
THIRD YEAR EXAMPLE CLASS SHEET FOUR
PHYS30121 Introduction to Nuclear and Particle Physics

Supplementary Problems

1: Work Sheet on Cross Sections
(i) Φ = vnp
(ii) R = NσΦ
(iii) I = ΦS
(iv) R = NσΦ = NσI

S
= Iσntt

nt = ρNA

MA
where NA is Avogadro’s number and MA is the mass of the target

atom expressed in atomic mass units.
(v) The trick with this is to check your units at each stage in the enumeration!

Areal number density of target is related to the areal mass density given in
the question by:

ntt = ρt
NA

MA

=
100× 10−6

27
× 6.022× 1023 = 2.23× 1018 cm−2

The electrical current given in the question is related to the number of α
particles per second, remembering that they are doubly charged, by:

I = 10× 10−9

2× 1.6022× 10−19
= 3.12× 1010 s−1

Using the angular form of result (iv) above:

R = Intt
dσ

dΩ
dΩ

= 3.12×1010 s−1×2.23×1018 cm−2×10×10−3×10−24 cm2sr−1×2.8×10−3 sr

= 1.95 s−1

But if the detector is only 25% efficient then this is reduced by a factor of 4
to give an event rate of 0.49 s−1.

2: Nuclear Radii
(i) The electron wavelength has to be smaller than the object needed to be

studied, or diffractive effects will obscure things.

R = r0A
1/3 = 1.2× 1971/3 = 6.98 fm

λ = h/p and h = 2πh̄ = 2π197/c

p > h/λ =
2π197

6.98× c
= 177 MeV/c
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E2 = c2p2 +m2c4 ≈ c2p2

E ∼ 177MeV

Sub-nucleon requires λ < 1 fm and the energy turns out to be >1 GeV.
(ii) Particle rolls up the Coulomb hill until original KE is the same as the

electrostatic PE. Assume that the lab frame is the same as the CM frame since
particle is light and target is heavy.

E =
Z1Z2e

2

4πε0

1

R

R =
Z1Z2e

2

4πε0

1

E

(iii)

E =
Z1Z2e

2

4πε0

1

R
= 2× 79× 197

137
× 1

6.98
= 32.5 MeV

Actually will do so at lower energies since nuclear forces have a range of a 1-2 fm,
increasing the distance of separation at which things deviate.

(iv) Bohr radius,

r =
4πε0h̄

2

Zme2
=

137

h̄c
× (h̄c)2

Zmc2
=

137× 197

Zmc2

Normal atom, r = 137×197
13×0.511

= 4063 fm.

Muonic atom, r = 137×197
13×105.66

= 19.6 fm.
27Al radius is 3.6 fm so muon spends much more of its time inside the nucleus

than an electron does in a normal atom.

3: Binary Reaction Q Values
The following expression was quoted in lectures for the Q value of the binary

reaction A(a,b)B:

Q = Tb

(
1 +

mb

mB

)
− Ta

(
1− ma

mB

)
− 2 cosθ

mB

√
TaTbmamb

where T are the kinetic energy of the relevant particles, θ is the scattering
angle i.e. the angle between the beam direction and the trajectory of b, and m
are the relevant masses.

(i) Energy conservation: Q = Tb + TB − Ta.
Converse components on momentum parallel to beam direction:

(pB)x = pa − pbcosθ.
Converse components on momentum perp to beam direction: (pB)y = pbsinθ.
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So p2
B = p2

bsin
2θ + (pa − pbcosθ)2 = p2

b + p2
a − 2papbcosθ

Use energy conservation and substitute in:

Q = Tb + TB − Ta =
pb

2

2mb

+
pB

2

2mB

− pa
2

2ma

=
pb

2

2mb

− pa
2

2ma

+
p2
b + p2

a − 2papbcosθ

2mB

=
pb

2

2mb

(
1 +

mb

mB

)
− pa

2

2ma

(
1− ma

mB

)
− papb
mB

cosθ

= Tb

(
1 +

mb

mB

)
− Ta

(
1− ma

mB

)
− 2 cosθ

mB

√
TaTbmamb

(ii) Above formula gives Q = 1.711859 MeV. Q = mA + ma − mB − mb

hence mA = 193687.0901 MeV

4: Daughter Recoil in Decay Processes
In (i) and (iii) since the parent decays at rest the total momentum after the

decay is zero, hence p
R

= −p
p

and pR = pp, where subscript p refers to the

emitted particle. In (ii) the maximum kinetic energy when the β carries all the
energy and the ν none. In that case, momentum conservation is identical to that
calculated for the two-body decay.

