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Various gas-dynamic models for describing chemically uon-equilibrium flows are compared using the 

example of the steady flow past the blunt nose of the “Buran” [l] and “Space Shuttle” vehicles during their 

descent from orbit. Models of locally self-similar approximations of the Navier-Stokes equations [2], of a 

chemically equilibrium and non-equilibrium complete viscous shock layer (CVSL) [3] and a model of a thin 

viscous shock layer (TVSL) [4] are considered. In all the models the occurrence of physicochemical 

processes was taken into account in the same way using fixed values of the constants for the gas-phase 

chemical reactions (their effeet has been considered in (51). Good agreement between the resufts of 

calculations of the heat flux at the critical point is found. 

chemically non-equ~ib~um flows have been considered earlier using the appraximat~ Namer-Stokes 

equations [6), within the framework of a TV% [7] and a CVSL [S, 9] (for more detail, see the review [HI]). 

The TVSL and CVSL models were compared in fll] in the case of Rows of a unifotm gas. 

1. LET us consider the complete system of steady Navier-Stokes equations which describe the flow of a 
multicomponent, chemically reacting mixture of gases when there are no external mass forces. In the 
curvilinear system of coordinates x, y, (c, where x is the length of an arc of the contour of the body measured 
from the front critical point, y is the distance along a normal from thz body and (c is the meridional angle, the 
equations have the form 
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Here u and Y are the physical components of the velocity in the x and y directions, P. p and T arc the 
pressure, density and temperature of a mixture of gases consisting of N chemical components, CL and h are the 
coefficient of viscosity and thermal conductivity of the mixture, c,, nz,, hi, cpi, 1, and w,*, are the mass 
concentration, the moiecular mass, the specific enthalpy and the heat capacity, the components of the diffusion 
BUX vector and the rate of formation of mass of the ith component. 7,, and cij are the components of the viscous 
stress tensor and the rate of strain tensor, RG is the universal gas constant, R(n) is the radius of curvature of the 
contour of the body, HI is a Lame coefficient, r = r,, - ycoscu is the distance from a given point in space to the 
axis of the body, a is the angle between a tangent to the contour of the body and the axis of symmetry. v is a 
symmetry parameter, and summation is carried out from i = 1 to i = N. 

Let us now reduce the equations to dimensionless form. We obtain a system of parabolic Navier-Stokes 
equations, retaining the terms O(1) and O(Re-*“) and omitting the terms O(Re-I). The omitted terms are 
enclosed in the braces. We note that the term a(r “~~~)iax, which is of the order of Re-“‘, is also omitted in Eq. 
(1.3). However, the additional estimates, associated with the smallness of the parameter prnlps {the ratio of the 
densities in the free stream and at the boundary of the shock wave) as well as the values of the derivatives with 
respect to x and y in the shock wave domain and around the body show that the remaining terms are of the 
greatest order of magnitude, at least in the shock wave. Hence, the terms which are responsible for molecular 
transport along the body are neglected; this is justified in the case of smooth blunt bodies when there are no 
discontinuities in the boundary conditions on the surface. 

When the effects of thermal and pressure diffusion are neglected, the remaining components of the viscous 
stress tensor and the Stefan-Maxwell relationship are expressed in the following way (D, are the binary 
diffusion coefficients) 

au ii 1 au 

TxY 
=u(---“_.+.__ 

aY i 1 RH, H, ax 

2 au 1 auP 
ryv = 2&f+-& 

a&, 
- w + U-----f 
3r”H,( ax ay 

The boundary conditions on the body surface, when the effects of slippage and temperature and 
concentration discontinuities are neglected, are as follows: 

Y =o, U=v =O, q =euBP 

q =ha T/ ay - 2 h&y, Jir = -- PKwCr 

where E is the coefficient of biackness of the surface, ue is the Stefan-Boltzmann constant. and K,,, is the 
heterogeneous recombination rate constant. 

Conditions are specified at the external boundary which correspond to the free stream parameters. 
In this paper, the system of parabolic Navier-Stokes equations is solved using a local self-similar 

approximation in the critical line. We expand the required solution in a series [2] confining ourselves to the first 
terms but also retaining the second term in the expansion for the pressure 

where G is any of the function p, T, p, A and ci. 
Substituting the expansions (1.6) into Eq. (1.3) and equating the terms accompanying coszcy, we obtain the 

equation for finding the lon~tudinal pressure gradient 
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The problem is therefore closed on the critical line. 
The model of a complete viscous shock wave is derived from the parabolic Navier-Stokes equations by 

neglecting the viscous terms in Eq. (1.3) (indicated by double braces). As a result, the order of the momentum 
equation in the projection onto the normal is reduced and the remaining boundary condition serves for 
determining the shock wave stand-off distance. The transitional domain across the shock waves is replaced by a 
surface where there is a pronounced discontinuity. The Rankine-Hugoniot relationships serve as boundary 
conditions at this surface. When the terms O(k/Re), are neglected (the values of quantities at the internal 
boundary of the shock are denoted by the subscripts, k, = pm/p,), these relationships take the form 

us = cos p cos & + KS sin P siri P - &Yxyl, 
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H,= H, + [J,,I,; cis = C+ + CJiyls; E = cosPs/Sin P 

(1.7) 

Here H and JhY are the total enthalpy and the energy flux, p(x) is the angle between the tangent to the shock 
wave and the axis of symmetry, and ps = p - (Y. 

The complete viscous shock layer (CVSL) equations contain all the terms of the Euler equations as well as 
terms which make a contribution to the second approximation of the boundary layer with respect to a small 
parameter Re -1’2 both in the case of the inner and outer expansions. 

