,y) + (fy) = F2)ely, ),

so A(f*M) is well defined on [0, ([ in view of the condition (3.1) for f= M, (3.10) and (3.11).
Condition (3.10) is satisfied when f is a bounded function in Fj,. or f € F. This is because
when f € F, the left hand side of (3.10) is just (M/);. When f is a bounded function in
Floc, by Lemma 3.7(ii), there exist an E-nest {F,, | n € N} of closed sets and a sequence of
functions {f, | n € N} C Fp such that f = f,, q.e. on F, for every n > 1. Note for each
n > 1, M9 is a square-integrable purely discontinuous martingale and

M M = f (X)) = fa(X).

So t +— ngt (fn(Xs) — fn(Xs_))2 is P -integrable for q.e. = € E. Since f is bounded, we
have for each n > 1 that

toe S (F(X) — (X))

= Y (F(X) = AKX+ (FXinrg,) — F(Xinr, )
= Y (X)) — X)) + (FKinrs,) — F(Xinrg, )

27



is an increasing process and is P -integrable for each fixed ¢ > 0 for q.e. x € F. Similarly,
Ay = Yo (f(Xs) = f(Xs))? is locally integrable in the sense of Definition 5.18 in [9)].
Indeed, for a stopping time Ty, := inf{t > 0 | A; > n}, Ap, = Ar,_ + (f(X1,) — f(X1,_))?
is bounded, hence P, -integrable for q.e. x € E. Note that the dual predictable projection
of A; is nothing but the f(f Je, (F(Xs) = fly ))2N (X, dy)dHs. Then the dual predictable

projection of ngt/\an (f(Xs) — f(X,_))*is given by ft/\TF” fEa —f(y)?>N (X, dy)dH,
from Corollary 2.14 in [9], which is P,-integrable for q.e. = € E. Thls implies that (3.10)
holds for every t < 7g, . Therefore (3.10) holds for every ¢ < (.

Condition (3.11) is satisfied when M? is P,,-square-integrable. Indeed,

E.. {Zcpz(Xs,Xs,) it < C} = Em[[Md]t ory:t< C}

= Em{[Md]t:t<C] < 00.

Then Corollary 4.5 in [8] tells us that

lim E [Z‘P (X4, Xy t<C}_hm “E,, [Z‘P (X, X, )}

s<t s<t

// ey, X Xs,dy)dﬂ}

for all ¢ > 0 by way of its subadditivity. Hence we get (3.11).

which implies

(ii) Suppose that f € F. Let K; be a purely discontinuous local MAF on I(¢) with K; — K;— =
—p(Xi—, Xt) — p(X¢, Xy—) on ]0,¢[. Then

(MF9 M 1K), / / (F(0) — F(X2)o(y, XN (X, dy)dH,.

In this case, (3.9) can be rewritten as

1 . )

/ f(X M), :A(f*M)t—§<Mf’c+Mf’7,MC+M7 + Ky (3.12)
on [0, |. SowhenM M" for some u € F and f € F N L*(E; gy fo A(M)s on
[0, ¢[is just the fo Xs)odI'(M)4 defined by (1.7). This shows that the Stochastlc 1ntegration
given in Definition 3.8 extends Nakao’s definition (1.7) of stochastic integral first introduced

in [16].

Theorem 3.10 The stochastic integral in (3.9) is well defined. That is, if M and M are two
locally square-integrable MAFs on 1(C) such that all conditions in Definition 3.2 for M and M are
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satisfied and ALM) = A(]\Af) on [0,C[, then for every f € Fioe for which fg f(Xs—)dA(M)s and
fg f(Xs—)dA(M)s are well defined, we have P,-a.s.

