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Abstract

In multidisciplinary optimization the designer needs to find a solution to an op-
timization problem that includes a number of usually contradicting criteria. Such a
problem is mathematically related to the field of nonlinear vector optimization under
constraints. It is well-known that the solution to this problem is far from unique and
given by a Pareto surface. In the real-life design the decision-maker is able to analyze
only several Pareto optimal (trade-off) solutions. Therefore, a well-distributed repre-
sentation of the entire Pareto frontier is especially important. In the literature, there are
only a few methods that are capable of even generating a Pareto frontier in a general
formulation. They are compared to each other, while the main focus is devoted to a
general strategy combining the advantages of the known algorithms. The approach is
based on shrinking a search domain to generate a Pareto optimal solution in a selected
area on the Pareto frontier. The search domain can be easily conducted in the general
multidimensional formulation. The efficiency of the method is demonstrated on dif-
ferent test cases. For the problem in question, it is also important to carry out a local
analysis. This provides an opportunity for a sensitivity analysis and local optimiza-
tion. In general, the local approximation of a Pareto frontier is able to complement a
quasi-even generated Pareto set.

1 Introduction

In the real-life design, the decision-maker (DM) has to take into account many different
criteria such as low cost, manufacturability, long life and good performance which cannot
be satisfied simultaneously. In fact, it is possible only to consider a trade-off among all
(or almost all) criteria. The task becomes even more complicated because of additional
constraints which always exist in practice.
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Mathematically, the trade-off analysis can be formulated as a vector nonlinear opti-
mization problem under constraints. Generally speaking, the solution of such a problem is
not unique. It is natural to exclude from the consideration any design solution that can be
improved without deterioration of any discipline and violation of the constraints; in other
words, a solution that can be improved without any trade-off. This leads to the notion of
a Pareto optimal solution [1]. Mathematically, each Pareto point is a solution of the mul-
tiobjective optimization (MOO) problem. A designer selects the ultimate solution among
the Pareto set on the basis of additional requirements, which may be subjective. Generally
speaking, it is desirable to have a sufficient number of Pareto points to represent the en-
tire Pareto frontier in the objective space. Yet it is important the Pareto set to be evenly
distributed, otherwise the generation of the Pareto set becomes inefficient.

Despite the existence of many numerical methods for vector nonlinear optimization,
there are few methods potentially suitable for real-design applications. This is because the
problem in question is usually very time-consuming. In many practical multidisciplinary
optimization applications the design cycle includes time-consuming and expensive compu-
tations at each discipline. For example, in the aerospace industry this is most evident in the
solution of the aerodynamics and stress analysis tasks. The solutions corresponding to these
subtasks influence each other and usually demand iterations to reach the ultimate solution.
Under such conditions, it is important to minimize the number of iterations required to find
a Pareto optimal solution.

In general, the optimization methods can be split into two principle categories: classical,
preference-based, methods and evolutionary genetic-based algorithms (GA). The classical
methods usually use deterministic approaches, whereas GA usually use stochastic algo-
rithms. It goes without saying that such a division is not strict and the combination of
classical and GA methods is also possible. In classical MOO methods, vector optimization
approaches are often reduced to the minimization of an aggregate objective function (AOF)
(preference function), which includes a combination of objective (cost) functions. The
simplest and most distributed example of the AOF is represented by a linear (weight) com-
bination of the objective functions [1]. This method has many drawbacks related mainly to
an uncertainty in weights coefficients. It may require many iterations to find the combina-
tion of the weights leading to a solution, which corresponds to the DM’s expectations [2].
Furthermore, it is well known that this method can generate only the convex part of a Pareto
surface [3] while real-life problems often result in non-convex Pareto frontiers. This draw-
back can be avoided by using either a more complex consideration of the AOF [4] or the
weighted Tchebychev method [1]. However, the weights remain to be unknown functions
of the objectives [2].

In real design, the DM is able to consider only a few possible solutions (Pareto points).
In such a context, it is important to have a well-spread distribution of Pareto points to
obtain maximum information on the Pareto surface at minimum (computational) cost. Das
and Dennis [5] showed that an even spread of weights in the AOF does not necessary result
in an even distribution of points in the Pareto set. In the literature, there are only a few
methods that can be considered for even generating the entire Pareto frontier in the general
multidimensional formulation [6].
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1.1 Quasi-even Set Generators of Pareto Frontier

The Normally Boundary Intersection (NBI) Method [7], [8] is developed for generating
a quasi-even distribution of Pareto solutions by Das and Dennis. The method has a clear
geometrical interpretation. It is based on the well-known fact that a Pareto surface belongs
to the boundary of feasible domain towards minimization of objective functions [1]. First,
so-called anchor points are obtained in the objective space. An anchor point corresponds
to the optimal value of one and only one objective function in the feasible domain. Thus, n
objective functions provide up to n anchor points. Second, the utopia plane passing through
the anchor points is obtained. The Pareto surface is then constructed by the intersection of
lines normal to the utopia plane and the boundary of feasible domain. A single optimization
problem with respect to one of the objective functions is solved along each line. An even
distribution of Pareto points is provided by even distribution of lines orthogonal to the utopia
plane. One can note that this is valid until cosine of the angle between such a line and the
normal to the boundary of feasible space is not locally close to zero. The method appeared
to generate non-Pareto and locally Pareto solutions that requires a filtering procedure [9],
[10]. In addition, the NBI method might be non-robust because the feasible domain is
reduced to a line.

