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Physical-chemical processes in a shock layer past a slender spherically blunted body at high supersonic 

velocities are investigated. Using a gas-dynamic model, defined by the complete viscous shock-layer 

equations [l], the steady laminar axisymmetric flow of viscous, heat-conducting, partially dissociated 

and ionized air under chemical and thermal non-equilibrium is considered throughout the region 

between the body and the required thin shock wave. Attention is concentrated on the non-equilibrium 

chemical, ionization, and relaxation kinetics at large distances from the leading stagnation point. 

Multicomponent diffusion and the reverse influence of dissociation-recombination on the relaxation of 

vibrational quantum states, i.e. coupling vibration+zlissociation-vibration (CVDV), are taken into 

account. A new model is used to describe dissociation-relaxation process [2]. The model includes the 

effect of non-equilibrium excitation of vibrations and the equilibrium excitation of rotational molecular 

modes on the dissociation rate constants. Comparisons with experimentally verified calculations and 

calculations within the scope of the chemically equilibrium full viscous shock-layer model indicate that 

the model is physically adequate. The calculations highlighted physical effects in the non-equilibrium 

viscous shock layer past a slender spherically blunted cone at various distances from the stagnation 

point. 

The above effects and their influence on the heat transfer to the body and drag have been 
studied in detail in [3, 41 in the stagnation region. However, the use of the CVDV model [4] 
introduces an uncertainty due to the indefiniteness in the probability of dissociation from 
various molecular vibrational levels at high temperatures T a 8000 K the probability being 
expressed in exponential form with a single empirical parameter (the phenomenological 
approach [5]). To overcome the uncertainty in the dissociation model, an approach [2] was 
suggested based on a quantum consideration of dissociation. The model from [2] is employed 
in the present study. To integrate the system of axisymmetric viscous shock-layer equations, a 
block-marching method of global iterations is used [6]. 

1. THE GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

Consider hypersonic flows of viscous, heat-conducting, chemically reacting nine-component 
air 0,, N,, NO, 0, N, NO+, N;, N’, E (electron) past spherically blunted slender cones of 
150-200 nose radii. It is assumed that the active (translational and rotational) quantum states of 
the particles of the mixture are in equilibrium with one another at the translational tempera- 
ture T, and the vibrational quantum states of the ith molecules have a Boltzmann distribution 
at a certain vibrational temperature q(“‘). In the general case Tcv, #T. The contribution of 
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excited electron quantum states to the internal energy of the mixture is ignored. It is assumed 
that all the particles of the mixture are in ground electron states and ionization starts from 
these states. 

The effects of pressure diffusion and thermal diffusion are ignored. Pressure diffusion has it 
greater influence on the flow because the pressure diffusion factors are larger by an order OL 
magnitude than those for thermal diffusion. The pressure diffusion effect consists of a re- 
distribution of the species fractions and diffusive fluxes in the neighbourhood of the shock 
wave [7] where maximum pressure gradients and other hydrodynamic quantities occur 
Pressure diffusion has almost no effect on the velocity, pressure, density and temperature in 
the shock layer. Pressure diffusion reduces the heat flux to the body by no more than 2%. and 
the equilibrium temperature of the surface by no more than 10”. 

Chemical reactions in the shock-wave region can also be ignored [7], because their influence 
on the heat flux to the body is limited to 1%. Hence, the flow in the shock layer can be 
considered separately from the flow in the shock wave. Radiation has little effect on the 
structure of the flow in the regimes under consideration, and is therefore also ignored. 

The complete system of two-dimensional (axisymmetric) viscous shock layer (VSL) 
equations for chemically non-equilibrium (thermally equilibrium) flows is given in [l] in an 
orthogonal system of coordinates (x, y) normally connected with the body, where x is the 
distance along the surface of the body from the stagnation point, and y is the distance along the 
normal from the surface of the body to the given point in the flow. Here we will only give the 
expression for the normal component of the energy flux J, for a mixture of gases under 
chemical non-equilibrium and thermal equilibrium, which will be required below 

au,-~),av,_ 2 
ay ay i=l 

h;aci 
ay 1 _q,,+$ h,J, 

i=l 

where h and C, are the thermal conductivity and heat capacity of the mixture, H is the total 
enthalpy of the mixture, 2), and U, are the streamwise and normal components of the velocity, 
hi are the specific enthalpies, N is the total number of species, 1, and c, are the normal 
components of the diffusive fluxes and mass fractions of species, and 1~::. is the mixed 
component of the viscous stress tensor. 