/f ) dA(M s—/f M), o0, ([

Proof. It is equivalent to show that
/ f(Xso)dA(M — M) =0 on |0, [

By taking M to be M — M we may and will assume that M =0. Moreover, a localization argument
allows us to assume that f is bounded. Let ¢ : Fg X E5 — R be a jump function for M. Let K,
be the purely discontinuous local MAF on I(¢) with

K — Ko = —o(Xie, Xy) — o(Xe, X)), t<C.
Since A(M) = 0, we have

M+ Miory+p(Xe, Xe— )+ Ky =0 on [0, [ (3.13)
Thus by (3.5) and (3.13), on {T < (},

Mt orpr = MT orp — MT—t OTrr_t
= —Mr—Kr+ Myp_y+ Kr—y — (X7, Xr-) + (X7t X(7-4)) (3.14)

for every t € [0, T]. Using the standard Riemann-sum approximation and (3.14), we have for f € F,
(fxM)eore+ f(Xe)p(Xe, Xi—)

= —(f*M),—(f*K) —[M!, M+ K],
= —(fx M) — (f % K)p = (M7, M)+ (F(Xo) = F(Xom))p(Xo, X

s<t

P,,-a.s. on {t < (} for each fixed ¢ > 0. Consequently we have for f € Fioe, Ppm-a.s. for all
t e [0,¢],

(f* M)gory+ f(Xe)p(Xe, Xio)
= ([ M) = (f* )y — (M7, M)y + Y (F(X,) = [(Xe))p(Xs, Xoo),  (3.15)

s<t

since both sides are right continuous in t € [0, ([. Let K be the purely discontinuous local MAF on
I(¢) with

Ki— Ki- = —f(Xi2)o(Xe—, Xi) — F(Xp)o(Xp, Xy—)  for all ¢ € [0,(].
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Then for f € Foc, we have by (3.15),

A=) = 3 ((F« M)t (F e M) o+ F(X0)o(X0, X ) + Ko

s<t

= (/ f(Xso)dEKs + ( Mfc , M)y — Z(f(XS) — [(Xs))p(Xs, Xs) — [?t) :

Thus
/Ot f(Xs_)dA(M)
— A(f*M)t—— (MFe, Moy, // 4. XN (X, gL
B L/f ‘MT—<fﬂX9—ﬂXs»MX@XS»—;a
w3 [ [0 = Fel XN Gy,
Note that
= —; P(Xom, Xo) + F(X)p(Xe, X))
// y) + FWely, Xs)) N(Xs, dy)dH (3.16)
and that
Ky = limy ( ;(@1|¢|>5)(Xs_,Xs) + (N(@Ligpse) * H)t) : (3.17)

where (z,y) == ¢(z,y) + p(y,x). It follows that

/tf(Xs—)dA(M)s =0 foralt<(
0

P,.-a.s. This proves the theorem. O

Remark 3.11 The above proof actually shows that if A(M) = A(M) on [0,T] N [0,¢], then

/f YdA(M S/f Je on [0,7]N [0, c[
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4 Further study of the stochastic integral

Theorem 4.1 Suppose that f € Fioc and that M is a locally square-integrable MAF on I(()
satisfying (3.1) such that A(M) is a contz’nuous process A of finite variation on [0,([. Assume
that the stochastic integral t — fo s—) AA(M)s is well defined. Then

/f L) dA(M s—/f 4, oo,

where the integral on the right hand side is the Lebesgue-Stieltjes integral.

Proof. Let ¢ : Ey x Ey — R be a Borel function vanishing on the diagonal with ¢(X;_, X;) =
M; — M, for t € [0,(p[, Ppm-a.s. Let K; be the purely discontinuous local MAF on I(¢) with

K — K- =—p(Xi—, Xy) — (X, Xi—), t€]0,(]
Since A(M) = A on [0, (],
Miory+ o(Xy, X4 ) = —M; — K, —2A;, for all t € [0, (].
Thus by (3.5), for every T >t > 0, on {T < (},
Myorr = —Mp — K — 2A1r + My + K1y + 2A7 4 — (X7, X7 ) + o( X174, X(7—py—). (4.1)

Now fix f € Fioc; as before we may assume without loss of generality that f is bounded. Using the
standard Riemann-sum approximation we obtain, on {t < (},

