## PC3322

### **ONE HOUR THIRTY MINUTES**

A list of constants is enclosed.

# UNIVERSITY OF MANCHESTER

Nuclear Physics

30th May 2006, 2.00 p.m. - 3.30 p.m.

Answer <u>ALL</u> parts of question 1 and <u>TWO</u> other questions

Electronic calculators may be used, provided that they cannot store text.

The numbers are given as a guide to the relative weights of the different parts of each question.

$$r = 1.2 A^{1/3} fm$$
  
 $1u = 1.67 \times 10^{-27} kg.$ 

- 1. (a) Sketch the nuclear charge density as a function of radius. Label the *skin thickness* and the *root-mean-square radius* on the plot. [5 marks]
- (b) The binding energy term of the semi-empirical mass formula can be written as

$$BE(Z, A) = a_{volume}A - a_{surface}A^{2/3} - a_{asymm}\frac{(A - 2Z)^2}{A} - a_{Coulomb}\frac{Z^2}{A^{1/3}} + \delta,$$

where all the symbols have their usual meetings. Use this to explain why for evenmass nuclei there may be more than one stable isotope in an isobaric chain. [5 marks]

- (c) Explain why pionic x-rays are a useful probe of the nuclear matter distribution. [5 marks]
- (d) The first four excited states in <sup>106</sup><sub>46</sub>Pd are (in keV): 512 ( $J^{\pi} = 2^+$ ); 1229 ( $J^{\pi} = 4^+$ ); 1128 ( $J^{\pi} = 2^+$ ) and 1133 ( $J^{\pi} = 0^+$ ). What nuclear model best describes these levels?

Briefly explain any deviations from the model predictions. [5 marks]

(e) Briefly explain why  $\alpha$  decays involving large angular momentum are hindered. Explain why some decays to specific states in the daughter nucleus are not observed. [5 marks] 2. (a) Write down an expression which is commonly used to parametrise collective oscillations of a deformed nuclear surface. Define any symbols you use. [6 marks]

Show that, in a rotational band with constant moment of inertia,  $\Im$ , the transition energies increase linearly with spin. [6 marks]

(b) The  $\beta^+$  decay of <sup>180</sup>Os to <sup>180</sup>Re is shown in the figure below. Also shown are the lowest two excited states in <sup>180</sup>Os.



- (i) How is this  $\beta$  decay classified? Fully justify your answer.
- (ii) Estimate the half-life of the 4<sup>+</sup> state in <sup>180</sup>Os in terms of the single-particle model. The experimentally measured half-life is  $6 \times 10^{-11}$  s, comment on this result.

[5 marks]

[5 marks]

(iii) What decay mode can compete with  $\beta^+$  decay? What factors influence the branching ratio between these two decay modes? [3 marks]

The Weisskopf single-particle estimates are given as follows:

| $\lambda(E1) = 1.0 \times 10^{14} A^{2/3} E^3$ | $\lambda(M1) = 5.6 \times 10^{13} E^3$      |
|------------------------------------------------|---------------------------------------------|
| $\lambda(E2) = 7.3 \times 10^7 A^{4/3} E^5$    | $\lambda(M2) = 3.5 \times 10^7 A^{2/3} E^5$ |
| $\lambda(E3) = 34A^2E^7$                       | $\lambda(M3) = 16A^{4/3}E^7$                |

where E is in MeV and  $\lambda$  is in s<sup>-1</sup>.

P.T.O.

### PC3322

**3.** Describe briefly how the *matter* radius of a nucleus can be determined by elastic scattering. [10 marks]

Briefly explain how the detail that can be resolved in elastic-scattering experiments depends on the kinetic energy of the projectile. [3 marks]

Elastic scattering is one method which can be used to determine the charge radius of a nucleus. In this elastic scattering process the magnitudes of the initial and final momenta  $P = \hbar K$  of the electron, which is scattered through an angle  $\theta$ , are equal. Use this information to show that the transferred momentum,

$$q = 2K\sin(\theta/2).$$

[4 marks]

Explain why in these measurements the experimental precision of the measured charge density is poorer in the central region of the nucleus. [4 marks]

The first minimum in the differential cross section for 450-MeV electrons incident on  ${}^{58}$ Ni occurs at q=0.9 fm<sup>-1</sup>. Estimate the radius of  ${}^{58}$ Ni. Compare your answer with that expected from a simple estimate. [4 marks]

P.T.O.

4. Give one example why a spin-orbit interaction is necessary to describe the measured properties of nuclei. [2 marks]

Write down the states which are produced when the spin-orbit interaction acts on a 1p shell-model state. Write down a general expression for the degeneracy of a shell-model state in terms of the orbital angular momentum, l. [4 marks]

The energy splitting,  $\epsilon_j$ , introduced by the spin-orbit interaction for a state of spin,  $\mathbf{j} = \mathbf{l} + \mathbf{s}$ , is given by

$$\epsilon_j = -V_{s.o.} \langle \mathbf{l} \cdot \mathbf{s} \rangle$$

Use this expression to show that the total spin-orbit energy splitting,  $\Delta E$  is given by

$$\Delta E = \frac{V_{s.o}}{2}(2\mathbf{l}+1)\hbar^2.$$

[7 marks]

Sketch the ordering of the shell-model single-particle levels arising from the 1s, 1p and 1d orbitals. Using your sketch, make predictions for the ground-state spin and parity of  ${}^{13}_{6}$ C and  ${}^{15}_{6}$ C. [9 marks]

Using the same diagram for  ${}^{13}_{6}$ C, explain the observation of: (i) a low-lying excited state with  $J^{\pi} = \frac{5}{2}^{+}$ , and (ii) a higher-lying excited state with  $J^{\pi} = \frac{7}{2}^{-}$ . [3 marks]

### END OF EXAMINATION PAPER