The Normal Constraint (NC) Method [9], [12] by Messac et al. represents the modifi-
cation of the NBI approach. The single optimization problem, used in the NC, is based only
on inequality constraints. This modification makes the method more flexible and stable.
Both methods may fail to generate Pareto solutions over the entire Pareto frontier [12] in a
multidimensional case. The modification of the NC [12] partially eliminates this drawback.
However, both methods may generate non-Pareto and locally Pareto solutions [9] although
the NC does it less likely [12]. In [10], [6] it is shown that both the NBI and NC methods
can be inefficient because of the significant number of redundant solutions. In the example
given in [6], sixty six points on the utopia plane lead only to twenty four Pareto solutions.
Another examples can be found in [10]. Both the methods can meet significant difficulties
in the case of a disconnected frontier [10]. In particular, they do not always find the entire
Pareto frontier. Meanwhile, one can note that a recent modification of the NC method [14]
is able to improve these methods.

The Physical Programming (PP) Method is suggested in [13] by Messac. This method
also generates Pareto points on both convex and non-convex Pareto frontiers as shown in
[15]. The method does not use any weight coefficients and allows one to take into account
the DM experience immediately. In the PP, the designer assigns each objective to one of
the four categories (class-functions). The optimization is based on minimization of an AOF
determined by the preference functions (class-functions). The algorithm given in [15] is
able to generate an evenly distributed Pareto set. However, it contains a few free parameters.
The optimal choice of those requires a preliminary information on the location of the Pareto
frontier.

In [16] and [6], Utyuzhnikov et al. modify the PP to make it simpler and more efficient
for practical applications. A simpler structure of the class-functions is suggested. The class-
functions are generalized to shrink the search domain and make its location in space more
optimal. This is critical for generating an even set of the Pareto frontier. The proposed
modification combine the advantages of the PP, NBI and NC methods. One of the main
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advantages of the approach [6] is that it does not provide non-Pareto solutions while local
Pareto solutions may be easily recognized and removed. In [6] it is shown that the modified
PP is able to generate a quasi-even Pareto set in the general formulation. It is proven that
the method is able to capture an entire Pareto frontier in the general case. As will be shown
in this Chapter, the algorithm suggested in [6] can be applied beyond the PP technique.

In contrast to the classical, preference-based, approaches, the class of evolutionary
methods, such as genetic-based algorithms (GA), generate a set of Pareto solutions simulta-
neously (see, e.g., [17], [18]). This class of methods seems to be very promising for solving
multiobjective problems. Unfortunately GA do not usually guarantee either the generation
of a well-distributed Pareto set or the representation of the entire Pareto frontier. In [11],
GA is combined with the generalized data envelopment analysis to remove dominated de-
sign alternatives. The method is capable to efficiently generating both convex and concave
frontiers. All examples in [11] are obtained only for two objective functions. A modifica-
tion of the evolutionary algorithm is suggested in [10] to generate a well-distributed Pareto
set. The general problem of GA is that their efficiency significantly drops if the number of
objective functions increases especially at the presence of constraints.

A global information on the Pareto frontier, gained from a well distributed Pareto set,
can be complimented via a local analysis. If a local approximation of the Pareto frontier is
available, then it can be used for a sensitivity (trade-off) analysis. In [22], Utyuzhnikov et
al. derived the precise formula for the linear and quadratic approximations in the multidi-
mensional formulation. They showed that the formulae [23], widely used in the literature
for the linear approximation, should be corrected in the general formulation.

The Chapter is organized as follows. In Section 2 the general mathematical formulation
of multiobjective optimization under constraints is given. Then, in Section 3 an algorithm
for even-generating a Pareto set is described. The algorithm is given in the general for-
mulation for an arbitrary number of design variables, objective functions and constraints.
Some examples of the application of the algorithm are shown in Section 4. Local approxi-
mations of a smooth Pareto frontier in the objective space are derived in Section 5. Finally,
an example of the local approximation is given in Section 6.

2 Multiobjective Optimization Problem. Pareto Optimal Solu-
tion

Assume that there are N design variables to be found. Then, we can introduce a design
space X ⊂ RN . Each element in the design space is represented by a design vector x =
(x1,x2, . . . ,xN)T : x ∈ X. Suppose that the quality of each combination of design variables
is characterized by M objective (cost) functions. As such, along with the design space
X, we introduce the space of objective functions Y ⊂ RM. Each element in the objective
space Y is represented by a vector y = (y1,y2, . . . ,yM)T , where yi = fi(x), fi : RN → R1,
i = 1,2, . . . ,M. Thus, X is mapped onto Y by f ∈ RM : X 7→ Y.

Suppose that there are constraints, which are formulated via either equations or in-
equalities. Then, we arrive at the following multiobjective optimization problem under
constraints:

min[y(x)] (1)
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subject to K inequality constraints

gi(x)≤ 0, i = 1,2, . . . ,K (2)

and P equality constraints
h j(x) = 0, j = 1,2, . . . ,P. (3)

The feasible design space X∗ is defined as the set of design variables satisfying all the
constraints (2) and (3). The feasible criterion (objective) space Y∗ is defined as the set:
{Y(x)| x ∈ X∗}. Thus, the feasibility means no constraint is violated.

Definition. a design vector a (a ∈ X∗) is called a Pareto optimum iff it does not exist any
b ∈ X∗ such that

y(b)≤ y(a)

and exist l ≤M : yl(b) < yl(a).

A design vector is called a local Pareto optimum if it is a Pareto optimum in its some
vicinity.