In the case of thermal non-equilibrium (i.e. when there is no equilibrium between different 
modes of the particles of the mixture), the system of chemically non-equilibrium VSL 
equations must be supplemented by equations describing the energy exchange between 
different quantum states of the species. If the rotational modes of the molecules are in 
equilibrium with the translational ones, the vibrational quantum states of the ith molecules 
have a Boltzmann distribution at some vibrational temperature 77’“) #T, and all the particles of 
the mixture are in ground electron states, as in our case, then one must add the equations for 
vibrational energies of the molecular components [8] to the original system 

Here p is the density, H1 and r are Lam6 coefficients, R(x) is the local radius of curvature of 
the body, r&x) is the distance from the body surface to the axis of symmetry, T(X, y) is the 
distance between a point in the flow and the axis of symmetry, a is the angle between the 
tangent to the body and the axis of symmetry, v = 0 for plane flow and v = 1 for axisymmetric 
flow, S, are the binary Schmidt numbers, nj are molar fractions of species, and E,(?&(~) is the 
average vibrational energy of the ith molecular species, which is calculated using the model of 
an harmonic oscillator truncated at the dissociation energy kT,, (k is Boltzmann’s constant) 
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E, = RA ei Gi 
exp(8. /T(q) - 1 - exp(T,, /T(“))- 1 1 I I 1 (1.3) 

where ei is the characteristic vibrational temperature of the ith molecular species, and WC”) is 
the source term for the vibrational energy, which accounts for the energy exchange between 
the vibrational quantum states of the ith molecular species and the other modes of the particles 
of the mixture. In the general case WC”) includes the rate of energy exchange with active modes 
(V-T exchange), with vibrational modes of the other molecular species (V-V’ exchange), with 
translational modes of free electrons (E-V exchange), and the loss (gain) of vibrational energy 
in dissociation (recombination). We will neglect the terms due to V-V’ and E-V processes 
because of their relative smallness for the present range of free-stream conditions. Hence, two 
terms remain in the expression for y(“) 

E.(T)-E@“‘) 
w(V) = c. ’ I I 

i t 
zi 

- wDi (1.4) 

The following expression is used for the vibrational relaxation time 

zi = {P,,X,x, exp[18.42 - 1.16 x 10-3u$$(T-X - O.OlSu$)])-’ + {Pa,(v,)n}-‘, 

I& = W? ltmi + 4) (1.5) 

where Pa, is the pressure measured in atmospheres, (VJ is the average thermal velocity of the 
ith species, o, is the average cross-section for the excitation of vibrations, and n is the total 
concentration of the particles of the mixture. Summation is performed only over the heavy 
species. The first term in the expression for the vibrational relaxation time is the well-known 
formula [9]. The term {o,(v;,)n}-’ enables more realistic values to be obtained for zi when 
T 3 lo4 K [lo]. We use the following expression for o, [ll] 

o, = 104(5/T)* cm* (1.6) 

The influence of chemical reactions on the vibrational relaxation is taken into account by the 
source term 

wDi KDi(T,~v))~~i(T~)-~~~i(T)~~~ 
m#41 %I2 1 (1.7) 

7”’ = ($“‘)-’ _ T-’ (l-8) 

Here A1 and A, are the atoms of the ith molecular species, K, and KRi are the dissociation 
and recombination rate constants, and E,(T,) and R,T,, /2 are the average values of the energy 
lost and gained by vibrations in dissociation and recombination, respectively. 

Summing Eqs (1.2) over the molecules and assuming that all the molecules have a 
Boltzmarm distribution over the vibrational levels at some average vibrational temperature 
T(“), which is valid for air molecules, one can obtain an equation for the average vibrational 
temperature T(“) [3]. 

It should be noted that under the condition of thermal non-equilibrium, expression (1.1) for 
the energy flux somewhat change its form: it is necessary to replace 3L, C, and Pr by h”‘, C;’ 
and Pr” (the thermal conductivity, heat capacity and Prandtl number due to active, i.e. 
translational and rotational, degrees of freedom), and add to the right-hand side the quantity 

(1.9) 
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The prime 
vibrational 

denotes differentiation of the vibrational energy E, (see (1.3)) with respect to the 
temperature 7”“: we also have 

h, = hj +2.5. R,TIm,, h, =h~+(3.5.R,T+e,(T’“‘))/mM (1.10) 

where hz and hi are the cnthalpies of formation of the atoms and molecules. 
The effect of thermal non-equilibrium (‘P $7‘) on the dissociation rates is taken into 

account by using an expression approximating the two-temperature dissociation rate constant 
[2] for the ith molecule undergoing collision with the jth particle of the mixture 

i i .I 1 i, 

Here Z, is the vibrational partition function for the ith truncated oscillator, G,, is the gas- 
kinetic cross-section for collisions of the ith molecule with the jth species. N,, is Avogadro’s 
number, and a,, (A-‘) is a parameter determining the long-acting potential of interaction 
between the ith and jth species of the mixture 

