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The design process of complex systems often resorts to solving an optimization problem, which involves
different disciplines and where all design criteria have to be optimized simultaneously. Mathematically,
this problem can be reduced to a vector optimization problem. The solution of this problem is not unique
and is represented by a Pareto surface in the objective function space. Once a Pareto solution is obtained, it
may be very useful for the decision-maker to be able to perform a quick local approximation in the vicinity
of this Pareto solution for sensitivity analysis. In this article, new linear and quadratic local approximations
of the Pareto surface are derived and compared to existing formulas. The case of non-differentiable Pareto
points (solutions) in the objective space is also analysed. The concept of a local quick Pareto analyser
based on local sensitivity analysis is proposed. This Pareto analysis provides a quantitative insight into
the relation between variations of the different objective functions under constraints. A few examples are
considered to illustrate the concept and its advantages.

Keywords: Pareto surface; approximation; multi-objective optimization; decision-making; sensitivity
analysis

1. Introduction

In the process of designing complex systems, contributions and interactions of multiple disciplines
are taken into account to achieve a consistent design. In a real industrial design procedure the
problem is made more complicated due to the fact that the decision-maker (DM) has to consider
many different and often conflicting criteria. In fact, during the optimization process, the DM
often has to make compromises and look for trade-off solutions rather than a global optimum,
which usually does not exist.

Multi-disciplinary design optimization (MDO) has become a field of comprehensive study for a
few decades since the recent development of computer power has started to satisfy some minimal
requirements to tackle this problem. MDO embodies a set of methodologies that provide a means
of coordinating efforts and performing the optimization of a complex system. Two fundamental
issues associated with the MDO concept are the complexity of the problem (large number of
variables, constraints and objectives) and the difficulty of exploring the whole design space.
Thus, in practice the DM would benefit from the opportunity to obtain additional information
about the model without running it extensively.
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822 S. Utyuzhnikov et al.

Finding a solution to an MDO problem implies solving a vector optimization problem under
constraints. In general, the solution of such a problem is not unique. In this respect the existence
of feasible solutions, i.e. solutions that satisfy all constraints but cannot be optimized further
without compromising at least one of the other criteria, leads to the Pareto optimal concept
(see e.g. Miettinen 1999). Each Pareto point is a solution of the multi-objective optimization
problem. The DM often selects the final design solution among an available Pareto set based on
additional requirements that are not taken into account in the mathematical formulation of the
vector optimization problem.

In spite of the existence of many numerical methods for non-linear vector optimization, there
are few methods suitable for real-design industrial applications. In many applications, each design
cycle includes time-consuming and expensive computations for each discipline involved. In pre-
liminary design it is important to get maximum information on a possible solution in a reasonably
short time. Thus, it is very desirable for the DM to be able to approximate the Pareto surface
in the vicinity of a current Pareto solution and to provide the sensitivity information (Hernan-
dez 1995, Tappeta et al. 2000). It would also be very useful for the DM to be able to carry out
a local approximation of other optimal solutions relatively quickly without additional full-run
calculations. Such an approach is based on a local sensitivity analysis (SA) providing the relation
between variations of different objective functions under constraints.

Currently, only a few articles are devoted to the SA of Pareto solutions in MDO. Some deal
with the stability of the set of Pareto solutions (Tammer 1994, Fadel et al. 2002) while others
concentrate on deriving methods to obtain local approximations of the Pareto surface (Hernandez
1995, Tappeta and Renaud 1999, Tappeta et al. 2000, Zhang 2003a, b). These methods are based on
a local linearization of the solution set. The linear approximation geometrically results in finding
the hyperplane tangent to the Pareto surface at some Pareto point using the gradient projection
method (GPM) (Rosen 1958). Hernandez (1995) uses an approximate evaluation of the local
Hessian for a quadratic approximation and relies on the assumption that other Pareto solutions are
available in the vicinity of the Pareto solution under study. Methods are being developed to obtain
evenly distributed Pareto solutions (Guenov et al. 2005, Utyuzhnikov et al. 2005). However, the
assumption on the availability of several Pareto solutions may not be always valid. One of the
most difficult problems in the SA of Pareto solutions is related to possible lack of smoothness of
the Pareto surface in the objective space (Zhang 2003a, b).

In this context the aim of this work is to develop a method for local Pareto analysis and approx-
imation of the Pareto surface. The objective is to derive linear and quadratic local approximations
of the Pareto in the general case, including identification of non-differentiable Pareto points.

The rest of the article is organized as follows. Section 2 briefly outlines the formulation of the
multi-objective optimization problem. The derivation of the Pareto approximation is presented in
Section 3, where it is also shown that the existing formulas (Tappeta and Renaud 1999) are only
valid under particular conditions. Some practical considerations on the use of these approximations
for quick local Pareto solution analysis are given in Section 4. Section 5 gives an analysis of
non-differentiable Pareto points. Several examples illustrating the concept and its advantages are
presented in Section 6 and in Section 7 the method is tested on a typical engineering multi-objective
optimization problem. Finally, conclusions and future work are outlined in Section 8.

2. The multi-objective optimization problem

It is assumed that an optimization problem is described in terms of a design variable vector
x = (x1, x2, . . . , xN)T in the design space X ⊂ RN . A function f ∈ RM evaluates the quality
of a solution by assigning it to an objective vector y = (y1, y2, . . . , yM)T where yi = fi(x),
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Engineering Optimization 823

fi : RN → R1, i = 1, 2, . . . ., M in the objective space Y ⊂ RM . Thus, X is mapped onto Y by
f : X| → Y. A multi-objective optimization problem may be formulated in the following form:

Minimize [y(x)]. (1)

Subject to L inequality constraints:

gi(x) ≤ 0 i = 1, . . . , L (2)

which may also include equality constraints.
The feasible design space X∗ is defined as the set {x|gi(x) ≤ 0, j = 1, 2, . . . , L}. A feasible

design point is a point that does not violate any constraint. The feasible criterion (objective) space
Y∗ is defined as the set {Y(x)|x ∈ X∗}. A design vector a (a ∈ X∗) is called a Pareto optimum if,
and only if, it does not exist any b ∈ X∗ such that yi(b) ≤ yi(a), i = 1, . . . , M and there exist
1 ≤ j ≤ M such that yj (b) < yj (a).