(f*M)ior+ f(Xe)o(Xe, Xio)
= —(fx M) — (f*K) —2(f * A)e — [M7, M + K +24];
= —(f* M)e = (f % K)p = 2(f % A)p — (M4, MO) + Y (F(Xs) = F(Xom))p(Xs, X

s<t
Consequently, we have, P,,-a.s. for all t € [0, (],
(f* M)eory + f(Xe)p(Xe, Xe—) (4.2)
= —(fx M) = (f* K)p —2(f * A)r — (M9, M)+ (F(Xs) = F(Xs)) (X, Xso),

s<t

since both sides are right continuous in t € [0, ([. Let K be the purely discontinuous local MAF on
I(¢) with

Ki— Ki- = —f(Xi2)o( X, Xi) — F(Xp)o( Xy, Xy—)  for all ¢ € [0,(].
Then by (4.2),

A(f* M), = Fr M)+ (fM)or,+ f(X)g (Xt,Xt_)+z~(t)

/N [\.')M—t

-5 ((
% /f _)dK, +2/f ) dAs + (M7, MC),

D (F(X) = X)X Xoo) = Ko ).

s<t
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Thus

/O F(Xoo) dA(M),

= A= M)~ (M, M), / [ () = Xl XN (X ),
= 5 [ e ar+ / F(X.)dA, —;ﬂxs)—f(xs))go(xs,xs>—;f<t
/ / X))y, Xs)N(Xs, dy)dH
Tt now follows from (3.16)-(3.17) that
/ F(Xso) dA(M)s _/ F(X for all ¢ € [0, C[.
This proves the theorem. O

Note that if f,g € Fioc, then fg € Fioc.

Theorem 4.2 Let f,g € Fioc and let M be a locally square-integrable MAF on I(¢) satisfying
(5.1). Then

/Otg(Xs—)d </05f(Xr_)dA(M)r> = /Otf(Xs_)g(Xs_)dA(M)s fort <, (4.3)

whenever all the integrals involved are well defined.

Proof. Let ¢ : Ey x Ey — R be a Borel function vanishing on the diagonal with ¢(X;_, X;) =
M; — M,_ for all t €]0,(,[, Pm-a.s. Let K; and K; be the purely discontinuous local MAFs on
I(C) with Kt — Kt— = _4P(Xt—7Xt) — (p(Xt,Xt_), t E]O, C[ and Kt — Kt— = —f(Xt_)gO(Xt_,Xt) —
F(X1)e(Xe, Xi—), t €]0, (] respectively. Then the left hand side of (4.3) is equal to

[ atxyaats san, -3 [ goxoaqrte, ),
0 0

w3 | [ o006 — 1)l XN (X dy)at,

= Alfgs M= 500 (e M)+ 5 [ / (9(9) — 9(X:)) F () ol XN (X, dy)dH,

1

5 [t 4[] G005 - 066 XON (X )i,

= Ay M= o)+ L[ (at) Xty XN (X d)a

- /0 F(Xo)g(Xo)dA(M)s.
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This proves the theorem. O

Let J denote the class of Dirichlet processes that can be written as a sum of an (F;)-semimartingale
Y and A(M) for a locally square-integrable MAF M on I(() satisfying the condition of Definition
3.2. The last two theorems imply that the following stochastic integral is well defined for integrators
zZeJ.

Definition 4.3 For f € Fioc and Z =Y + A(M) € J, define on [0, (]

¢ t t
| rxyaze= [ reeoyaves [ foe)ason.,
0 0 0
whenever the latter stochastic integral is well defined.
To establish 1t6’s formula, we need the following result.

Theorem 4.4 Let f € Fioe and let M be a locally square-integrable MAF on I(() such that
Jo F(Xs2)dA(M) is well defined on [0,¢[. Then for every t >0, Pyy-a.s. on {t < (},

t n—1
/0 F(Xsm) dAM)s = lim D f(Xerjn) (M) (e41)6/m = AM)aryn) (4.4)
=0

Here the convergence is in probability with respect to P, for m-a.e. x € E.

