PC3322

ONE HOUR THIRTY MINUTES

A list of constants is enclosed.

UNIVERSITY OF MANCHESTER

Nuclear Physics

2 June 2000, 9.45 a.m. - 11.15 a.m.

Answer <u>ALL</u> parts of question 1 and <u>TWO</u> other questions

Electronic calculators may be used, provided that they cannot store text.

The numbers are given as a guide to the relative weights of the different parts of each question.

PC3322 June 2000 continued...

1. (a) What are the assumptions made in estimating the transition rate of a singleparticle electric-multipole γ -ray decay?

[5 marks]

(b) Given that the angular momentum and parity of the ground state of ${}_{8}^{17}$ O is ${}_{2}^{5+}$, explain the observation that the angular momentum and parity of the ground state of ${}_{9}^{19}$ F is ${}_{2}^{1+}$. [5 marks]

(c) The first four excited states of 118 Cd are (in keV):

488 $(J^{\pi} = 2^{+})$; 1165 (4^{+}) ; 1270 (2^{+}) ; 1285 (0^{+}) .

What nuclear model best describes these levels? Explain any deviations from the model predictions.

[5 marks]

(d) Briefly discuss the process of superallowed β decay, explaining its importance in weak interaction physics.

[5 marks]

(e) Explain why the nucleus ^{184}Os is tabulated as stable despite the fact that it has a positive Q-value for α decay.

[5 marks]

PC3322 June 2000 continued...

2. Describe two pieces of evidence that demonstrate that nuclei in the A = 160 region are non-spherical.

[6 marks]

Show that the moment of inertia I of a deformed nucleus as a function of the angular momentum J can be written as

$$I = \frac{2J - 1}{E_J - E_{J-2}} \qquad (\hbar^2 \ MeV^{-1}).$$
[6 marks]

The diagram below gives the levels and γ -ray transitions (in MeV) of the ground-state rotational band of ¹⁵⁸Er. Calculate the moment of inertia I as a function of rotational frequency ω . Sketch your results and explain the features of this sketch.

[13 marks]

PC3322 June 2000 continued...

3. The binding energy term of the semi-empirical mass formula can be written as:

$$B(A,Z) = a_V A - a_S A^{2/3} - a_C Z^2 A^{-1/3} - a_{symm} \frac{(A-2Z)^2}{A} + \delta.$$

Briefly explain the physical origin of each term.

For odd-mass nuclei show that the most stable nucleus of a given mass A has

$$Z = \frac{A}{2 + bA^{2/3}} ,$$

where $b = \frac{a_C}{2a_{symm}}$.

[7 marks]

[15 marks]

Hence calculate the Z of the most stable element with A = 209.

[3 marks]

$$[a_C = 0.711 \text{ MeV}; a_{symm} = 23.7 \text{ MeV}]$$

4. Give a qualitative description of how the charge density distribution of a nucleus is determined from elastic electron scattering.

[11 marks]

Sketch a typical nuclear charge distribution, indicating and explaining the principal features.

[9 marks]

A 1 GeV electron scatters from a stationary 208 Pb nucleus at an angle of 30°. Calculate the momentum transfer for this scattering event in units of fm⁻¹.

[5 marks]