Henceforth, it is assumed that all vectors are considered in the appropriate Euclidean spaces.

3. Pareto approximation

In this section, it is assumed that the Pareto surface is smooth in the vicinity of the Pareto solution
under study.A local approximation of the Pareto surface would allow the DM to quickly obtain both
qualitative and quantitative information on the trade-off between different local Pareto optimal
solutions.

A constraint is said to be active at a Pareto point x∗ of the design space X if a strict equality
holds at this point (Tappeta and Renaud 1999, Tappeta et al. 2000). In this section, it is assumed
that constraints that are active at a particular Pareto point remain active in its vicinity. Thus, the
sensitivity predicted at the given Pareto point is valid until the set of active constraints remains
unchanged (Hernandez 1995, Tappeta and Renaud 1999). Without loss of generality, let us assume
that the first I constraints are active and the first Q of those correspond to inequalities (Q ≤ I ≤ L).

Note the set of active constraints (Equation (2)) as G ∈ RI . At the given point x∗ of the design
feasible space X∗, this means that:

G(x∗) = 0. (3)

Assume that G ∈ C1(RI ), then locally the constraints can be written in the linear form:

J(x − x∗) = 0, (4)

where J is the Jacobian of the active constraints set at x∗ : J = ∇G. If all gradients of the active
constraints are linearly independent at a point, then this point is called a regular point (Vincent
and Grantham 1981). Thus, we say that a point x∗ ∈ X∗ is regular if rank (J) = I .

Further assume that in the objective space Y the Pareto surface is given by:

S(y) = 0 (5)

and at the Pareto point y∗ = f(x∗), function S ∈ C2(R1).
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824 S. Utyuzhnikov et al.

The values of the gradient of any differentiable function F at point x∗ under constraints are
defined by the reduced gradient formula (Fletcher 1989):

∇F|Sl
= P∇F, (6)

where Sl is the hyperplane tangent to X∗ the design space:

Sl = {x|J(x − x∗) = 0} (7)

and P is projection matrix onto this hyperplane:

P = I − JT (JJT )−1J. (8)

Directional derivatives corresponding to Equation (6) in the objective space are represented by:

dF

dfi

= dF

dx

∣∣
Sl

dx
dfi

. (9)

The first element of the product corresponds to the reduced gradient and the second element
dx represents the infinitesimal change in the design vector x to accommodate the infinitesimal
shift df of the objective vector tangent to the Pareto surface.

The last derivative in Equation (9) can be represented via the gradients obtained in the design
space X. Assume that matrix P∇f, (f = (f1, f2, . . . , fM)T has nf < M linearly independent
columns. It is to be noted that nf �= M . Indeed, in view of Equation (5):

M∑
i=1

∂S

∂fi|S
dfi = 0 (10)

and it is easy to see that to move locally on the Pareto surface, dfi(i = 1, . . . , M) cannot be
chosen independently. Given that:

df = (P∇f)T dx, (11)

one can prove that only nf < M objective functions fi are locally linearly independent.
Without loss of generality, assume further that the first nf components of P∇f are linearly

independent and represented by P∇ f̃. Thus,

d f̃ = (P∇ f̃)T dx, (12)

where matrix has all P∇ f̃ ≡ (P∇f1, . . . , P∇fnf
) the columns linearly independent. Now, write

dx in the following form:

dx = Ad f̃. (13)

Then, having multiplied both sides of Equation (13) by (P∇ f̃)T and taking into account
Equation (12) obtain:

(P∇ f̃)T Ad f̃ = d f̃. (14)

Hence,

A = P∇ f̃[(P∇ f̃)T P∇ f̃]−1. (15)

Thus, matrix A is the right-hand generalized inverse matrix to (P∇ f̃)T . It is possible to
prove that the inverse matrix [(P∇ f̃)T P∇ f̃]−1 is always non-singular because all the vectors
P∇fi , (i = 1, . . . , nf ) are linearly independent. From the definition of matrix A it follows that
(P∇ f̃)T A = I and AT

i P∇f̃j = δij , where I is the unit matrix and δij is the Kronecker delta.
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Engineering Optimization 825

Hence, the system of vectors {Ai}(i = 1, . . . , nf ) creates the basis reciprocal to the basis of vec-
tors {P∇ f̃j }(j = 1, . . . , nf ). From Equation (15) it follows that PA = A and dx in Equation (13)
belongs to the tangent plane Sl at the Pareto point. Thus,

dx

d f̃
= A ≡ P∇ f̃[(P∇ f̃)T P∇ f̃]−1 (16)

and for any i ≤ nf

dx
dfi

= Ai , (17)

where A = (A1,A2, . . . ,Anf
) Then, from Equations (6), (9) and (16), it follows that for any

i ≤ nf

dF

dfi

= (P∇F)T Ai = AT
i P∇F = AT

i ∇F. (18)

If F = fj (nf < j < M), then we obtain the first-order derivative of objective fj with respect to
objective fi on the Pareto surface. Thus,

dfj

dfi

= AT
i ∇fj (0 ≤ i ≤ nf , nf < j ≤ M). (19)

It is important to note that this formula coincides with the formula of sensitivity of objective fj

with respect to objective fi along the greatest feasible descent direction for objective fi ,

dfj

dfi

= (P∇fj , P∇fi)

(P∇fi, P∇fi)
≡ (∇fj , P∇fi)

(∇fi, P∇fi)
, (20)

(see Tappeta and Renaud 1999, Tappeta et al. 2000) if and only if either nf = 1 or the vectors
P∇ f̃ create an orthogonal basis. In this case, the matrix (P∇ f̃)T P∇ f̃ is diagonal. In particular, in
the case of a two-objective optimization these formulas always coincide since nf = 1.