(i) cpγ = Eγ so cpR = Eγ. Hence

ER =
E2
γ

2Mc2
=

1

2× 100× 939
MeV = 5.3 eV

(ii)

c2p2
R = c2p2

p = E2 −m2
ec

4 = (T +mec
2)2 −m2

ec
4 = T 2 + 2Tmec

2

ER =
p2
R

2M
=
T 2 + 2Tmec

2

2Mc2

ER =
T 2 + 2Tmc2

2Mc2
=

1 + 2× 1× 0.511

2× 100× 939
MeV = 10.8 eV

(iii) Tα is much less than the rest masses so classical dynamics can be used:
MvR = mαvα

TR =
1

2
Mv2

R =
1

2
M
[
mαvα
M

]2

=
1

2
mαv

2
α

(
mα

M

)
= Tα

(
mα

M

)
= 100 keV

So in general, the recoil effects for β and γ decay can be neglected, unless
the precision of the data is at the eV level, which it can be sometimes. But for α
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decay you cannot neglect the recoil energies since they are a few % of the total
decay energy.

5: Beta Decay
Mass Excess, ∆ = M − A

QEC = m7Be −m7Li = ∆7Be −∆7Li = 861.894 keV

Qβ+ = m7Be−m7Li−2me = ∆7Be−∆7Li−2me = 861.894−2×510.998910 keV = −160.104 keV

So QEC positive and so allowed, but Qβ+ < 0 so forbidden by energy conserva-
tion.

For positive Qβ+ , ∆7Be −∆7Li − 2me ≥ 0. Hence,

∆7Be ≥ ∆7Li + 2me = 15930 keV/c2

6: Production of Sources
(a) Number of nuclei increase at a rate R and decay at a rate λN :

dN

dt
= R− λN

(b) By substitution:

N(t) =
R

λ
(1− e−λt)

LHS
dN

dt
=
R

λ
λe−λt = Re−λt

= Re−λt −R +R

= R−R(1− e−λt) = R− Rλ

λ
(1− e−λt) = R− λN = RHS

(c) At long times e−λt → 0.

N(t) =
R

λ
(1− e−λt)→ R

λ

Activity = λN = R

This level is called secular equilibrium, the rate of production equals the rate
of decay so dN

dt
= 0 and the overall numbers of atoms stays constant.

(d) After time t = 1
λ

activity has increased to 63% of the level at equilibrium,
after two τ it is 86%, three τ 95%, four τ 98% etc... so you don’t win much by
irradiating for a time longer than 2-3τ .
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7: Dating Using above equation, λ235 = 9.846×10−10 and λ235 = 1.551×
10−10 per year.

N235

N238

=
e−λ235t

e−λ238t
=

0.7

99.3

e−(λ235−λ238)t = 7.049× 10−3

(λ235 − λ238)t = 4.9548

t =
4.9548

8.295× 10−10
= 5.973× 109 years

8: Alpha Q Values

Qα = Bα +B(Z − 2, A− 4)−B(Z,A) = Bα − dB = Bα −
[
4
∂B

∂A
+ 2

∂B

∂Z

]

∂B

∂A
= av−

2

3
asA

−1/3+
ac
3
Z(Z−1)A−4/3−aa

[
2(A− 2Z)

A
− (A− 2Z)2

A2

]
−1

2

ap
A3/2

∂B

∂Z
= −acA−1/3(2Z − 1) +

aa
A

[4(A− 2Z)]

Substituting in gives:

Qα = 28.3− 4av +
8

3
asA

−1/3 − ac
(

4Z(Z − 1)

3A4/3
− 2(2Z − 1)

A1/3

)

+aa

(
8(A− 2Z)

A
− 4(A− 2Z)2

A2
− 8(A− 2Z)

A

)
+

4ap
A3/2

Qα = 28.3−4av+
8

3
asA

−1/3−4acA
−1/3

[
Z(Z − 1)

3A
− 2Z − 1

2

]
−4aa

(A− 2Z)2

A2
+

4ap
A3/2

With approximation Z >> 1:

Qα = 28.3− 4av +
8

3
asA

−1/3 − 4acA
−1/3

[
Z2

3A
− Z

]
− 4aa

(A− 2Z)2

A2
+

4ap
A3/2

= 28.3− 4av +
8

3
asA

−1/3 + 4acZA
−1/3

[
1− Z

3A

]
− 4aa

(A− 2Z)2

A2
+

4ap
A3/2

Tidying up a little:

Qα = 28.3− 4av +
8

3
asA

−1/3 + 4acZA
−1/3

[
1− Z

3A

]
− 4aa(1− 2Z/A)2 +

4ap
A3/2
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With Z ∼ 0.41A:

Qα = 28.3−4av+
8

3
asA

−1/3+0.41×4acA
2/3
[
1− 0.41

3

]
−4aa(1− 2× 0.41)2+

4ap
A3/2

And substituting in the parameters:

Qα = −38.108 + 48.91A−1/3 + 1.005A2/3 +
48

A3/2

For A=150 to 166, Qα= -0.504421404, -0.399086976, -0.293847005, -0.188701892,
-0.08365201, 0.02130229, 0.12616068, 0.230922855, 0.335588532, 0.440157449,
0.544629361, 0.649004047, 0.753281299, 0.85746093, 0.961542771, 1.065526666,
1.169412478 MeV.