~j = i$ exp(-o+r) (1.12) 

where r (A) is the distance between the interacting particles. 
We assume that only the molecular dissociation rate constants depend on the two 

temperatures 7‘ and 7”‘?. All the other reactions (recombination, ionization, exchange, and 
charge-transfer) depend only on the temperature T of the active degrees of freedom. For the 
recombination rate constants we use the expression 

KQ = KD,~(T, T)Kci(T) (1.13) 

where KD, is calculating using formulae (1.11). Data from [13] are used for the equilibrium 
constants K, , exchange, ionization and charge-transfer rate constants. 

The following system of chemical reactions is considered 

O,+M -O+O+M, O+Nt,NO++E 

N,+Mt,N+N+M, N+Nt,N;+E 

NO+Mt,N+O+M, N+ NO+ t) NO+ N+ 

N,+Ow NO+N, N,+N+ t) N+N; 

NO+Ot+O,+N, 

To compute the viscosity and “transport” thermal conductivity, the latter being solely due to 
translational degrees of freedom, we use the approximation formulae [14], which enable these 
coefficients to be obtained with a high degree of accuracy over a wide range of temperatures 
and pressures. In order to take into account the contribution of rotational modes (and 
vibrational ones in the cast of thermal equilibrium) to the thermal conductivity of the mixture. 
the Eaken correction [15] is used. 
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Generalized Rankine-Hugoniot relations [l] are used at the shock wave. The appropriate 
condition for Eq. (1.2) has the form [3] 

Ci&il~ = Ci&jls - cos P, 
P-V, sin P t 

EiJiy _ pci?!L 
si ay )I , &=P-a 

s 

(1.14) 

The subscripts M and s correspond to the parameter values directly in front of and behind the 
shock wave, and p and a are the angles of inclination of the tangents to the shock wave and to 
the body surface, respectively. Flow regimes are considered for which the shock wave is fairly 
thin. Hence we can neglect the energy exchange between vibrational and active modes in the 
few collisions that occur in the shock-wave region. 

The no-slip and no-flow conditions are used, respectively, for the tangential and normal 
projections of the momentum equation on the body surface (the former condition being valid 
for a relatively cold wall at high Reynolds numbers). Heat balance is assumed for the energy 
equation on the surface 

JH& = J& = -&T,4 (1.15) 

The subscript w corresponds to the parameter values on the body surface, J,, is the normal 
component of the heat flux, 6 = 5.67 ~10~ W/m2 K4 (or kg/s’ K’) is the Stefan-Boltzmann 
constant, i = 0.8 is the blackness of the body surface. 

The surface conditions for the equations of conservation of mass of the reaction products 
can be written as follows: 

JiyL = -k,pc,l, (1.16) 

where k, is the effective catalytic activity of the surface. The limiting cases of non-catalytic 
(k, = 0) and fully catalytic (& = M, i.e. ci l,=O) surfaces are considered for neutral reaction 
products, while the surface is assumed to be fully catalytic for charged species. The boundary 
conditions for the remaining species follow from the condition of zeroth mass fluxes of 
elements to the non-disintegrating wall. 

For the equation of vibrational relaxation the following boundary condition is used [16] 

a7vayl, = 0 (1.17) 

This condition expresses the fact that there is no vibrational energy flux 

E .(T’“‘) 
J(v) = C 1 

W 
j=M mj 

Jiy - (1.18) 

to a non-catalytic body surface (u is the dynamic viscosity). The case of a thermally non- 
equilibrium flow near a fully catalytic surface is not considered, because the flow is less 
sensitive to thermal non-equilibrium. Note that expression (1.18) follows directly from the 
classical expression for the heat flux in terms of the temperature gradient and diffusive fluxes 
under the assumption of non-equilibrium thermodynamics 

J, =-haC’VT+ ~ hjJj-P,~~V~i~ 
j=l I J 

(1.19) 
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2. NUMERICAL METE1011 

It is known that the full set of VSL equations has elliptic properties. To solve the system we 
use the global iteration (GI) method. To compute correctly the flow properties at the point of 
the sphere and cone conjugation, the exact relations have previously been obtained [6] on the 
line of discontinuity of the first and second derivatives. 