On the Pareto surface in the objective space, the operator of the first derivative can be defined
by:

d

dfi

= AT
i ∇. (21)

By applying this operator to the first-order derivative found previously, one can obtain the reduced
Hessian as follows:

d2F

dfidfj

= AT
i ∇(AT

j ∇F) ≈ AT
i ∇2FAj (0 ≤ i, j ≤ nf ). (22)

Thus, the Pareto surface can be locally represented as a linear hyperplane:

nf∑
i=1

dS

dfi

�fi = 0 (23)

or a quadratic surface:

nf∑
i=1

dS

dfi

�fi + 1

2

nf∑
j,k=1

d2S

dfjdfk

�fj�fk = 0, (24)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
h
e
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
n
c
h
e
s
t
e
r
]
 
A
t
:
 
1
1
:
4
3
 
9
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



826 S. Utyuzhnikov et al.

where �f = f − f(x∗). Approximations (23) and (24) can be rewritten with respect to the trade-off
relations between the objective functions as follows:

fp = f ∗
p +

nf∑
i=1

dfp

dfi

�fi (p = nf + 1, . . . , M) (25)

and

fp = f ∗
p +

nf∑
i=1

dfp

dfi

�fi + 1

2

nf∑
j,k=1

H
(p)

jk �fj�fk (p = nf + 1, . . . , M), (26)

where

H
(p)

jk = d2fp

dfjdfk

.

A quadratic approximation where the reduced Hessian matrix Hij is evaluated with a least-
squared minimization using the Pareto set generated around the original Pareto point has been
derived previously (Tappeta and Renaud 1999). However, in preliminary design such an evaluation
can be unsuitable because it would require generating more Pareto points in the vicinity of the point
under study. Instead, the local determination of the reduced Hessian using Equation (22) is more
accurate and is entirely based on the value of the objective and constraint gradients with respect
to the independent design variables. It is important to note that, in contrast to the approximations
developed earlier (Tappeta and Renaud 1999), the ones derived in this article precisely correspond
to the first three terms of the Taylor expansion in the general case.

4. Local quick Pareto analysis

The first-order derivatives dfp/dfi provide us with first-order sensitivity of an objective fp along
the feasible descent direction of an objective fi when all other objectives are kept constant. It is
to be noted here that all the derivatives dfp/dfi are non-positive for all i = 1, . . . , nf . Otherwise,
two objectives could be locally improved, which would contradict the Pareto-solution assumption.
The local approximations of the Pareto surface can be used to study the local adaptability of a
Pareto solution. As in a real-life problem it can be time and computationally expensive to obtain
a single Pareto solution; local approximate solution; around a Pareto point can be obtained using
either Equation (25) or (26).

As discussed above, in the preliminary design it can be very beneficial to the DM if s/he is able
to perform quick SA of the solution obtained. Using the local approximation of the Pareto surface
the DM has the opportunity to perform the SA without additional full-run computations. It is also
easy to obtain information on trade-offs between different objectives. It has to be emphasized
that in the multi-objective case, the change of one objective does not fully determine changes
in the others. If the DM freezes all objectives except two or three, it is then possible to obtain
information that is useful for understanding the trade-off between the selected objectives. The
analysis of solutions around a Pareto point allows the DM to correct locally the solution with
respect to additional preferences. Furthermore, the DM is able to analyse possible violations of
the constraints as part of the trade-off analysis. In design practice, the opportunity for further
improvement of some objectives at the expense of local degradation of some other objectives can
also be important. Representations given by Equations (25) and (26) are only local approximations
and there is a question on the range of �x where the approximation is valid. In the framework
of a local analysis, giving a strict answer to this question is not possible. However, the reliable
range of the variation of �x can be evaluated qualitatively by comparing the solutions obtained
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Engineering Optimization 827

by linear and quadratic approximations. It is reasonable to expect that the approximations are
suitable as long as the difference between the two approximations is small.

In the SA, due to a perturbation δf and appropriate displacement δx, some constraints, which are
inactive at point x∗, can become either violated or active. The exact verification of the constraints
validation may be time consuming. To investigate this problem, it was suggested that a local
linear approximation of the inactive constraints along a feasible direction should be obtained to
study the degree of constraint violation (Zhang 2003b). The approach developed in Section 3 can
be used to obtain the appropriate linear and quadratic approximations for non-active inequality
constraints, including their quadratic approximation, in any direction:

gk(x) = gk(x∗) +
nf∑
i=1

dgk

dfi

�fi, (I < k ≤ L), (27)

gk(x) = gk(x∗) +
nf∑
i=1

dgk

dfi

�fi + 1

2

nf∑
i,j=1

d2gk

dfidfj

�fi�fj . (28)

These approximations can be used to verify that inactive constraints remain inactive at a new
approximate Pareto point.

In general, there is no guarantee that the Pareto surface is smooth. If the designed Pareto solution
appears at a point of lack of smoothness, the approximations derived above are not formally
valid. In such a case, a substantial discrepancy can appear between the first- and second-order
approximations in the nearest vicinity of the point.Another opportunity to reveal such non-smooth
points is based on an analysis of the Lagrange multipliers described in the next section.

5. Pareto front analysis at non-differentiable Pareto points

Assume that an aggregate function � such that:

� = �(f),
∂�

∂fi

(xp) ≥ 0, i = 1, 2, . . . , M (29)

reaches the minimum at a Pareto point xp. In particular, such an aggregate function satisfying
(29) is used in the physical programming method (Messac 1996, Utyuzhnikov et al. 2005). Then,
from the Karush–Kuhn–Tucker (KKT) optimality condition (Fletcher 1989) and Equation (8) it
follows that:

S� ≡ −∇� − JT λ = P(−∇�) = 0, (30)

where the vector λ corresponds to the Lagrange multipliers:

λ = −(JJT )−1J∇�,

λj ≥ 0(j = 1, . . . , I ).
(31)

It is to be noted here that all analysis in this section is limited by the assumption of linear local
constraints.
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828 S. Utyuzhnikov et al.

In the objective space Y, the normal to the Pareto surface is determined by the vector:

nf = ∂�

∂f
≡ ∇f �. (32)

Introduce a test function � satisfying conditions:

∂�

∂fi

(xp) ≥ 0 (i = 1, 2, . . . , M) (33)

in the vicinity of the Pareto point xp. This condition means that ∇� ∈ C, where C is a polyhedral
cone defined by:

C = {y ∈ RN |y =
M∑
i=1

ai∇fi, ai ≥ 0}. (34)

It is assumed that the Pareto point under study corresponds to a regular point in the feasible
space. This condition implies that at this point, the gradients of all active constraints are linearly
independent (Vincent and Grantham 1981).