Hence Q value goes positive at 155, so A > 154 the decay is energetically
allowed.

9: Excited States
91
41Nb: The 50 neutrons correspond to a magic number and couple to overall

spin-parity 0+. The first 40 protons fill single-particle orbitals up to and including
2p1/2 and all these full orbitals contribute 0+. The odd proton sits in the 1g9/2

orbital giving the spin-parity of the ground state as 9/2+.
Excited states at low excitation energy can be formed by moving protons into

higher lying single-particle orbitals.
0.104 MeV: Promoting one 2p1/2 proton up to the 1g9/2 orbital. This forms

a 0+ pair with the original 1g9/2 proton. The odd proton is now the remaining
2p1/2 proton which gives an overall spin-parity of 1/2−.

1.187 MeV: Promoting one 1f5/2 proton up to the 1g9/2 orbital. This forms
a 0+ pair with the original 1g9/2 proton. The odd proton is now one of five left
in the 1f5/2 proton which gives an overall spin-parity of 5/2−. The other four
1f5/2 protons form two 0+ pairs.

1.313 MeV: Promoting one 2p3/2 proton up to the 1g9/2 orbital. This forms
a 0+ pair with the original 1g9/2 proton. The odd proton is now one of three left
in the 2p3/2 proton which gives an overall spin-parity of 3/2−. The other two
2p3/2 protons form a 0+ pair.

1.581 MeV: Promoting one 1g9/2 proton up to the 1g7/2 orbital, across the
Z = 50 magic gap. The odd proton then contributes 7/2+ to the nuclear spin-
parity with the rest of the nucleus undisturbed. Promotion across the Z = 50
gap requires a fair amount of energy so this state is at higher excitation energy.

10: Energies and Masses 17O might be thought of as 16O plus a neu-
tron in the 1d5/2 orbital, so the binding energy associated with this orbital is:
BE(17O)−16 O = 4.1434 MeV.
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15O might be thought of as 16O plus a neutron hole in the 1p1/2 orbital,
so the binding energy associated with this orbital is: BE(16O) − BE(15O) =
15.6637 MeV.

The energy gap between these two orbitals is then 15.6637 − 4.1434 =
11.52 MeV.

11: Odd-Odd Nuclei
16
7N9: odd proton in 1p1/2, odd neutron in 1d5/2. Possible total angular

momentum are 2, 3−.
12
5B7: odd proton in 1p3/2, odd neutron in 1p1/2. Possible total angular

momentum are 1, 2+.
34
15P19: odd proton in 2s1/2, odd neutron in 1d3/2. Possible total angular

momentum are 1, 2+.
28
13Al15: odd proton in 1d5/2, odd neutron in 2s1/2. Possible total angular

momentum are 2, 3+.
In each case you should find a preference for the intrinsic spins of the two

nucleons to be approximately parallel.
For example, in 16

7 N9 the experimental spin is 2−. The proton j and neutron
j are in a folded configuration i.e. ⇑⇓. The proton is in an l − s state i.e.
⇑↑↓, where the arrows indicate the semi-classical directions of j, l, and s in a
very approximate and quantum mechanically wrong way! The neutron is in an
l + sstate i.e. ⇓↓↓. Both intrinsic spin directions are ↓.

This empirical rule is part of the so-called ”Nordheim rules” which allow you
to figure out the ground-state spins of odd-odd nuclei. They can be understood
in terms of the residual interactions between the odd proton and neutron.....but
you find too many exceptions to the rule to make it worthwhile remembering!

12: More on Spin-Orbit Splitting
From above the values of Vso = − λ

h̄2 l.s for the parallel and antiparallel cou-
plings are:

V l+s
so = − λ

h̄2

h̄2

2
l = −λ

2
l

V l−s
so = − λ

h̄2

(
− h̄

2

2
(l + 1)

)
l = +

λ

2
(l + 1)

The energies of the levels are E0+V l±s
so so the average weighted by degeneracy

2j + 1 is:([
E0 −

λ

2
l

]
× [2(l + 1/2) + 1] +

[
E0 +

λ

2
(l + 1)

]
× [2(l − 1/2) + 1]

)
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/ (2(l + 1/2) + 1 + 2(l − 1/2) + 1)

=

([
E0 −

λ

2
l

]
× 2 [l + 1] +

[
E0 +

λ

2
(l + 1)

]
× 2l

)
/2 (2l + 1)

=

(
E0 [l + 1 + l] +

[
−λ

2
l(l + 1) +

λ

2
(l + 1)l

])
/ (2l + 1)

= (E0 [l + 1 + l]) / (2l + 1) = E0
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