The thin viscous shock layer (TVSL) equations are an asymptotic form of the CVSL equations at high math 
and Reynolds numbers and K,+O. The terms which are omitted in the equations are marked with a bar over 
them. It is necessary to put KS = 0 and & = 0 in the boundary conditions (1.7) at the shock wave. The TVSL 
equations contain terms of the boundary layer and inviscid shock layer equations in the hypersonic 
approximation. 

2. The simplified Navier-Stokes equations in the locally self-similar approximation were integrated on the 
critical line using the method proposed in [12]. The CVSL equations retain elliptic properties because of the 
longitudinal component of the pressure gradient and the form of the shock wave and an iteration method based 
on the execution of global iterations [13] was used to solve them. A system of TVSL equations of parabolic type 
and a method for solving it have been described in [14]. 

A scheme [15] of fourth-order accuracy with respect to the transverse coordinate was used in order to 
integrate the equations within the framework of the above-mentioned models. In treating the chemical 
reactions it was assumed that there were five components N2, 02, N, 0 and NO in the perturbed flow domain 
and that dissociation, recombination and exchange reactions occur between them. The system of reactions, the 
rate constants of the reactions and the transport coefficients were assumed to be identical for all of the models 
and to those previously used in [ 141. 

Let us now consider the flow past bodies during motion along gliding entry trajectories into the Earth’s 
atmosphere. The free-stream conditions corresponded to a standard atmosphere. 

Three models of catalytic surface activity were considered: ideally catalytic (model 1); non-catalytic 
(model 2); it was assumed that the surface possesses finite catalytic properties with rate constants 
K w. = KwN = 3 m/s, KwNO = 0 (model 3). Model 3 corresponds to the catalytic activity of the carbon-carbon 
surface coating of the “Buran” space vehicle [16]. 

The results of calculations of the heat flux at the critical point of the “Buran” space vehicle as a function of 
the descent time over a range of heights h from 100 to 52 km are presented for the trajectory of the first flight [l] 
(Fig. 1) and for a typical trajectory (Fig. 2). The radius of bluntness R = 0.83 m and E = 0.8. Results of 
calculations of the CVSL equations are shown by the solid lines, the results of calculations of the chemically 
equilibrium CVSL equations by the dotted and dashed lines, and the result of calculations of the TVSL 
equations by the dashed lines. Lines l-3 correspond to models l-3 for the catalytic activity of the surface. The 
dependence of the speed of flight on the descent time is represented by lines 4. 

For practically all of the flow conditions considered, the thermal flux was higher for calculations within the 
framework of the TVSL model than when the calculations were carried out using the CVSL model. This is due 
to the fact that the assumption regarding the thinness of the layer leads to a greater degree of compression 
compared with the model of a complete viscous shock layer where the position of the shock wave is found while 
solving the problem. 

A comparison with the results of calculations of a chemically equilibrium viscous shock layer shows that the 
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principal thermally stressed part of gliding trajectories is characterized by the occurrence of chemical reactions 
under substantially non-equilibrium conditions. The greater values of the heat flow in the equilibrium case is 
explained by the fact that, as calculations have shown, the occurrence of reactions under equilibrium conditions 
causes more intensive dissociation of the molecules compared with the non-equilibrium case. As a result, the 
more intensive diffusion of atoms to the relatively cold wall and recombination in the boundary region leads to 
the additional generation of energy close to the surface. 

For comparison, the temperature profiles for an ideally catalytic surface are shown in Fig. 3. The free-stream 
conditions correspond to the trajectory in Fig. 1 when t = 710 s. 

Thermal flux distributions from the height of the flight in motion along a trajectory which simulates the 
descent of the “Space Shuttle” space vehicle are shown in Fig. 4. At the critical point, the principal radii of 
curvature were equal to 0.5 and I .25 m, and e = 0.85. 

The solid lines correspond to calculations within the framework of a locally self-similar approximation of the 
Navier-Stokes equations and the dashed lines to calculations within the framework of the TVSL model. Lines 1 
and 2 correspond to the ideally catalytic and non-catalytic surfaces. 

At heights of 65 <h < 90 km, which are characterized by the occurrence of intense chemical reactions, the 
heat flux when solving the TVSL system was greater than that obtained within the framework of the locally 
self-similar approximation of the Navier-Stokes equations by not more than 5%. The coefficients of friction are 
identical to within 1%. As the height of the flight is reduced and there is a reduction in the Mach number at 
SO<h<60 km (8.7< M, < 15), the difference increases and, at h = 50 km, the heat flux is greater by 7% and 
the coefficients of friction by 4%. 
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FIG,. 2. 
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FIG. 3. 

The temperature profiles for an ideally catalytic surface at h = 70 km (Re, = 1.33 X 104) are shown in Fig. 5. 
The result of a calculation using the TVSL model taking into account the normal coordinate y in the Lam6 
coefficient is shown by the dotted line. The difference in the heat from fluxes-those for the case when HI = 1 
does not exceed 3% while the difference in the coefficients of friction does not exceed 5%. 

These results show that the difference between the values of the heat fluxes at the critical point given by the 
models considered does not exceed 8% and at the equilibrium surface temperature it is 30 K in the case of the 
flow conditions considered. Hence, in the case of parametric calculations in the neighbourhood of the 
stagnation line for conditions of gliding descent, it is advisable to employ the model of a thin viscous shock layer 
which is simpler and more convenient. However, in a number of cases of the lateral surface of a streamlined 
body, a TVSL can lead to a drop in pressure on the body, and for these calculations it is necessary to use the 
model of the complete viscous shock layer or parabolized Navier-Stokes equations. 

We wish to thank G. A. Tirskii for useful discussions and for his interest. 
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