In other words, a design vector is Pareto optimal if it cannot be improved with regard to
any objective function without deterioration of at least one of the others. Due to constraints,
we are not able to minimize all objectives simultaneously. Thus, the solution of the MOO
problem (1), (2), (3) is not unique and any solution represents a trade-off between different
objectives. Consider any element x ∈ X such that vector y(x) belongs to the interior of
the feasible space Y∗ rather than its boundary. Obviously, such an element cannot be a
Pareto solution. More precisely, the general solution of an MOO problem is represented
by a Pareto surface, which always belongs to the boundary of the feasible space Y∗. In the
real-life design, as a rule, it is impossible to obtain the entire Pareto frontier. In fact, the
entire Pareto frontier is not usually required.

In the next Section, we consider an algorithm that provides a well-distributed represen-
tation of the entire Pareto surface. We describe a strategy to seek the Pareto frontier based
on a Directed Search Domain (DSD) algorithm, which was first applied for the modifica-
tion of the PP method in [16] and [6]. One can see that the DSD approach can be used for
very different search engines. The main idea of DSD is that we shrink the search domain to
obtain a Pareto solution in a selected area of Y∗. A well-spread distribution of the selected
search domains should give us a quasi-even Pareto set.

3 Generation of a Well-Distributed Pareto Set. DSD Algorithm

3.1 Trade-off matrix. Utopia plane

For further consideration, we introduce the trade-off matrix T :

T =




f1,min f12 . . . f1M

f21 f2,min . . . f2M

. . . . . . . . . . . . . . . . . . . . . . . .
fM1 fM2 . . . fM,min


 . (4)
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In the trade-off matrix T , an i-th row represents the coordinates of an anchor point µµµ∗i
corresponding to the solution of single-optimization problem min fi in the feasible criterion
space Y∗ (see, e.g.,[12]):

µµµ∗i = f (Xi∗),
{

Xi∗ : Xi∗ = argmin
Y∗ fi

}
. (5)

In the feasible space Y∗ we consider a hypercube H limiting the search domain. For that
we define pseudo-nadir points [12]: fi,max = max

j
fi j, where fi j are the elements of the trade-

off matrix T . Then, the hypercube H is represented by H = [ f1,min f1,max]× [ f2,min f2,max]×
·· ·× [ fM,min fM,max]. One can show that the hypercube H always contains the Pareto fron-
tier [12].

Next, similar to the NC method, we introduce the utopia plane created by anchor points
µµµ∗i . One can show that the polygon spanned by all M vertexes µµµ∗i is convex. Then, any point
f∗, belonging to the interior of this polygon, is represented by:

f∗ =
M

∑
i=1

αiµµµ∗i . (6)

Here, the parameters αi satisfy the following conditions:

0≤ αi ≤ 1 (i = 1, . . . ,M), (7)
M

∑
j=1

α j = 1.

As shown in [6], the definition of an anchor point can strongly affect the efficiency
of the algorithm for Pareto set generation. The standard definition does not always lead
to a uniquely determined point. To resolve this problem, in the next Section a modified
lexicographic-based definition of the anchor point is given following [16] and [6]. It guar-
antees the uniqueness of the anchor point for each objective.

3.2 Modified anchor points

The standard definition of an anchor point (5) may lead to a non-uniqueness. If the
solution of the problem (5) is not unique, then the point corresponding to the minimal value
of the other objective functions is to be chosen. It may lead to the problem of trade-off
minimization for the remaining objectives. To avoid this, priority in the minimization is in-
troduced as follows. First, instead of space Y∗, we consider domain Y∗∗ that includes all ul-
timate points of Y∗. Then, we minimize fi, then fi+1 and so on up to fi−1. Thus, we use the
following lexicographic prioritization in a circular order: i+1, i+2, . . . ,M,1,2, . . . , i−1. A
k− th prioritization assumes that the k− th minimization must not violate all the previous
k− 1 ones. One can prove that all anchor points belong to the Pareto frontier. Indeed, the
anchor points belong to the boundary of the feasible domain Y∗ and no objectives can be
improved without deterioration of any other objective. As soon as we know the coordinates
of the anchor points we can determine the polygon (6), (7) on the utopia plane.
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3.3 Reference points on the utopia plane

Next, in the objective space consider a search domain D: fi ≤ f ∗i (i = 0, . . . ,M), where
the vector f∗ is determined by (6) and (7). The lower boundary in D can be quite arbitrary
in each direction. However, the values of the lower boundaries must be small enough for
the search domain to contain a part of the Pareto surface if possible. It is natural to require
that fi,min ≤ fi ≤ f ∗i (i = 0, . . . ,M), where fi,min are determined by the trade-off matrix T in
(4). The end of the vector f∗ determines a reference point M: M = ( f ∗1 , f ∗2 , . . . , f ∗M)T , which
belongs to the interior of the utopia polygon (6) and (7) including its boundaries. Obviously,
there is no guarantee that a local search domain D has any intersection with Y∗. Then, and
only then, we switch the search on the opposite direction: f ∗i ≤ fi (i = 0, . . . ,M). In turn, it
is natural to require the search domain is limited by f ∗i ≤ fi ≤ fi,max (i = 0, . . . ,M), where
fi,max are determined by the trade-off matrix T .

A well-spread distribution of the search domains can be reached via an even distribu-
tion of the coefficients αi in (7). An algorithm for calculating the coefficients αi is given in
[12]. The approach is based on an induction procedure. First, a uniform distribution of the
coefficient α1 is considered. From conditions (7) it is clear that the sum of the rest coeffi-
cients ∑M

1 α j equals to 1−α1 for each selected value of α1. Then, we consider a uniform
distribution of the coefficient α2 for each of these variants. The algorithm is repeated until
either the last coefficient αM is reached or the sum of the coefficients already determined is
equal to 1. In the latter case we set the remaining coefficients to be zero.