From Equation (6) it follows that the descent direction S� of the function � is determined by:

S� = −∇� − JT μ = P(−∇�), (35)

where μ ∈ RI is defined by:

μ = −(JJT )−1J∇�. (36)

The vector S� is the orthogonal projection of −∇� onto the tangent plane to the Pareto surface in
the design space. The vector S� is a null-vector if and only if ∇� belongs to the linear manifold
VI defined by:

VI =
{

y ∈ RN | y =
I∑

i=1

vi∇gi

}
. (37)

If S� is not a null-vector, then the mapping of S� in the objective space gives a tangent direction
to the Pareto surface. Indeed, multiplying S� by S� and taking into account the orthogonality
condition JS� = 0, yields:

M∑
i=1

∂�

∂fi

δfi = 0, (38)

where δfi = ∇f T
i S�α is an infinitesimal variation of fi along the direction S� and α → 0 is a

scaling parameter. Therefore, if S� is not a null-vector, then it can be used to determine a tangent
direction in the objective space and provide the SA along S� :

dfi

dfj

∣∣∣∣
S�

= dfi

dS�

dS�

dfj

= (∇fi, S�)

(∇fj , S�)
< 0 (i, j = 1, . . . , M; i �= j). (39)

Assume now that S� is a null-vector. Then, ∇� ∈ VI and ∇� is represented by a linear
combination of the vectors normal to the hyperplanes of the active constraints:

∇� = −
I∑

i=1

μi∇gi. (40)

If, in Equation (40), μi ≥ 0 for i = 1, . . . , Q, then there is no descent direction for the test function
�. This immediately follows from Farkas’ lemma (Fletcher 1989). Indeed, the feasible directions
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Engineering Optimization 829

are defined by the set of vectors e that satisfy:

(e, ∇gi) ≤ 0 for 1 ≤ i ≤ Q and (e, ∇gi) = 0 for Q + 1 ≤ i ≤ I, (41)

while a vector e which corresponds to a descent direction of the function �, is such that:

(e, ∇�) < 0. (42)

From Farkas’ lemma, the set of vectors e satisfying conditions (41) and (42) is empty if and only
if in Equation (40) μi ≥ 0 (i = 1, . . . , Q).

Now determine the set of Lagrange multipliers 	I,Q in such a way that the first Q Lagrange
multipliers μi corresponding to the active constraints are positive:

	I,Q = {μ ∈ RI |μi ≥ 0 for 1 ≤ i ≤ Q}. (43)

If some of the first Q multipliers are negative (μ /∈ 	I,Q), then the appropriate inequality
constraints become inactive in the direction S� and the Pareto solution might correspond to
a non-differentiable point of the Pareto frontier. In order to identify if the Pareto point is
non-differentiable, it has been proposed to remove the constraints corresponding to negative
components of μ and repeat the analysis reconsidering the active constraints (Zhang 2003a, b).
All the analysis is performed by representing � by an objective function. The principal difference
with respect to previous attempts (Zhang 2003a, b), is that the SA described below is done in the
case of a general test function �.

Now consider the requirements for the test function �. It is to be noted that this question is not
addressed by Zhang (2003a, b). The analysis is based on the consideration of the constraint and
polar cones at a Pareto point.

The constraint cone K is defined as follows (Vincent and Grantham 1981):

K = {y ∈ RN |y = −
l∑

i=1

μi∇gi, μ ∈ 	I,Q} (44)

Along with the constraint cone K , the positive polar cone K∗ is defined as:

K∗ = {
z ∈ RN |zT y ≥ 0 ∀ y ∈ K

}
. (45)

For any regular point of the feasible space, the cone T tangent to the feasible design space
coincides with the cone K∗ : K∗ = T (Vincent and Grantham 1981). It is to be noted that if the
function � reaches a minimum at point xp then for any vector e satisfying e ∈ T the following
condition must be valid:

eT ∇� ≥ 0, (46)

otherwise there is a feasible direction of minimization for �. Inequality (46) also means that
∇� ∈ T ∗ = K , where T ∗ is the positive polar cone to the cone T . The identity T ∗ = K follows
from the Polar theorem: (K∗)∗ = K (Vincent and Grantham 1981). Note that since the function
� reaches a minimum at point xp, then ∇� ∈ K .

If ∇� /∈ K then μ /∈ 	I,Q and there is a direction along which the function � can be further
diminished. Assume that there is only one Lagrange multiplier μq in Equation (36): μq < 0,
(q ≤ Q). By removing the qth active constraint from J, we obtain the reduced matrix Jr . The new
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830 S. Utyuzhnikov et al.

descent vector S̃� is defined by the set of remaining active constraints as follows:

S̃� = −∇� − JT
r μr , (47)

where

μr = −(JrJT
r )−1Jr∇�. (48)

Vector S̃� defines a descent direction along which the qth constraint becomes inactive. Then,
make sure the new direction is feasible. Subtracting Equation (35) from (47) yields:

S̃� = JT μ − JT
r μr = μq∇gq + JT

r (μ̃r − μr ), (49)

where vector μ̃r ∈ RI−1 is obtained from μ by dropping μq . Note that S̃� is not a null-vector,
otherwise (from Equation (49)) there would exist a non-null-vector β such that JT β = 0, which
would contradict the assumption of local linear independence of the active constraints. Multiplying
Equation (49) by itself and taking into account the orthogonality condition Jr S̃� = 0:∣∣∣S̃�

∣∣∣2 = μq S̃
T

�∇gq > 0. (50)

Hence, S̃
T

�∇gq < 0 and the direction S̃� is feasible.
If several Lagrange multipliers in the vector μ are negative, the set Q− is defined such that

μq < 0 if q ∈ Q−. Only one ∇gq with q ∈ Q− needs to be removed from J so that the above
analysis remains valid. A strategy has been proposed (Zhang 2003b) to remove the gradient of
the constraint that satisfies:

λk

μk

= max
q∈Q−

λq

μq

< 0 (51)

to obtain the reduced matrix Jr for the descent vector S̃� . Along the descent direction S̃|� :

δ� =
M∑
i=1

∂�

∂fi

δfi < 0 (52)

and another Pareto solution is achievable in the framework of the linear approximation because
all the coefficients ∂�/∂fi in Equation (52) are non-negative.

