
A PRIMER ON THE QUANTUM MECHANICS OF POTENTIAL
WELLS

Wave Function
The wave function ψ for a quantum system contains all the information that

you can ever know about that system. The energy, momentum, spin and any
other physical quantity can be obtained using the wave function. If a wave
function describes a particle, then the probability of finding the particle in a
particular place is determined by the square of the amplitude of the wave function
at that point.

Technically speaking, the probability of finding a particle between position x
and position x+ dx is given by:

P (x) = |ψ(x)|2 = ψ(x)∗ψ(x).

You can only have one probability for finding a particle at a particular location,
so the wave function must be a single-valued function. As a consequence, if you
move between two different zones in which the wave function is of different shape
or form, the wave function has to be continuous at the boundary between them.

Time-Independent Schrödinger Equation
If you are interested in the energy of a quantum mechanical system, one way

or another you solve the Time-Independent Schrödinger equation (TISE). This
can be written: [

−h̄2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r).

The operators in the square brackets represent kinetic and potential energy. The
eigenvalues of this equation E give the values of total energy that the system
can exist in. In many systems where a particle is confined to a region of space by
a force that generates a potential well, these are restricted to particular values,
giving rise to energy levels. In one-dimension, the TISE reduces to:[

−h̄2

2m

d2

dx2
+ V (x)

]
ψ(x) = Eψ(x).

Two Simple Examples
A particle moves in a region of space with a constant potential V0 and positive

kinetic energy. This situation is classically allowed as the total energy E is greater
than the potential energy, i.e. E − V0 is a positive number. The TISE for this
case is written: [

−h̄2

2m

d2

dx2
+ V0

]
ψ(x) = Eψ(x).
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Rearranging:
−h̄2

2m

d2ψ(x)

dx2
= (E − V0)ψ(x).

Writing k2 = 2m (E − V0) /h̄
2 gives:

d2ψ(x)

dx2
= −k2ψ(x).

The solution is a function that differentiated twice gives the original function
multiplied by a negative number, i.e. ψ(x) = A sin kx+B cos kx. The constants
A and B need to be determined by the boundary conditions of the region and
by the need to make sure that probabilities add up to unity.

A particle moves in a region of space with a constant potential V0 and negative
kinetic energy. This situation is classically forbidden as the total energy E is less
than the potential energy, i.e. E − V0 is a negative number. For example, a ball
will only run up a hill, losing kinetic energy and gaining potential energy, until
the kinetic energy falls to zero. Classically, it cannot move further up the hill;
if it did it would have a negative value of kinetic energy. However, in quantum
mechanics the uncertainty principle allows the borrowing of some energy, for a
period of time, which would allow the particle to roll a little further into the
classically forbidden region. The TISE has the uncertainty principle built into it.
The TISE is again: [

−h̄2

2m

d2

dx2
+ V0

]
ψ(x) = Eψ(x).

Rearranging:
−h̄2

2m

d2ψ(x)

dx2
= (E − V0)ψ(x).

But let’s make it clear that E − V0 is less than zero by writing it as −|E − V0|.
Again k2 = 2m|E − V0|/h̄2 now gives:

d2ψ(x)

dx2
= k2ψ(x).

The solution is function that differentiated twice just gives the original function
multiplied by a positive number, i.e. ψ(x) = Cekx + De−kx. Usually C has
to be set to zero; if not ψ becomes infinite and we cannot then arrange for
the sum of all probabilities to be equal to one, a process called normalisation of
the wave function. Hence ψ(x) = De−kx representing the fact that there is a
small probability of being in this classically forbidden region, but the probability
of doing so falls off exponentially the deeper you go into the forbidden zone.
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De Broglie’s Hypothesis
De Broglie considered the wave-like properties of particles moving in free

space and decided their wavelength λ would be related to their momentum p by
the relationship λ = h

p
where h is Planck’s constant. Particles moving in free

space would be the first situation that we analysed above so their wave function
would be ψ(x) = A sin kx+B cos kx where p = h̄k.

Given de Broglie’s relationship, it should be clear that the smaller the wave-
length of the wave function, the higher the particle’s momentum is and therefore
the higher it’s energy.

Strictly speaking, this only applies to free particles, cases where the potential
is a constant. Under these conditions the wave function is harmonic and the
wavelength is a constant. This is analogous to waves moving along a Slinky,
for example. When the potential is not a constant, the wave functions are not
harmonic functions, and wavelength is not a well defined quantity. (A classical
example might be a heavy chain held at one end and dangling down, the tension
changes along the length due to the weight of the links. Waving the end results
in what looks like a wave, but with a wavelength that changes down the chain.)
However, in some cases, often the wave functions look a little bit like a particular
sine or cosine and one can loosely speak of a wavelength (or technically speaking
a Fourier analysis might indicate the harmonic decomposition is dominated by
one harmonic function). In these cases, you can get a strong feeling for the
energy of the state guided by de Broglie’s relationship.

Quantum Mechanical of Potential Wells
A potential well is just a set of zones of different potential energy, e.g. a

finite well is just two regions of high potential with a zone of lower potential
between them. Classically, a particle would be trapped in the potential well if
it’s energy was smaller than the depth of the well. Quantum mechanically, we’ve
seen that a particle can exist in a classically forbidden region, so we’d expect the
probability of finding the particle in the well to be high, but a small probability of
finding it outside that diminishes rapidly the further we are away from the well.

Mathematically, the way to find the wave function in this case is to solve the
TISE in each region, then match the solutions at the boundary between them.
This means making sure that the wave function is continuous (i.e. single-valued)
at the interfaces, but also that it doesn’t have any kinks by making the slope of
the wave function continuous also.

Often a useful intuitive way to think about it is to consider that you are
fitting standing waves into the potential well. Consider an infinite square well
as a simple case. Notice that outside the well V0 = ∞, and the only way to
satisfy the TISE is to make ψ = 0 outside. In this particular case, we have a
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region with zero probability of finding the particle i.e. classically and quantum
mechanically forbidden. So at the boundary we have to make ψ = 0. Inside
the potential is constant, so inside the wave function has to be harmonic. We
can match these to the outside by having harmonic standing waves inside which
have nodes at the edge of the well (see diagram). The wavelengths then have
to satisfy the condition nλ

2
= a, where n is an integer and a is the width of the

square well.

In this case, the wave functions are perfectly harmonic, wavelength is perfectly
well defined and you can use de Broglie to calculate the energy of each standing
wave, assuming we choose the definition of potential to be zero inside the well:

E =
p2

2m
=

h2

2mλ2
=

n2h2

8ma2
.

So we’ve ended up with a series of discrete energy levels for different values of
the integer n, which correspond to wave functions with different wavelengths. If
you just try to solve the TISE directly, then match the solutions, this is exactly
what you get.

Notice that the energies increase if the well shrinks. You’re reducing the
wavelengths and so increasing momentum and energy.

An infinite square well is not exactly physically reasonable. Usually they have
finite well depths, so we have to consider the solution of a finite square well
in most realistic cases. We’ll do the maths in the lecture, but think about this
intuitively. If the bottom of the well is flat, and the sides vertical, then there
are two zones, inside and outside. If the particle sits in the well, its energy
will be less than the top. Inside the potential is constant i.e. harmonic wave
function. Outside it is a classically forbidden region, the wave function will be
exponentially falling. We then need to match a harmonic function onto these
decaying exponentials. The shorter the wavelength of the harmonic part, the
higher the energy is. So we have guessed what the solution to this problem looks
like, despite the mathematics being more complicated!
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