In contrast to the NC and NBI algorithms, the DSD approach allows us to represent the
entire Pareto frontier considering only non-negative coefficients αi, which satisfy conditions
(7). As shown in [6], it is important to avoid redundant solutions.

A distribution of reference points leads to different search domains. As a result, one
can expect generating different Pareto solutions. However, as shown in [6], it is not always
the case. Although the search domain is limited for each case, it is large enough and the
distribution of the Pareto set may be sensitive to the displacement of the box D along the
utopia plane especially if the Pareto frontier is concave. A more efficient and flexible algo-
rithm based on the introduction of new objective functions is described in the next Section.
It is based on an affine transform of the coordinate system in the objective space. In the
algorithm, to substantially shrink the search domain, an affine transform of the coordinate
system is introduced in the objective space

3.4 Shrinking of search domain

Following to [6], let us introduce new objective functions f̃i via an affine transform

f̃i =
M

∑
j=1

f jB ji (i = 1, . . . ,M). (8)

In the objective space Y, it is equivalent to the introduction of a new coordinate system
with the basis vectors

ai =
M

∑
j=1

Ai je j (i = 1, . . . ,M), (9)

A−1 = B,
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where e j ( j = 1, . . . ,M) are the basis vectors of the original coordinate system.
For the new objective functions we can shrink the search domain to the following:

f̃i ≤ f̃ ∗i (i = 1, . . . ,M)), (10)

where f̃ ∗i is determined by the transform (8):

f̃ ∗i =
M

∑
j=1

f ∗j B ji (i = 1, . . . ,M). (11)

Then, the search domain can be changed as shown in Figure 1. In particular, we can
choose the basis vectors ai (i = 1, . . . ,M) to form an angle γc to a selected direction l. In 2D
case the matrices A and B can be easily determined:

A =
(

cosγ− sinγ−
cosγ+ sinγ+

)
, B =

1
2γc

(
sinγ+ −sinγ−
−cosγ+ sinγ−

)
, (12)

where γ+ = γn + γc, γ− = γn− γc, l = (cosγn,sinγn)T .

Figure 1: Search domain [6]

Figure 2: Basis vectors [6]
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To extend this approach to a multidimensional space RM, we set the following condi-
tions on the basis vectors ai:

(ai, l) = cosγc (i = 1, . . . ,M).

Here, (·, ·) corresponds to the inner product.
Thus, all the vectors ai are parallel to the lateral area of the hypercone that has the angle

γc and the axis directed along vector l. It is important to guarantee a spread distribution
of these vectors. Then, it is clear that the basis created by vectors ai must not vanish.
The following algorithm guarantees a fully uniform distribution of the basis vectors ai (i =
1, . . . ,M) around an axis l in RM .

First, we introduce vector l:

l = l0, (13)

l0 = (l0, l0, . . . , l0)T .

If the vector l is unit, then it has coordinates:

l0 ≡ cosγ0 =
1√
M

.

The basis vector ai can be determined in the plane created by the vectors ei and l0 (see
Figure 1). One can show that

ai =
sinγc

sinγ0
ei +

sin(γ0− γc)
sinγ0

l0 (i = 1, . . . ,M). (14)

Obviously, the basis of the vectors ai (i = 1, . . . ,M) does not vanish. The basis vectors
form a search cone similar to the 2D cone shown in Figure 1. It is clear that if M = 2 and
γ0 = π/4, then we obtain formula (12).

From (9), (13) and (14) we have

A = A0 ≡ sinγc

sinγ0
I +

sin(γ0− γc)
sinγ0

E, (15)

where all elements of the matrix E are unities: ‖Ei j‖= 1.
In (15), the angle γc is quite arbitrary. However, it should be small enough to provide

shrinking the search domain. On the other hand, it should be not too small to avoid any
stiffness related to that [6]. Finally, it is to be noted that the matrix A0 is to be inverted to
find the matrix B. However, it should be done only once because the matrix A0 is the same
for all the search domains.

Transform (8) allows us to shrink the search domain and focus on a much smaller area
on the Pareto surface. It makes the algorithm more flexible and much less sensitive to the
displacement of box D. It generates a “light beam” emitting from point M and highlighting
a spot on the Pareto frontier [6]. As noted above, if no solution is found, the direction is
switched on the opposite.
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3.5 Arbitrary direction of search domain

The direction of the search domain along the lines parallel to the vector l0 can be suffi-
cient. However, in the general case it is required to obtain the appropriate matrix A for an
arbitrary unit vector l. For this purpose, we consider a linear transform mapping the previ-
ous pattern in such a way that the vector l0 is mapped onto the vector l. It can be obtained
by multiplying both parts of equation (9) by an orthogonal matrix R:

Rl0 = l.

Next, we obtain the basis of vectors {a′i} (i = 1, . . . ,M) uniformly distributed on the
lateral area of the hypercone that has the axis parallel to the vector l:

a′i =
sinγc

sinγ0
e′i +

sin(γ0− γc)
sinγ0

l (i = 1, . . . ,M), (16)

where e′i = Rei are the basis vectors of the Cartesian coordinate system in which the vector
l has equal coordinates. One can see that the columns of transition matrix R are the co-
ordinates of the vectors e′i (i = 1, . . . ,M) in the basis {e j} ( j = 1, . . . ,M). It is clear that
all angles are preserved because the transform is orthogonal. In particular, (a′i, l) = cosγ0.
Hence, we obtain the matrix A in the general form:

A = A0RT =
sinγc

sinγ0
RT +

sin(γ0− γc)
sinγ0

E, (17)

where ‖Ei j‖= ‖l j‖.
If γc = γ0, obviously a′i = e′i that means the transform becomes orthogonal and is only

reduced to a turn of the original Cartesian coordinate system. As such, the matrix A is
orthogonal and B = AT .