To integrate the original system of equations, we employ an implicit finite-difference scheme 
of the second order of approximation along the body. and of the fourth order of approximation 
across the layer. About 8 GIs are necessary for the solution to converge over the blunted part 
of the body, and 2-3 GIs are necessary for every computational block over the cone. At each 
step along the marching coordinate the full non-linear system of multicomponent non- 
equilibrium VSL equations is solved by Newton’s method. Note that the use of a difference 
scheme of the fourth order of approximation along the normal coordinate, in combination 
with an adaptive grid which is recondensed along the body, allows the calculations to bc 
performed at high Reynolds numbers Re_ =p,V_R(O)lp_ (of the order of lo”-10’). and the 
flow at Re_ = lo8 requires 20% more computer time than flow at Re_ = 106 [17J. Note also that 
the algorithm for solving the complete VSL system does not require any parameter smoothing 
in the streamwise and normal directions. 

The purpose of this investigation is to test the algorithm for integrating the complete system 
of VSL equations and to study the main physical-chemical effects which occur in a shock layer 
at large distances from the stagnation point. 

Calculations of the heat flux to the surface of the body at the stagnation point, performed 
within the scope of the multicomponent non-equilibrium full VSL model, have been shown to 
be in a good agreement with data [18] obtained within the framework of a thin-VSL model for 
clean nitrogen, which, in turn, are in a good agreement with experiment for the flow of dis- 
sociating nitrogen around a spherically blunted body. 

Two flow regimes were chosen for comparison: (1) pm = 2.33 x 1Oj kg/m’ and K, = 0.33 m 
(where R, is the radius of the sphere), and (2) p_ = 6.99 x 10’ kg/m7 and Ru = 0.95 m at a fixed 
free-stream velocity V, = 6490 m/s and a fixed temperature of the body surface 7tb := 1500 K. 

For the first regime the difference between the heat flux values calculated within the two 
codes is 6% when k,. = 0 and 5% when k, = m and for the second regime it is 12% when k,. = 0 
and 3% when k, = 0. 

To compare the values of the relative heat flux @’ = J,* lk _. / Jqw II,___, with the data 1191, the 
flow around a spherically blunted cone with a half-angle of l@ and the nose radius R, = 0.2286 
m at a velocity V_ = 8170 m/s, height 53.34 km (Re_ = 76810, M_ = 25) and fixed surface 
temperature 7;, = 1256 K was chosen. 

In Fig. 1, curve 1 (the dashed line) is the result given in [19], solid curve 2 is obtained using 
the thermally equilibrium chemically non-equilibrium complete VSL model with fixed surface 
temperature TW = 12.56 K assuming binary diffusion and Le = const = 1.4. The abscissa is the 
distance along the body surface relative to the nose radius: x’= x/R,. It is clear that the 
difference in the values of c/“’ between the data of (191 and the data obtained by the non- 
equilibrium complete VSL model is negligible on the sphere, reaches 23% immediately behind 
the conjugation point. and decreases gradually along the cone. The discrepancy may be due to 
the smoothing used in 1191. 

The quantity clre’ obviously cannot reflect all the physical effects occurring in the hypersonic 
shock layer. Therefore we will also present some other flow characteristics corresponding to 
the above-specified flow (a cone of half-angle 10”. R, = 0.2286 m, V_ = 8170 m/s, and height 
53.34 km) over the radiationally equilibrium surface (boundary condition (1.15)). 
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Fig. 2. 

Figure 2 shows values of the shock detachment distance relative to the nose radius yj = y, /R,, 
(curves l-4), the heat flux to the body (curves S-8), and the dimensionless pressure 
P,‘= P+,/p_,V_Z at the body surface (curves 9, 10) along the body (coordinate x’) near the 
bluntness. Curves 1, 5, and 9 (the solid lines) are the results of calculations under thermal 
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equilibrium and chemical non-equilibrium conditions for a non-catalytic surface and curves L 

and 6 (the dash-dot lines) are those for a fully catalytic surface. From this one can see the 
maximum effect of the wall catalyticity on the shock detachment distance and the heat flux. 
The surface catalytic activity has almost no effect on the pressure. The dashed lines 3, X and iii 
are obtained from calculations under complete (thermal and chemical) equilibrium; the 
calculations were performed with the previously developed model for calculating chemical 
equilibrium and ‘chemically frozen flows around slender spherically blunted cones [ 171. Curves 
4 and 7 (the circles) are the result of a calculation of the shock detachment distance and the 
heat flux under chemical and thermal non-equilibrium conditions for a non-catalytic surface. 
with boundary condition (1.17) used for the equation of vibrational relaxation at the surface, 
(The effect of thermal non-equilibrium on the heat flux to a fully catalytic surfacs is weak 141.1 
The corresponding values of the pressure lie precisely on curve 9. 