Proof. By (3.5), Mgory = Myor, — My_gory_g for all s < t. Let ¢ : Eg X Eg — R be a Borel
function vanishing on the diagonal set with o(X;—, X;) = M; — M,;_ for all t € [0,(,[. Let K be
the purely discontinuous local MAF on I(¢) with K; — K;— = —o(X;—, Xt) — (X, Xi—), t €]0,¢|.
Then for each fixed ¢ > 0, Py,-a.s. on {t < (}

n—1

lim > FXaen) (M) g1yt ym — MM ) i)
=0

n—1
1 1 1 .
= —5(fx M) = S(f* K): + 5 lim > FXern) Mgty 0 res1yeyn — Moty © Toryn)
=0

2
= e =L i [ ) (M — M)
-2 ‘T2 07 gt | L TR eyn) Mesnn = Mam) | o1
= *%(f*M)t* %(f*K)t*%(f*M)tOTt*%[Mf,M]tOTt
= (e M) = (e K)o — 5(F e Moy — S(MP M), 2 S (F(Xe0) — FXa))pl(Xi, X )
s<t
= A M)k SRy = S(F 5 K= S (5 M) = 5 () = (X))ol Ko, X )
s<t

t
— /0 F(Xoo) dA(M),,
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where K in the second to the last equality is the purely discontinuous local MAF on I({) with
Ky — Koo = — f(Xs-)o(Xs—, Xs) — f(Xs)p(Xs, Xs-), s €]0,¢]. U

Remark 4.5 (i) Theorem 4.4 immediately implies Theorems 3.10 and 4.1.

(ii) By (3.8), we also have for t < ¢

n—1

t
/0 F(Xo) dAM)s = lm Y F(Xegrye/n) (M) @sryem — AM)aryn) - (4.5)
=0
Hence we could denote this stochastic integral by either fot f(Xs s OT fo s)odA(M)s.
Here fo ) o dA(M), is the Fisk-Stratonovich type integral. for t < ¢

FXoenrerm) + F(Xeum
/ f(Xs) 0 dA(M)s = lim. Z Gy ; I (Xesn) (A es1ye/m — MM )gryn) - (4.6)

(iii) For any f € Fo and P,,-square-integrable MAF M, by way of the Riemann-sum approx-
imation (4.4), we can extend the stochastic integral f(f f(Xs—)dA(M), without imposing
further conditions. Indeed, let {Gy} be a nest of finely open Borel sets and f, € F, with
f = fe m-a.e. on Gy (see the explanation for the condition (3.10) in Remark 3.9.) By
(4.4), we see fg (X5 )dA(M fo fm(Xs—)dA(M)s for t < 7, and n < m. Then
we can define fg f(Xso)dA(M fo fm(Xs—)dA(M)s for t < 7¢, for each n € N, con-
sequently, for all ¢ < ¢ Pm—a.s. More strongly, for M E,Ac/)t and f € Foe, we can define
fot f(Xs—)dA(M), for all t € [0,00[ Py-a.s. Indeed, for {f,} and {G,} specified as above,
the stochastic integral f,, x A(M) for M € ,/\c;l can be defined as a CAF in the original way
by Nakao and (f, * A(M)); = (fn * A(M))¢ = limgpe(fn ¥ A(M))s for t > ¢, which means
Iy F(Xs2)dA(M)s = [ fr(Xs—)dA(M), for t < op\ g, beyond ¢ for each n < m. Owing to
Lemma 3.7(i), we obtain the stochastic integral fg f(Xs-)dA(M)s, on |0, 00, Pypy-a.s. for any
f € Floc and M G/\jl extending the stochastic integral by Nakao.

Remark 4.5(iii) says that the stochastic 1ntegral fxA(M); = fo A(M)s can be defined

for t € [0,00] Pp-a.s. for f € Foe and M € M. We shall refine this statement from m-almost
everywhere starting point x € F to quasi-everywhere x € FE.

Lemma 4.6 For f € Fioc and M E/\/l, the stochastic integral f+ A(M); := fo A(M)s can
be defined for all t € [0,00[ Py-a.s. for q.e. x € E, in particular, f* A(M) is a CAF.