It is clear that in the general case B = RA−1
0 . The matrix A0 is only assigned to the

vector l0. Thus, in the entire algorithm only matrix A0 is to be inverted. It is important for
multidimensional applications.

The general presentation requires the calculation of the orthogonal matrix R, the com-
ponents of which must satisfy the following additional requirements:

cosγ0

M

∑
j=1

Ri j = li. (18)

It is clear that the matrix R in (18) is not unique. The simplest way to obtain it is to consider
the rotation from the vector l0 to the vector l in a Cartesian coordinate system related to
these vectors:

R = DTRDT .

Here, TR is an elementary rotation matrix describing the rotation in the plane created by the
first two basis vectors

TR =




(l0, l) −
√

1− (l0, l) 0 . . . 0√
1− (l0, l) (l0, l) 0 . . . 0

0 0 1 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 1
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and the matrix D is the transition matrix from the original basis to an orthogonal basis {bi}
assigned to the vectors l and l0. For example, it can be obtained as follows. First, we
consider orthogonal unit vectors b1 = l0 and b2 = (l− (l, l0)l0)/

(√
1− (l, l0)2

)
. Then, we

complement these two vectors by vectors {ei} upon the Gram-Schmidt orthogonolization
procedure. According to this procedure, each subsequent vector is to be orthogonal to all
the previous.

More precisely, from all basis vectors {ei}we eliminate two vectors that create the most
minimal angle with the vector l. Without loss of generality, assume that we retain vectors
ei (i = 3, . . . ,M). Then, we have

bk =
ek−

i=k−1
∑

i=1
(ek,bi)bi

√
1−

i=k−1
∑

i=1
(ek,bi)2

(k = 3, . . . ,M).

Thus, the columns of the matrix D consist of the vectors bi (i = 1, . . . ,M):

D = (b1,b2, . . . ,bM).

It is clear that the obtained matrix D is orthogonal.
Thus, the direction of the search can be easily conducted. Finally, it is to be noted that

the rotation from the vector l0 to a vector l makes sense only if the angle between the two
vectors is big enough.

3.6 Rotation of search domain

The general representation of the matrix A given by equation (17) can be important
for seeking the Pareto set nearby its boundary. If we consider orthogonal projection of the
Pareto set onto the utopia hyperplane, the images of some Pareto points may not belong to
the interior of the convex polygon (6), (7) spanned by the M vertexes µµµ∗i . This fact was first
noted in [12]. One of the possibilities to resolve this problem, suggested in [12] for the NC
method, is based on the use of negative coefficients αi. However, this can lead to too many
redundant solutions [6]. Another opportunity is suggested in [6] and described below.

Let us consider the edge vectors of polygon (6), (7): νννi = µµµi+1−µµµi (i = 1, . . . ,M−1).
The point pi belongs to a k-th edge of the polygon if and only if αm = 0 (m 6= k,k + 1).
Assume that the vector l is related to the normal of the utopia hyperplane. Then, if the point
M belongs to on an edge of the polygon, we rotate the vector l in the direction opposite
to the polygon. In other words, l is changed in such a way that the orthogonal projection
of the end of the vector, drawn from an edge, onto the utopia hyperplane does not fall in
the interior of the polygon. For this purpose, in the utopia plane we introduce a unit vector
which is the outer normal to the edge in question. The vector can be defined as:

si =
νννi+1 +βiνννi

|νννi+1 +βiνννi| , βi =−(νννi−1,νννi)
(νννi,νννi)

.
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Then, the current vector lr is determined via si and normal n to the utopia hyperplane
towards the decrease of all objective functions as follows:

lr = cosθrn+ sinθrsi, (19)

0 < θr < π/2. (20)

The angle θr is a parameter. Changing θr from 0 to π/2, the vector lr is turned from the
normal vector n to the vector si (see Figures 3a and 3b). Thus, we arrive at the following
algorithm. If the reference point M belongs strictly to the interior of the polygon, then
the vector lr coincides with the normal n. If point M is on an edge of the polygon, then
an additional rotation of the vector may be required. To obtain an even distribution of
the Pareto set, the number of additional points Nr related with the rotation of the vector lr
depends on the distance to the vertexes of the edge. For example, the rotation is not required
at the anchor points. Generally speaking, it is reasonable to choose the maximal value of
Nr at the center of an edge. The following evaluation of Nr is suggested for a k-th edge:

Nr = integer(4mαkαk+1) (m≥ 1). (21)

Finally, it is worth noting that this number can be substantially optimized if the infor-
mation on the current local distribution of the Pareto set is taken into account. For example,
as noted above, if a Pareto solution appears to be at an edge of the polygon, no additional
rotation is needed and Nr = 0.

Figure 3: Rotation of search domain [6]
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3.7 Finding a Pareto solution

Thus, the DSD algorithm gives us a well-spread distribution of search domains. In each
selected search domain we seek only one Pareto solution. For that it is enough to intro-
duce an aggregate objective function (AOF), which is a combination of objective functions.
Obviously, the AOF cannot be arbitrary. Requirements to admissible AOF can be found
in [19]. According to [19], an admissible AOF must be a locally coordinatewise increas-
ing function of the objective functions. On the definition, a function is a coordinatewise
increasing function if it is a strict monotonically increasing function with respect to each
argument [20]. Partial examples of AOF are given in [13], [16] and [6] in the framework of
PP method.