The values of the heat flux at the stagnation point (not shown in Fig. 2) are as follows 
for chemically and thermally non-equilibrium flow around a non-catalytic surface .iy_ 1‘ ,,: 
2.78 x lo6 kg/s’, for chemically non-equilibrium and thermally equilibrium flow J,* IA,,’ ,, 
2.68 x lo6 kg/s’. J,,,, lk-,__,= 6.24 x 10h kg/s’. and for complete equilibrium flow .I = 6.4.52 x IO” 
kg/?. We see that the first two values and the last ones are in good agreement with one’ 
another. 

The closeness of the heat fluxes under thermal equilibrium and non-equilibrium conditions 
shows that vibrational non-equilibrium is a relatively weak effect in the given flow conditions, 
The closeness of the heat flux to a fully catalytic surface and the fully equilibrium heat flux at 
large M_ and Re_ values confirms that the dissociation model [2] is physically adequate and 
the numerical implementation of non-equilibrium relaxation-chemical kinetics is correct. 
In Fig. 3 the same flow characteristics arc shown in the scale condensed in a streamwisc 
direction at greater distances from the stagnation point. Figures 4-8 show the translational and 
vibrational temperatures across the shock layer at various distances from the stagnation point: 
the temperature profiles are shown at the stagnation point (a’=O) in Fig. 4. at the conjugation 
of the spherical and conical surfaces (s’= I .4) in Fig. 5. and at .Y’ = 7. 26.9, 60.3 in Figs 6--K 

y/3Ro, Jp(kg/ss)x IO-’ 

I 

0.00 50.00 100.00 x/R0 150.00 

Fig. 3. 
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respectively. The body surface is assumed to be non-catalytic. In these figures the solid lines 1 
correspond to the translational temperature when there is no thermal equilibrium, the dash- 
dot lines correspond to the vibrational temperature, dashed lines 3 are obtained from 
calculations under chemical non-equilibrium and thermal equilibrium conditions, and the 
circles 4 are the chemical and thermal equilibrium T profiles. In Figs 4-8 the normal 
coordinate y is related to the chemically and thermally non-equilibrium shock detachment 
distance. 

Analysing Figs 2-8, we find the following physical effects. 
1. The closeness of the thermal equilibrium and non-equilibrium flow characteristics in the 

shock layer over a slender body at high Reynolds and Mach numbers. 
2. The closeness of the chemical equilibrium and non-equilibrium values of the pressures on 

the body, and the closeness of chemical equilibrium and non-equilibrium values of the heat 
flux, the latter being calculated for a fully catalytic surface. 

3. The chemical equilibrium shock detachment distance is greater than the chemical non- 
equilibrium one at 6 G x’ =z 25. 

This may be explained as follows. In the case of chemical equilibrium,, recombination of 
nitrogen atoms in the shock layer occurs at a faster rate than in the chemically non-equilibrium 
case, because of the stronger dependence of the species fractions on the pressure and 
thermodynamic enthalpy of the expanding chemically equilibrium gas as it moves along the 
body. Table 1 shows the maximum molar fractions of oxygen and nitrogen atoms across the 
shock layer at various stations along the body for the fully equilibrium flow and for chemically 
non-equilibrium thermally equilibrium one. The faster recombination rates under chemical 
equilibrium lead to more intensive energy production, which raises the temperature in the 
shock layer. As a result, the gas density falls, and this in turn leads to local thickening of the 
shock layer. At x’> 25 the fully equilibrium shock detachment distance is less than any non- 
equilibrium one. 

4. The strong sensitivity of the non-equilibrium heat flux to changes of the shock detachment 
distance and pressure along the body. 

5. Some difference (to within 4%) between the non-catalytic and fully catalytic values of the 
shock detachment distance (Fig. 3). 
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6. The flow in the shock layer becomes qualitatively invariant starting at s/KC, = 27 under the 
free-stream conditions discussed. One can see here a “hot” sublayer near the wall and a “cold” 
one adjacent to the shock. 

7. In the “cold” part of the flow there is no equilibrium between the active and vibrational 
modes far from the stagnation point. 

This is because of the large value of the, vibrational time 5, (see the source term (1.4) in 
(1.2)) at low temperatures and pressures, i.e. in this part of the layer the flow is both chemically 
and thermally frozen. However. in the “hot” sublayer the vibrational molecular modes relax 
quite rapidly with the active ones. The large difference between the translational and vibra.. 
tional temperatures at the body surface. when zero flux of vibrational energy to the body is 
assumed, is obviously associated with recombination which supplies a substantial amount of 
energy to the vibrational quantum states of the molecules near the surface. 

We thank S. A. Vasil’yevskii for his comments and interest. 
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