To find the new normal to the Pareto surface in the Y space, multiply the null-vector S� from
Equation (35) by the multiplier α� defined as

α� = − max
q∈Q−

λq

μq

= − λk

μk

> 0 (53)

and add it to the null-vector SΦ from Equation (30). Then:

∇(� + α��) = −JT (λ + α�μ). (54)

This equality can be seen as the KKT optimality condition for the new aggregate function
�∗ = � + α�� as it can be shown that:

∇�∗ + JT λ∗ = 0 (55)

with the Lagrange multipliers: λ∗ = λ + α�μ. Additionally, it is easy to verify the following
inequalities:

∂�∗

∂fj

≥ 0, (j = 1, . . . , M), (56)

λ∗
i ≥ 0, (i = 1, . . . , I ) (57)
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Note that in the KKT condition (55), there exists k ∈ Q− such that λ∗
k = 0. It corresponds to

the active constraint that becomes inactive. As a result, the normal to the Pareto surface might
shift to its new value:

nf = ∇f (� + α��) . (58)

It is to be noted here that the change of the number of active constraints, Q, does not necessarily
mean the Pareto point is not differentiable. More precisely, the non-differentiability corresponds
to a shift of the normal to the Pareto surface (Zhang 2003b), not a change in the set of active
constraints.

It is possible to show that the vector S̃� defines a direction tangent to the Pareto surface. Indeed,
multiplying the null-vector SΦ from Equation (30) by S̃� gives:

∇ΦT S̃� = −λk∇gT
k S̃�. (59)

Then, after multiplication of S� from Equation (35) by S̃� we have:

∇gT
k S̃� = − 1

μk

∇�T S̃�, (60)

∇�T S̃� = λk

μk

∇�T S̃� = −α�∇�T S̃�, (61)

hence

∇(� + α��)T S̃� = ∇(Φ∗)T S̃� = 0. (62)

In turn, if ∇� ∈ K , then ∇� can be expressed as a linear combination of the gradients of active
constraints (cf. Equation (40)) with μ ∈ 	I,Q. It follows that for such a test function, the feasible
descent direction S� is a null-vector. From the previous analysis, it also follows that the test
function � does not add any additional information to the SA.

Thus, to verify the differentiability of a Pareto point, the function � must be chosen in such a
way that (see Equations (34), (37), (44))

∇� ∈ C ∩ (VI\K). (63)

It is worth noting that the equality constraints have an effect on the matrix J but do not influence
the SA with regard to the detection of non-differentiable Pareto points. This follows from the fact
that equality constraints are to be strictly satisfied, i.e. they cannot be inactive, and the sign of
the appropriate Lagrange multipliers is undetermined. Note that, in contrast to the work of Zhang
(2003a, b) where only a weighted-sum function is considered as the test (preference) function �,
a general test function is considered here. Therefore, the approach becomes applicable to many
other algorithms and is not limited to the weighted-sum method, which can only be used for
convex problems. In particular, the developed SA method can be implemented in the physical
programming based method (Guenov et al. 2005, Utyuzhnikov et al. 2005), which guarantees
a well-distributed representation of the entire Pareto frontier. The entire approach for the local
Pareto study is summarized in Figure 1.

6. Analytical examples

The first two examples are related to the smooth local approximation of the Pareto surface. They
illustrate the linear and quadratic approximation of the Pareto surface. The requirements to the
test function � derived in the previous section are considered in the next two examples.
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832 S. Utyuzhnikov et al.

Figure 1. Local Pareto analysis flowchart.

6.1. Local approximations—Comparison with existing formulas: Example 1

To compare the approximations derived in this article with formulas already available (Tappeta
and Renaud 1999, Tappeta et al. 2000), consider the following multi-objective problem:

Minimize: f = (x, y, z)T (64)

Subject to:

g(x) = 1 − x2 − y2 − z2 ≤ 0,

x > 0,

y > 0,

z > 0.

(65)
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The design space and objective space coincide in this example. It is easy to see that the Pareto
surface corresponds to the part of the unit sphere in the first quadrant and is represented by:

z =
√

1 − x2 − y2. (66)

The first-order tangent derivatives are given by:

df3

df1
= dz

dx
= −x√

1 − x2 − y2

df3

df2
= dz

dy
= −y√

1 − x2 − y2
.

(67)

Derive the first-order approximation using the approach found in the literature and the method
described in the present article. For any Pareto point, the matrices J and P are given by:

J = [−2x, −2y, −2z
]
, (68)

P =
⎢⎢⎢⎣y2 + z2 −xy −xz

−xy x2 + z2 −yz

−xz −yz x2 + y2

⎥⎥⎥⎦ . (69)

Using Equations (20) and (69) one can obtain the first-order derivatives as given previously
(Tappeta and Renaud 1999, Tappeta et al. 2000)

df3

df1[3]
= −xz

y2 + z2
= (1 − x2 − y2)(−x)

(1 − x2)
√

1 − x2 − y2
,

df3

df2[3]
= −yz

x2 + z2
= (1 − x2 − y2)(−y)

(1 − y2)
√

1 − x2 − y2
.

(70)

Note that Equations (70) are different from the exact analytical first-order derivatives given by
Equations (67). They result in the approximation given in Figure 2. According to the method
developed in this article:

A =
⎡
⎢⎣

1 0
0 1

−x

z
−y

z

⎤
⎥⎦. (71)

One can easily ensure that by using Equation (19) exact first-order derivatives (Equations (67))
are obtained. It is also possible to verify that the exact second-order derivatives can be obtained
using Equation (22). The linear and quadratic approximations given by Equations (25) and (26)
are shown in Figures 3 and 4, respectively. The relative error in predicting objective f3 is shown
in Figure 5. It is to be noted that only in the case of two design variables (N = 2) the previous
linear approximation (Tappeta and Renaud 1999, Tappeta et al. 2000) provides the tangent plane
(line) to the Pareto surface.
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834 S. Utyuzhnikov et al.

Figure 2. Example 1: linear approximation from literature (Equation (20)).

Figure 3. Example 1: new linear approximation (Equation (25)).