3.8 Filtering procedure

As noted in [6], the algorithm can generate local Pareto solutions. However, they can
be removed via the filtering procedure based on the contact theorem. Consider the sketch
of an example shown in Figure 4. A point P is a local Pareto solution rather than a global
one. To filter local Pareto solutions, we put the reference point M of a search domain at
a point considered as a candidate Pareto solution and set A = I in (14), (15). If the point
corresponds to a global Pareto solution (e.g., a point P′), then no any other solution can
be obtained. It immediately follows from the contact theorem [21]. Thus, if D∩Y∗ = P,
then and only then the point P represents a Pareto solution. Thus, we have a criterion for
verification if the solution is a global Pareto solution.

Figure 4: Filtering local Pareto solutions [6]

3.9 Scaling procedure

In the general formulation, to avoid undesirable severe skewing of the search domain in
the algorithm, the objective functions should be preliminary scaled [1]:

f sc
i =

fi− fi,min

fi,max− fi,min
. (22)
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3.10 Step-by-step algorithm

The entire DSD method can shortly be formulated as a 12-step algorithm.
Step 1: apply the scaling procedure (22) to the objective functions.
Step 2: find anchor points according to the procedure described in Section 3.2.
Step 3: find the utopia polygon determined by (6) and (7).
Step 4: introduce a distribution of reference points according to Section 3.3.
Step 5: determine the angle γc and matrix A0 according to (15).
Step 6: find matrix B = A−1

0 .
Step 7: identify the local search domain according to (10) and (11).
Step 8: find a local Pareto solution.
Step 9: if no solution is found, switch the direction of the search on the opposite.
Step 10: displace the search domain to another reference point.
Step 11: at the edges of the utopia polygon (6), (7), apply the rotation algorithm de-

scribed in Section 3.6. Then, Steps 6-8 are repeated for matrix A determined by (17).
Step 12. apply the filtering procedure described in Section 3.8.

3.11 Efficiency of the algorithm

Thus, the algorithm described above is able to generate an entire well distributed Pareto
set. This is achieved by solving a number of single-objective optimization problems for an
AOF. The algorithm is efficient because the number of the single-objective problems solved
mostly equals the number of the Pareto points obtained. The method can efficiently be ap-
plied in multidimensional case because most matrices are known explicitly in an analytical
form. In the entire algorithm only matrix A0 is to be inverted once. In addition, it is to be
noted that the method can naturally be realized on parallel processors because each Pareto
search can be done independently from the others.

4 Test Cases

The DSD algorithm was implemented in the PP method in [6]. In that paper, the ef-
ficiency of the approach is demonstrated on a number of test cases including comparison
against the NBI, NC and original PP methods. The suggested algorithm performs quite well
on multidimensional test cases, convex and concave frontiers.

4.1 Criterion of evenness

To compare different methods, the following criterion of evenness is suggested in [6].
It is based on a coefficient ke characterizing how evenly a Pareto set is distributed on the
Pareto surface. For this purpose, we introduce a curvilinear coordinate system {xi} (i =
1, . . . ,M− 1) on the Pareto surface in the objective space. In the Riemann space RM−1,
related to the Pareto surface, the Riemann metric is given by

dr2 =
M−1

∑
i=1

M−1

∑
j=1

gi jdxidx j. (23)
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Then, the coefficient ke is defined via the Hausdorff metric:

ke =
max

i
min

j
ri j

min
i

min
j

ri j
(i, j = 1, . . . ,Np; i 6= j).

Here, Np is the number of Pareto points, ri j is the distance between an i-th and j-th
Pareto points in metric (23): ri j = |xi−x j|.

The coefficient ke represents the ratio of the maximal possible distance between any
two nearest Pareto points to the minimal one.

The following three relatively simple test cases from [6] demonstrate how the algorithm
works.

Example 1. First, we consider a two-dimensional test case:

minx,y (24)

subject to a constraint

x2 + y2 ≤ 1. (25)

It is clear that in this test case the feasible domain Y∗ corresponds to the unit circle and
the Pareto surface is convex.

The solution of problem (24), (25) is represented by a segment of the unit circle as
shown in Figure 5. The DSD algorithm provides an even representation of the Pareto
frontier with ke = 1.6 if Np = 11. Without shrinking the search domain, if the angle
γc = γ0 = 450, the generated Pareto set turns out not to be well spread with ke = 5.6. The
difference between the two strategies is even more impressive if a similar test case with a
concave Pareto frontier is tackled [6].

Example 2. Next, we consider an example of a concave Pareto frontier in R3:

minx,y,z (26)

subject to

x2 + y2 + z2 ≥ 1, (27)

x > 0,

y > 0,

z > 0.

In contrast to Example 1, the standard definition of an anchor point does not lead to a unique
point. For example, the solution of a single-objective problem minx leads to a segment of
the unit circle in the plane x = 0. Meanwhile, it is easy to see that the modified definition of
the anchor point given in Section 3.2 results in only three anchor points: (0,0,1), (1,0,0)
and (0,1,0).

The entire orthogonal projection of the Pareto surface onto the utopia plane does not
necessarily appear to be in the triangle created by the anchor points (see Figure 6). For this
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Figure 5: Segment-of-circle frontier [6]

reason, a method such as NBI, for example, is not able to catch the entire Pareto frontier if
the coefficients αi in (7) are not negative.

