A PRIMER ON THE ANGULAR MOMENTUM AND PARITY
QUANTUM NUMBERS

Orbital Angular Momentum

Central field problems are common in physics and are based on a potential
than only depends on the distance from a fixed origin, usually the centre of mass
of the system. The associated force is directed towards the same point. An
important example of a classical central field problem is gravitational planetary
motion. The force on an orbiting planet is the gravitational attraction to the
centre of mass of the system i.e. along the radius vector r. Therefore the torque
on the object N = r x F has to be zero and so the orbital angular momentum
cannot change, unless there is some influence from something external to the
system.

The same is true in quantum mechanics; for a central field problem, orbital
angular momentum is a conserved quantity and therefore has a good quantum
number £. [In nuclei, a single nucleon is subjected to an approximately central
force, so orbital angular momentum is an approximately conserved quantity and
( is approximately a good quantum number]. Chapter 9 of A.C. Phillips’ book on
quantum mechanics runs through the quantum mechanical problem of a generic
central field. It is simplest to use spherical polar coordinates, and because the
potential only depends on r, the three-dimensional Schrdinger equation separates
into a radial equation that is peculiar to the potential (i.e. whether it is Coulomb
as in the atom, or the square-ish well potential for a nucleon in the nucleus).
The angular equation is always the same for a central field problem:

LYy, = L0+ DR Yy,

where L is the operator for orbital angular momentum and Y, ,,,, are a set of
standard functions called spherical harmonics.

The quantum number ¢ specifies the length of the orbital angular momentum
vector, which is equal to h/¢(¢ + 1). It can only take values that are positive
integers. It is usually denoted by a letter according to a series s, p, d, f, g, h,
i, 5, k..., for £=0,1,2,3,4,5,67, 8... respectively, that has its roots in old
optical spectroscopic notation.

The quantum number m, again can only be integer and runs from —¢ to +/.
It is related to the z component of the orbital angular momentum vector, which
is equal to myh. Remember from elementary quantum mechanics, the knowledge
of the length and one component of an angular momentum vector is all you can
have.



The radial equation from the separation ends up containing ¢, so the energies
of levels depends on the length of the orbital angular momentum vector. However,
unless there is some special circumstance normally involving external magnetic
fields, the level energy does not depend on my. So a level with a particular ¢ is
usually composed of 2¢ + 1 degenerate m, substrates.

Spin Angular Momentum

Electrons, protons and neutrons all have an intrinsic angular momentum asso-
ciated with them that is similar to the classical concept of spin. By analogy with
orbital angular momentum, one can define a set of spin operators for the length
and the z component of spin, 52 and S, respectively. These are associated with
a set of spin eigenvectors X, .,,, where s and m, are the quantum numbers.

Intrinsic spin is not as easy to describe as orbital angular momentum and
requires different handling. This results in the s quantum number being able
to take both positive half integer and positive integer values corresponding to
fermion and boson particles. The quantum number m; runs from —s to+s.

Total Angular Momentum

For particles with both orbital and intrinsic spin, the two angular momenta
can be added wectorially to produce a total angular momentum vector. Again
this has quantum numbers j and m; to describe the length of the total angular

momentum f4/j(j + 1) and its z component iim;.

If a particle has quantum numbers ¢ and s, the total angular momentum
quantum number can be from |¢ — s| to £ + s in integer steps. For example, if
¢ =2and s =1/2then j =3/2o0r5/2.

Spectroscopic notation can be used to describe a spin-1/2 fermion in a level
with particular j and ¢ values; n/; is used. n is the quantum number arising from
the radial equation and usually determines the energy of the level, along with £.
In the previous example, the two levels arising form the coupling of ¢/ = 2 and
s = 1/2 would be labelled by ds/, and ds,, prefaced by the appropriate n value.

Parity

Parity is a quantum number that tells you about how the wave function
behaves if you invert the coordinate system, i.e. for Cartesian coordinates x —
—x, y — —y and z — —z; for spherical polars you just need § — —6 and
o — ¢+ If P is an operator that does this, and you applied the operator
twice, you should end up with the same thing. Trying that:

Py = py
where p is the "quantum number” for parity. And again:

PPy = Ppyp = p*y.



So if this is to get us back where we started, then p?> = £1. So wave functions
can be classified as positive and negative parity in this way.

The parity operator is all about changing the geometric coordinates around.
For spherical polar coordinates this just involves 6 and ¢, so parity must be
determined by the angular equation only i.e. it is a property of the spherical
harmonics. It turns out that those functions have positive parity if ¢ is even, and
negative parity is ¢ is odd.

If you are combining particles with each with specific parities, it turns out that
the quantum number is multiplicative, i.e. the overall parity is a multiplication
of the individual parities of the composite bits.