Figure 4. Example 1: new quadratic approximation (Equation (26)).

6.2. Linear and quadratic approximations: Example 2

Consider the following multi-objective problem studied by Tappeta et al. (2000):

Minimize: f(x) = {f1(x), f2(x), f3(x)} (72)

Subject to:
g(x) = 12 − x2

1 − x2
2 − x3

3 ≥ 0,

x ≥ 0
(73)
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Figure 5. Example 1: relative error in predicting f3.

where the objective functions are given by:

f1 = 25 − (x3
1 + x2

1 (1 + x2 + x3) + x3
2 + x3

3)/10,

f2 = 35 − (x3
1 + 2x3

2 + x2
2 (2 + x1 + x3) + x3

3)/10,

f3 = 50 − (x3
1 + x3

2 + 3x3
3 + x2

3 (3 + x1 + x2))/10.

(74)

The linear and quadratic approximations obtained by the analysis derived in Section 3 are given
in Figures 6 and 7, respectively. The comparison between the two approximations is given in
Figure 8. As expected, a much better approximation of the Pareto surface is provided by the
quadratic approximation.

In the next two examples, non-smooth Pareto surfaces are considered. The Pareto analysis is
used to detect non-differentiable Pareto points and limits of the approach are discussed.

Figure 6. Example 2: linear approximation.
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836 S. Utyuzhnikov et al.

Figure 7. Example 2: quadratic approximation.

Figure 8. Example 2: relative error in predicting f3.

6.3. Detection of non-differentiable Pareto points—K ⊂ K∗ = T: Example 3

The linear bi-criteria test case taken from Zhang (2003b) is considered:

Minimize: (x, y) (75)

Subject to:

g1(x) = −x

4
− y

4
+ 1 ≤ 0,

g2(x) = −x

3
− y

6
+ 1 ≤ 0,

g3(x) = −x ≤ 0,

g4(x) = −y ≤ 0.

(76)

In this test case, the design space coincides with the objective space. Hence, each point of the
Pareto set is a point of the design space for which at least one constraint is active. The Pareto set
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Figure 9. Example 3: relative position of the tangent cone and its polar at a non-differentiable Pareto point.

is represented by the lines g1 = 0 and g2 = 0. The kink in the Pareto surface corresponds to the
only non-differentiable Pareto solution.

At the non-differentiable Pareto solution, the tangent cone T = K∗ and its polar cone K are
constructed and shown in Figure 9. In this example K ⊂ K∗. A function � that satisfies condition
(63) can be obtained. This means that any small shift from the Pareto point leads to the loss of
an active constraint. Therefore, according to the analysis given in the previous section, the Pareto
point under study is non-differentiable. As the point is non-differentiable, the approximation
derived in Section 3 cannot be used. Instead, tangent derivatives along the Pareto surface can be
obtained using Equation (39).

At the non-differentiable point, both constraints are active and the corresponding matrix J is
defined by:

J =

⎢⎢⎢⎢⎣−1

4
−1

4

−1

3
−1

6

⎥⎥⎥⎥⎦ . (77)

Hence

P = 0. (78)

Let us study the sensitivity for the reduction of f1 choosing �1 = f1. The projection of −∇�1

gives S1 = P(−∇�1) = 0 with μ1 = −(JJT )−1J∇�1 = [−4 6]T . The negative value for the first
component of μ1 indicates that in the direction of reduction of f1, constraint g1 becomes inactive.
Therefore, its gradient should be removed from J to obtain the reduced projection matrix:

Pr1 =

⎢⎢⎢⎢⎣
1

5
−2

5

−2

5

4

5

⎥⎥⎥⎥⎦ . (79)
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838 S. Utyuzhnikov et al.

Thus, S̃�1 can be calculated as S̃�1 = −Pr1(∇�1) and we obtain S̃�1 = [−1/5 2/5]T . The
sensitivity along S̃�1 for f1 is then:

df2

df1

∣∣∣∣
S̃�1

= (∇f2, S̃�1)

(∇f1, S̃�1)
= −2, (80)

which corresponds to the slope of the line g2 = 0.
The same analysis can be performed along the greatest feasible direction for objective f2 by

choosing �2 = f2. It follows that S2 = P(−∇�2) = 0 with the vector of Lagrange multipli-
ers μ2 = −(JJT )−1J∇�2 = [4 − 6]T . In this case, constraint g2 becomes inactive and the new
reduced projection matrix is:

Pr2 =

⎢⎢⎢⎢⎣
1

2
−1

2

−1

2

1

2

⎥⎥⎥⎥⎦ . (81)

and S̃�2 = −Pr2(∇�2) = [1/2 − 1/2]T . The sensitivity along S̃�1 for f2 is then:

df2

df1

∣∣∣∣
S̃�2

= (∇f2, S̃�2)

(∇f1, S̃�2)
= −1, (82)

which is the slope of the line g1 = 0.

6.4. Limit of the method—K∗ = T ⊂ K: Example 4

In this example, the quadratic bi-criteria test case under linear constraints is considered:

Minimize: (f1, f2) (83)

Subject to :

g1(x) = y − 2x + 1 ≤ 0,

g2(x) = −y + x

2
+ 1

2
≤ 0,

(84)

with

f1(x) =
(

y − 3

2
x − 1

2

)2

f2(x) =
(

y − 2

3
x + 1

2

)2
(85)

The feasible space is given in Figure 10. Only the two contour lines corresponding to the minimum
value of the objectives are represented in the design space. Isovalue contour lines for each objective
are straight lines parallel to the line corresponding to their respective minimum value. The set
of Pareto solutions for the problem is given in Figure 11. The Pareto point, corresponding to the
design point where both constraints are active, is a non-differentiable point in the objective space.
Moving away from this point, the set of active constraints is changed and this clearly implies
a shift in the direction tangent to the Pareto surface. In this example, the tangent cone T = K∗
is included in its polar cone K as shown in Figure 12. It is clear that there exists a vector ∇�

satisfying condition (63), therefore, the Pareto point is not differentiable. In this case, it is also
possible to obtain the derivative along the greatest descent direction for each objective (Zhang
2003b) using Equation (39).
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Figure 10. Example 4: design space/Pareto set.

Figure 11. Example 4: objective space/Pareto set.