Proof. Since f € Fioc, we have {fi | k € N} C Fp and a nest {Gy, | k € N} of finely open Borel sets
such that f = fi q.e. on Gj. We know that the stochastic integral f;, x A(M) is defined P-a.s. for
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q.e. x € E. Let Z be the defining set admitting an exceptional set for the CAF fi x A(M) of zero
energy and set

00
o= w e rw =k
k=1

/0 Fe(Xa (@) A(M), (w) = /0 fo(Xo (@) A(M)(w) fort<aE\Gk<w>}.

Then P,(Z°) = 0, m-a.e. + € E. Hence for each s > 0, P,(0;1(2¢) = Ps(P.(Z°))(z) = 0 for
q.e. ¥ € E. Setting = := (;2; Ex NNyeq, , 0;1(=Z), we have P,(Z) =1 for qe. 2 € E. For w € =
with ¢ < op\g, (w), we can find small so(= so(w)) > 0 such that t + sp < op\g, (w). Then we see

for any k,¢ € N with k < £,

t < op\q,(0sw) for any rational s €]0, so[. Hence for such w, we have for k < ¢ and any rational

s €0, so[
t+s t+s

fi(Xo— (w))dA (M) (w) = fo(Xyp—(w))dA (M) (w).

S S
Letting s — 0 and noting w € Zg, k € N, we have that for k < ¢, fi *x A(M); = fox A(M); for t <
Op\Gy> Pz-as. for qe. ¥ € E. By Lemma 3.7(i), we know P (limg .o 0p\g, = o0) = 1 for
g.e. ¢ € E. Therefore, we obtain that the stochastic integral f* A(M) defined as in Remark 4.5(iii)
can be established P,-a.s. for q.e. x € E. This completes the proof. O

Theorem 4.7 (Generalized It6 formula) Suppose that ® € C?(R?) andu = (uy,--- ,uq) € Fo.
Then for q.e. x € E, Py-a.s. for allt € [0, oo,

D(u(Xt)) — (u(Xo))

d ¢ 1 d t 92
> G D) 5 3 [ T e e s, (@)
k= ij=1 v
NPT
+> <<I>(U(Xs)) = O(u(Xs-)) — Za—( u(Xs-)) (up(Xs) — Uk:(Xs))> -
s<t k=1

Proof. Note that both sides appeared in (4.7) are Pg-a.s. defined for q.e. x € E in view of
Lemma 4.6. First we show this It6 formula (4.7) under P, for a fixed ¢ > 0. Note that ®ou € Flye
and that

uk(Xe) = up(Xo) + M;™ + Ni* = up(Xo) + M™ + A(M"*);.

This version of It6’s formula follows from Theorems 3.6 and 4.4 by a line of reasoning similar to
that used to prove It6’s formula for semimartingales (cf. [9]). Since both sides in (4.7) are right
continuous, (4.7) holds under P,

Secondly, we refine the starting point. Recall that € consists of rcll paths. Let I;(w) be the
difference of the left hand side and the right hand side in (4.7). Let Z be the intersection of all
the defining sets of AFs appeared in the formula and {w € Q | L;(w) = 0,7t € [0,00[}. Then
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P,.(E) =0, m-a.e. x € E. Let Z be the intersection of aa the defining sets of AFs appeared in the

s€Qpy 071(Z). Then we have P,(Z) =1 for q.e. z € E as in the proof of Lemma 4.6.

Take w € =. Then for any positive rational s > 0, we have [;(f;w) = 0, that is,

formula and

D (u(Xtys(w))) — P(u(Xs(w)))

d t+s o 1 d t+s 82(1) ‘ .
-3 | o) dun (X, ) + > | e e ) A0 305, )
< o0
+ > (‘I)(U(Xv(w))) = @(u(Xo- () = Y 5 —(u(Xy (@))) (ur(Xo(w) - Uk(Xv—(W)))> -
s<v<t+s k=1 k
Letting s — 0 and using the right continuity of s — wu(X) and stochastic integrals, we have
I:(w) = 0. This completes the proof. ]
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