In [6], the rotation strategy described in Section 3.6 is used to generate a complete
representation of the Pareto frontier. The utopia plane and reference points, distributed in
the polygon (triangle) according to algorithm (6), (7), are given in Figure 7. Then, the
generated Pareto set is shown in Figure 8.

As noted above, the definition of the anchor point might be very important for the
efficiency of the algorithm. This statement is illustrated by several examples available in [6].

Example 3. The next test case, suggested in [9], includes a Pareto frontier with both convex
and concave parts, which are created by three ellipsoid segments centered at the origin. The
problem reads:

minx,y
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Figure 6: 3D test case. Orthogonal projection of Pareto surface [6]

Figure 7: 3D test case. Utopia plane [6]



18 Sergei V. Utyuzhnikov

Figure 8: 3D test case. Pareto frontier [6]

subject to

x2 +(y/3)2 ≥ 1,

x4 + y4 ≥ 16,

(x/3)3 + y3 ≥ 1,

0≤ x≤ 2.9,

0≤ y≤ 2.9.

The exact Pareto curve is shown by the dashed line in Figure 9. It is important to note
that the Pareto frontier is not smooth and is located on both sides of the utopia line. As
shown in Figure 9, the algorithm is capable of capturing the entire frontier and generating
a well-distributed Pareto set.

As soon as a quasi-even distributed Pareto set is available, the information on the Pareto
optimal solutions can be complemented by a local approximation of the Pareto surface in
the objective space. This is also important for a sensitivity analysis. A local approxima-
tion can be achieved by the either linear or quadratic approximation described in the next
Section. It is based on the results obtained in [22]. In that paper it is shown that a linear
approximation known in the literature is not applicable in the general formulation. A cor-
rected linear approximation is suggested. It is proven the approximation to be accurate in a
multidimensional case.
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Figure 9: Hyperellipsoid frontier [6]

5 Pareto Local Approximation

Consider a Pareto solution and assume that in its vicinity the Pareto surface is smooth
enough. To obtain a local approximation of the Pareto surface, we should identify only
active constraints and consider their local approximation [23]. It is clear that in the general
case not all constraints (2), (3) are necessarily active on the Pareto frontier. A constraint
is said to be active at a Pareto point x∗ of the design space X if a strict equality holds at
this point [23]. We suppose that if some constraints are active at a Pareto point, then they
remain active in its vicinity.

Without loss of generality, we assume that all constraints (2), (3) are active. Note the
set of active constraints as G ∈ RI , where I = K + P. Then, at the given point x∗ of the
feasible design space X∗ we have:

G(x∗) = 0. (28)

If G ∈C1(RI), then the constraints can be linearized:

J(x−x∗) = 0.

where J is the Jacobian of the active constraints set at x∗ : J = ∇G.
A point x∗ is said to be regular if all gradients of the active constraints are linearly

independent [21]. It is clear that at a regular point rankJ = I. In our further analysis we
consider regular points.



20 Sergei V. Utyuzhnikov

In the objective space Y let the Pareto surface be represented by:

S(y) = 0 (29)

and S ∈C2(RI) in a vicinity of x∗.
The gradient of any differentiable function F at point x∗ under constraints is given by

the reduced gradient formula [25]:

∇F|Sl = P∇F. (30)

Here, Sl is the hyperplane tangent to X∗ in the design space:

Sl = {x| J(x−x∗) = 0},

and P is the projection matrix onto hyperplane Sl:

P = I− JT (JJT )−1J.

Then, in the objective space the tangential derivatives of the function F on the boundary
of the feasible domain Y∗ are give by

dF
d fi

=
dF
dx |Sl

dx
d fi

(i = 1, . . . ,M). (31)

In equality (31) the meaning of the right-hand side is the following. The first term
represents the reduced gradient (30), whereas the second term gives the derivative of the
design vector x with respect to an objective function fi along the direction that is tangent
to the Pareto surface. The latter term can be represented via the gradients of the objective
functions in the design space.

One can prove that the columns of matrix P∇ f , f = ( f1, f2, . . . , fM)T are linearly depen-
dent [22]. Without loss of generality, we assume that the first n f < M columns are linearly
independent and represented by P∇̃f.

Thus,
d f̃ = (P∇̃f)T dx, (32)

where matrix P∇̃f≡ (P∇ f̃1,P∇ f̃2, . . . ,P∇ f̃n f ) has all the columns linearly independent.
Next, we represent dx as

dx = Ad f̃ . (33)

To find the matrix A, we multiply both sides of equation (33) by (P∇̃f)T . Then, we
obtain:

((P∇̃f)T dx)T Ad f̃ = d f̃

and
A = P∇̃f

[
(P∇̃f)T P∇̃f

]−1
. (34)

It is easy to see that the inverse matrix [(P∇̃f)T (P∇̃f)]−1 in (34) is always non-singular
because all the vectors P∇ fi (i = 1, . . . ,n f ) are linearly independent. Thus, the matrix A
is the right-hand generalized inverse matrix to (P∇̃f)T . From the definition of matrix A
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it follows that (P∇̃f)T A = I and AT
i P∇f̃ j = δi j, where I is the unit matrix and δi j is the

Kronecker symbol.
From equation (34) it follows that PA = A and in equation (32) dx belongs to the tangent

plane Sl at the Pareto point. Thus,

dx
d f̃

A = P∇̃f
[
(P∇̃f)T P∇̃f

]−1
(35)

and for any i≤ n f
dx
d fi

= Ai,

where A = (A1,A2, . . . ,An f ). Then, from equations (30), (31) and (35), we obtain for any
i≤ n f :

dF
d fi

= (P∇F)T Ai = AT
i P∇F = AT

i ∇F.