At the Pareto point under study, both constraints are active and the corresponding matrix J is
defined by:

J =

⎢⎢⎢⎢⎣
−2 1

1

2
−1

⎥⎥⎥⎥⎦ . (86)

Hence

P = 0. (87)

Evaluate the sensitivity for the reduction of objective f1 and choose �1 = f1. Proceeding as
in the previous example, obtain S1 = P(−∇�1) = 0 and the corresponding vector of Lagrange
multipliers μ1 = −(JJT )−1J∇�1 = [4/3 − 2/3]T . The negative value for the second component
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Figure 12. Example 4: relative position of the tangent cone and its polar at a non-differentiable Pareto point.

of μ1 indicates that in the direction of reduction of f1, constraint g2 becomes inactive. Therefore,
its gradient should be removed from J to obtain the reduced projection matrix:

Pr1 =

⎢⎢⎢⎢⎢⎣
1

5

2

5
2

5

4

5

⎥⎥⎥⎥⎥⎦ . (88)

Thus, S̃�1 can be calculated as S̃�1 = −Pr1(∇�1) and S̃�1 = [1/5 2/5]T is obtained. The
sensitivity along the greatest feasible direction for f1 is then given by:

df2

df1

∣∣∣∣
S̃�1

= (∇f2, S̃�1)

(∇f1, S̃�1)
= −2

9
. (89)

The same analysis can be performed along the greatest feasible direction for objective f2

by choosing �2 = f2. It follows that S2 = P(−∇�2) = 0 with the corresponding vector of
Lagrange multipliers μ2 = −(JJT )−1J∇�2 = [−0.1852 1.4815]T . In this case, constraint g1

becomes inactive and the new reduced projection matrix is:

Pr2 =

⎢⎢⎢⎢⎢⎣
4

5

2

5
2

5

1

5

⎥⎥⎥⎥⎥⎦ (90)

and S̃�2 = −Pr2(∇�2) = [2/9 1/9]T . The sensitivity along the greatest feasible direction for f2

is then:

df2

df1

∣∣∣∣
S̃�2

= (∇f2, S̃�2)

(∇f1, S̃�2)
= −0.1389. (91)
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7. I-beam optimization problem

A typical engineering design optimization problem is considered: optimization of an I-beam,
namely minimization of its weight and displacement subject to a particular load. The test case
can be entirely described with analytical equations and is taken from Yang et al. (2002). The
problem is to find the dimensions of the cross-section of a beam of fixed length, which satisfies
geometric and strength constraints, and minimize its weight and static deflection under loads P
and Q applied along the z and y axes, respectively. A description of the I-beam problem is given in
Figure 13. Since the length of the beam is fixed, minimizing its weight is equivalent to minimizing
its cross-sectional area. The optimization problem can be formulated as follows:

Minimize
x

(
f1

f2

)
=

⎛
⎜⎝

area = 2x2x4 + x3(x1 − 2x4)

displacement = PL3

48EI

⎞
⎟⎠ (92)

Subject to a strength constraint:

g(x) = My

Zy

+ Mz

Zz
− σa ≤ 0 (kN.cm−2) (93)

and geometric constraints on the inputs range of variation:

10 ≤ x1 ≤ 80 (cm)

10 ≤ x2 ≤ 50 (cm)

0.9 ≤ x3 ≤ 5 (cm)

0.9 ≤ x4 ≤ 5 (cm)

(94)

where the moments are given by:

My = P

2
× L

2
, (95)

Mz = Q

2
× L

2
(96)

Figure 13. The I-beam design problem.
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and the moments of inertia are calculated as follows:

Zy = 1

6x1
{x3(x1 − x4)

3 + 2x2x4[4x2
4 + 3x1(x1 − 2x4)]}, (97)

Zy = 1

6x2
{(x1 − x4)x

3
3 + 2x4x

3
2}, (98)

with E = 2 × 104 kNcm−2, σa = 16 kNcm−2, P = 600 kN, Q = 50 kN and L = 200 cm.
The set of solutions for this problem is obtained using the in-house developed gradient-based

optimization tool for multi-objective optimization mentioned previously (Guenov et al. 2005,
Utyuzhnikov et al. 2005). This tool searches for solutions that are uniformly distributed over the
Pareto front. The set of Pareto solutions obtained for the test case is plotted in Figure 14. The high
density of points gives a good representation of the Pareto front, particularly in the region where
the curvature is important and will allow for comparison of the results of the approximation with
the exact Pareto front.

The analysis focuses on the use of local Pareto approximation to understand the local trade-offs
at different Pareto solutions. With respect to the Pareto analysis described in Section 3, the SA
of the solution can be formulated as a single-objective optimization problem, which reduces to a
linear problem in the case of two objectives:

Minimize and maximize δf1

Subject to

xmin < x + δx < xmax, (99)

g + dg

df1
δf1 + 1

2

d2g

df 2
1

(δf1)
2 < 0, (100)

∣∣∣∣ (1/2)(d2f2/df
2
1 )δf1

(df2/df1)

∣∣∣∣ < α, (101)

Figure 14. Pareto front for the I-beam design problem.
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Table 1. Pareto solution (f1 = 413.83 cm2,
f2 = 0.0093 cm).

x1 (cm) 80
x2 (cm) 50
x3 (cm) 0.9
x4 (cm) 3.48

f1 (cm2) 413.83
f2 (cm) 0.0093
g (kN.cm−2) −12.930

where δx is given by (13) and alpha is fixed to 0.2 for this test case. Equation (101) is a constraint
on the discrepancy between the first- and second-order approximation.

The approximation analysis is carried out on two Pareto solutions and approximations are
derived to understand their local sensitivity. The first solution considered is given in Table 1.
For this Pareto solution, three constraints on the input range are active: two constraints on the
maximum bound for x1 and x2, and one constraint on the minimum bound for x3. The relevant
first- and second-order derivatives on the Pareto surface for objective f2 and constraint g are given
in Tables 2 and 3, respectively.

The values for input variables, objectives and constraints of the approximate solutions defining
the bounds of the Pareto approximation are given in Table 4. Here, the values for objective f1 are
the results of the linear optimization problem and approximate values for f2 and g are obtained
with the quadratic approximation. Figure 15 plots the approximate solutions in the criterion space
and Figure 16 shows the geometry of the corresponding beams.

Table 2. First- and second-order derivatives on the
Pareto surface at Pareto solution (f1 = 413.83 cm2,
f2 = 0.0093 cm).

df2/df1 −2.29 × 10−5

d2f2/df 2
1 1.26 × 10−7

Table 3. First- and second-order derivatives on the
Pareto surface at Pareto solution (f1 = 413.83 cm2,
f2 = 0.0093 cm).

dg/df1 −7.98 × 10−3

d2g/df 2
1 4.48 × 10−5

Table 4. Objectives and constraints values of Pareto solution (f1 = 413.83 cm2, f2 = 0.0093 cm)
and approximate Pareto solutions associated with the approximation bounds.

Variables Approx solution 1 Pareto solution 1 Approx solution 2

x1 (cm) 80 80 80
x2 (cm) 50 50 50
x3 (cm) 0.9 0.9 0.9
x4 (cm) 2.74 3.48 4.22

Outputs Approx Model Model Approx Model

f1 (cm2) 341.175 341.175 413.83 486.493 486.493
f2 (cm) 0.0113 0.0113 0.0093 0.0079 0.0078
g (kN.cm−2) −12.232 −12.202 −12.930 −13.392 −13.412
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844 S. Utyuzhnikov et al.

Figure 15. Extent of the approximation bounds at the Pareto solution (f1 = 413.83 cm2, f2 = 0.0093 cm).

Figure 16. Extent of the approximation bounds at the Pareto solution (f1 = 413.83 cm2, f2 = 0.0093 cm).

Back-mapping analysis (see Equation (13)) indicates what variables are changed as a result of
the Pareto approximation. For this point, three constraints on the bounds of the inputs variables
are active (x1, x2 and x3) and remain active for the Pareto approximation. The Pareto approxi-
mation analysis indicates that, locally, this part of the Pareto front corresponds to changes with
respect to x4 only. This can be clearly seen in Figure 16 where only the thickness of the foot
and head of the beam, i.e. x4, is changed. Such a consideration provides a designer with valuable
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information about the Pareto solution in the vicinity of the point under study. It also indicates
what parameters can be adjusted locally if the compromise solution does not entirely satisfy some
preferences on the type of solutions that were not articulated in the formulation of the optimization
problem.

The second solution considered is given in Table 5. Two constraints on the minimum bounds for
x3 and x4 are active at this point. The constraint on the strength is also activated here. This means
that on this portion on the Pareto surface, input variables x3 and x4 are fixed to their minimum
value. Only x1 and x2 are left free to move along the Pareto front. The first- and second-order
derivatives on the Pareto surface in the criterion space are given in Table 6.

The extent of the approximation bounds is estimated with the same approach. The values for the
values for input variables, objectives and constraints of the approximate solutions corresponding
to the bounds of the Pareto approximation are given in Table 7 and plotted in Figures 17 and 18.

It is worth noting that when a constraint is active at the point under study, the approxima-
tion guarantees that it will remain active and therefore will not be violated within the bounds
of the approximation. However, when moving away from the point under study, the model
will (most of the time) depart from the approximation. Therefore, it is difficult to ensure that
the active constraints will strictly remain active. Indeed, Table 7 shows that at the bounds of the
approximation, the strength constraint does not remain active exactly. The assumption behind the
approximation theory is that, locally, the move in the design space to accommodate for the change

Table 5. Pareto solution (f1 = 128.718 cm2,
f2 = 0.0472 cm).

x1 (cm) 70.72
x2 (cm) 37.05
x3 (cm) 0.90
x4 (cm) 0.90

f1 (cm2) 128.718
f2 (cm) 0.0472
g (kN.cm−2) 0.000

Table 6. First- and second-order derivatives on the
Pareto surface at Pareto solution (f1 = 128.718 cm2,
f2 = 0.0472 cm).

df2/df1 −4.01 × 10−3

d2f2/df 2
1 1.42 × 10−3

Table 7. Objectives and constraints values of Pareto solution (f1 = 128.718 cm2, f2 = 0.0472 cm) and approximate
Pareto solutions associated with the approximation bounds.

Variables Approx solution 1 Pareto solution 1 Approx solution 2

x1 (cm) 66.91 70.72 74.53
x2 (cm) 38.33 37.05 35.77
x3 (cm) 0.90 0.90 0.90
x4 (cm) 0.90 0.90 0.90

Outputs Approx Model Model Approx Model

f1 (cm2) 127.588 127.588 128.718 129.845 129.848
f2 (cm) 0.0527 0.0521 0.0472 0.0436 0.0430
g (kN.cm−2) 0.000 0.046 0.000 0.000 0.045

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
h
e
 
U
n
i
v
e
r
s
i
t
y
 
o
f
 
M
a
n
c
h
e
s
t
e
r
]
 
A
t
:
 
1
1
:
4
3
 
9
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



846 S. Utyuzhnikov et al.

Figure 17. Extent of the approximation bounds at the Pareto solution (f1 = 128.718 cm2,f2 = 0.0472 cm).

Figure 18. Beams associated with the approximation at the Pareto solution (f1 = 128.718 cm2, f2 = 0.0472 cm).

in objective functions on the Pareto surface is locally normal to the set of gradients of the active
constraints. For active bound constraints, this ensures that the constraint will remain active in this
direction; however, for any other active constraint, this is only valid locally.
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8. Conclusions

This article has shown that existing formulas for linear approximation (Tappeta and Renaud 1999)
are only valid under particular conditions. The exact formulas for the first- and second-order
approximations are derived in the general case. Test cases show that the new approximations
outperform the existing ones. The concept of a local quick Pareto analysis based on these
approximations is proposed to understand the trade-offs between objectives. It gives the DM
the opportunity to articulate local preferences on the Pareto solution under consideration by
improving some criteria and compromising on others. Along with understanding the trade-offs
between objectives, the DM can ensure that inactive constraints remain inactive within the extent
of the approximation. A method for detecting non-differentiable Pareto point has been proposed
and its limitations pointed out. The approach was tested on a typical engineering multi-objective
optimization problem. Future work will concentrate on testing and application of the method to
complex industrial test cases.
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