In particular, if F = f j (n f < j < M), then we get the first order derivative of objective
f j with respect to objective fi on the Pareto surface. Hence,

d f j

d fi
= AT

i ∇ f j (0≤ i≤ n f , f < j ≤M). (36)

As soon as we know the tangential derivatives (36), we are able to obtain a linear local
approximation of the surface S.

One can derive the formula of sensitivity of objective f j with respect to objective fi

along the greatest feasible descent direction for objective fi [23]:

d f j

d fi
=

(P∇ f j,P∇ fi)
(P∇ fi,P∇ fi)

≡ ( f j,P∇ fi)
( fi,P∇ fi)

. (37)

It is to be noted that formulae (37) is usually used as a linear approximation of the Pareto
surface [24]. However, formulae (37) exactly corresponds to the linear approximation if and
only if either n f = 1 or the vectors P∇̃f create an orthogonal basis. In the latter case the
matrix (P∇̃f)T P∇̃f is diagonal. If there are only two objectives functions, (36) and (37)
always coincide because n f = 1. However, in the general case, formulae (37) is not always
applicable. This is demonstrated in the next Section.

On the Pareto surface in the objective space the operator of the first derivative can be
defined as:

d
d fi

= AT
i ∇.

By applying this operator to the first order derivative, we arrive at the reduced Hessian:

d2F
d fid f j

= AT
i ∇(AT

j ∇F)≈ AT
i ∇2A j (0≤ i, j ≤ n f ). (38)

Thus, we obtain a local approximation of the Pareto surface. It can be represented by
either a linear hyperplane:

n f

∑
i=1

dS
d fi

∆ fi = 0 (39)
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or a quadratic surface:

n f

∑
i=1

dS
d fi

∆ fi +
1
2

n f

∑
j,k=1

d2S
d f jd fk

∆ f j∆ fk = 0, (40)

where ∆f = f− f(x∗).
Approximations (39) and (40) can be rewritten with respect to the trade-off relations

between the objective functions as follows:

fp = f ∗p +
n f

∑
1

d fp

d fi
∆ fi (p = n f +1, . . . ,M) (41)

and

fp = f ∗p +
n f

∑
i=1

d fp

d fi
∆ fi +

1
2

n f

∑
j,k=1

H(p)
jk ∆ f j∆ fk (p = n f +1, . . . ,M), (42)

where

H(p)
jk =

d2 fp

d f jd fk
.

In [23], to obtain a quadratic approximation, it is suggested to evaluate the reduced
Hessian matrix Hi j via a least-squared minimization using the Pareto set generated around
the original Pareto point. However, in the case of a well distributed Pareto set the accuracy
of this approximation might not be sufficient. The determination of the reduced Hessian
(38) is entirely based on the local values in vicinity of a Pareto point. One should note
that the approximations (41) and (42) derived in [22] precisely correspond to the first three
terms of the Taylor expansion in the general case.

It is clear that a local approximation of the Pareto surface allows us to carry out a
sensitivity analysis and trade-off between different local Pareto optimal solutions.

The considered local approximation assumes that the Pareto surface under study is
smooth enough. The case of a non-differentiable Pareto frontier and its local analysis is
addressed in [22].

6 Example of a Local Approximation

Following [22], in this section, we compare the linear approximations of the Pareto
surface (41) based on the derivatives (36) and (37). For this purpose we consider the opti-
mization problem (26), (27).

It is easy to see that the first order tangent derivatives to the Pareto surface are given by:

d f3

d f1
=

dz
dx

=
−x√

1− x2− y2
, (43)

d f3

d f2
=

dz
dy

=
−y√

1− x2− y2
.
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Next, we apply formulas (36) and (37). It is clear that on the Pareto surface the matrices
J, P and A are given by:

J = [−2x,−2y,−2z],

P =




y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2


 , (44)

A =




1 0
0 1

−x/z −y/z


 .

Then, from (37) we obtain

d f3

d f1 |Eq.37
=

−xz√
x2 + y2

=
(x2 + y2−1)x

(1− x2)
√

1− x2− y2
, (45)

d f3

d f2 |Eq.37
=

−yz√
x2 + y2

=
(x2 + y2−1)y

(1− y2)
√

1− x2− y2
.

One can see that the derivatives (45) do not coincide with the exact derivatives (43).
Thus, the approach [23], based on (37), leads only to an approximate linear approximation.
This is demonstrated in Figure 10.

Figure 10: Linear approximation based on [23] (from [22])

In turn, from equation (36) we obtain the exact first order derivatives (43). It is easy to
verify that equation (38) gives the exact second order derivatives. The linear approximation
based on equations (36) and (41) is shown in Figure 11.

More examples including industrial applications are available in [22].

7 Conclusion

The DSD algorithm provides an efficient way for quasi-even generating a Pareto set
in a quite arbitrary multidimensional formulation. The approach is based on shrinking a



24 Sergei V. Utyuzhnikov

Figure 11: Linear approximation [22]

search domain. The orientation of the search domain in space can be easily conducted.
The approach can be combined with different search engines. The use of the DSD algo-
rithm with the PP technique [6] demonstrates that the approach is capable to generating
both convex and concave Pareto sets and filter local Pareto solutions. The algorithm can
efficiently be complemented by a local first- or second-order approximation of the Pareto
frontier described in [22].
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