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Abstract

Calderón–Ryaben’kii potentials provide the foundation for the dif-
ference potential method, which is an efficient way for solving bound-
ary value problems in arbitrary domains. This method allows us to re-
duce a uniquely solvable and well–posed boundary value problem to a
pseudo–differential boundary equation. The general theory of Calderón–
Ryaben’kii potentials is considered via the theory of distributions. The
definition of Calderón–Ryaben’kii potentials is based on the notion of a
clear trace. The criterion of the clear trace is formulated. Partial differ-
ential equations of the first order and the second order are considered as
particular examples. On the basis of the Calderón–Ryaben’kii potential
theory, a solution of the active sound control problem is obtained in a
general formulation. For the first time, the solution of the problem takes
into account the feedback of the active shielding sources on the input
(measurement) data. The exact transfer of the boundary conditions from
the original boundary to an artificial boundary is also considered.

1 Introduction

Calderón–Ryaben’kii’s potentials provide the foundation of the Difference Po-
tential Method (DPM) [1]. This method allows us to reduce a uniquely solvable
and well–posed boundary value problem (BVP) in a quite arbitrary domain
to a pseudo–differential boundary equation. The replacement of a BVP by a
boundary equation is very attractive; the boundary equation is very beneficial
for numerically solving the BVP because it drastically diminishes the number of
unknown (grid) variables. The classical example of such a reduction is the Fred-
holm integral equation for the Laplace and Helmholtz equations. In complex
analysis this reduction is given by a Cauchy–type integral. It is worth noting
that on the basis of Green’s formula the very efficient boundary element method
(BEM) was developed, see e.g. [2]). Nevertheless, the BEMs have a relatively
limited area of application.
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Calderón was the first to reduce a BVP for a general linear differential el-
liptic equation to a pseudo–differential boundary equation [3]. This work was
further developed by Seeley [4] who, in particular, showed that the Calderón
projection of an elliptic operator is represented by a pseudo–differential equa-
tion. Later Hörmander [5] demonstrated that the Calderón theory, in fact, is
not limited by elliptic problems. Some drawbacks of these formulations were
related to their complexity and the absence of a robust method for their solv-
ability. It was the DPM by Ryaben’kii [1] that provided an approach for the
formulation of the boundary equation in a general finite–difference form. In [1],
Calderón’s potentials are modified to be approximated via finite–difference po-
tentials based on the solution of an auxiliary classical boundary value problem.
Ryaben’kii introduces an auxiliary ”simple” domain containing the original do-
main. Although the auxiliary domain it is not necessary for the reduction of a
BVP to a boundary equation, it is very important from the standpoint of ap-
plications. Ryaben’kii effectively reduces the solution of the boundary equation
to the solution of a BVP in the auxiliary domain which is much simpler than
that in the original domain. Apart from its original intended role, the auxiliary
domain appears to play a significant role in different applications such as active
noise shielding (AS) and artificial boundary conditions (ABC) both of which
are considered in this paper.

The DPM became a powerful mathematical tool for solving complicated
problems of mathematical physics; some examples are given in the monograph
[1]. In the papers by Ryaben’kii and his co-authors the most attention is devoted
to the development of the difference potentials, the numerical methods for solv-
ing the boundary equation and applications. Apart from the finite–difference
formulation, in [1] the DPM is also considered in the differential classical form.
General aspects of the theory in continuous and discrete spaces are addressed in
[6]. Some extension of the DPM formalism to the linear Helmholtz–type equa-
tions with discontinuous solutions is given in [8], where this theory is applied to
the active sound control problem. In [1], it is proven by Kamenetskii that the
potentials introduced by Seeley [4] for elliptic equations are equivalent to the
Ryaben’kii potentials. In turn, Kamenetskii [7] proved that the Calderón poten-
tials, cited in [4], can be reduced step by step on the discrete level to one form
of the difference potentials suggested by Reznik [1]. It is to be noted that the
analogue between the Calderón and Ryaben’kii potentials is not obvious and,
historically, it was not immediately observed. Therefore, for a long time the
theory of the DPM was developed by Ryaben’kii and his co-workers completely
independently from the theory of the Calderón potentials.

In this paper, the theory of the Calderón–Ryaben’kii potentials is extended
to a generalized formulation based on the theory of distributions (see e.g. [9],
[10]). Under the Calderón–Ryaben’kii potentials we understand the extension
of the Ryaben’kii difference potentials to continuous spaces. It is to be noted
that the name adopted for the potentials is not traditional in the literature.
Meanwhile, we believe that such a name is the most proper. It appears that
the difference potential theory can naturally be formulated via the formalism
of distributions. The weak formulation of the term Calderón–Ryaben’kii poten-

3



tials is suggested in the current paper. It allows us to exploit all the advantages
of the generalized formulations, including extending the theory to piecewise
continuous functions and generalized non-regular functions. In particular, it is
important from the standpoint of the application of the theory to physical prob-
lems. The key proposition about validity of the generalized potential definition
is given in this paper. The Calderón–Ryaben’kii potentials are based on the
notion of a clear trace. Here, the criterion of the clear trace is formulated. The
generalized formulation of the Calderón–Ryaben’kii potentials can be useful for
understanding the algorithms and potential applications of the DPM.

The active noise shielding problem (see e.g. [11], [12]) is considered as an
application example in this paper. This problem is addressed using the DPM in
[1], [13], [8], [14], [15], [16], [17], [18] and by using the theory of distributions in
[15], [19]. The solution of this problem for a linear analogue of the Helmholtz
equation with variable coefficients is obtained in [8], [15]. For an arbitrary
linear problem of first order equations the AS is obtained in [19] in the form of
a simple–layer potential. In the current paper, the general solution of the AS
problem is first obtained for a general differential operator via the theory of the
generalized potentials. In particular, the solution gives the AS secondary terms
for the Helmholtz equation and the Euler acoustics equations, which coincide
with the results obtained in [8] and [19], respectively. Finally, the feedback of
the secondary sources is taken into account. It is shown that in this case the
solution of the AS problem might require the solution of some additional BVP.

Another application example is related to the boundary conditions to be set
on an artificial boundary. In many applications, it is desirable to restrict the
solution of the problem in the original domain to the sub-domain where the
right–hand side is supported. It makes sense, for instance, if the new domain
can be chosen much smaller than the original one. In this case, were are required
to set the boundary conditions on the artificial boundary. Such boundary con-
ditions are called artificial boundary conditions [20]. The DPM can be used to
provide the exact transfer of the boundary conditions from the remote boundary
to the artificial boundary [1], [20].

The paper is organized in the following way. The Calderón–Ryaben’kii po-
tentials are first introduced for a generally formulated linear BVP, which is sup-
posed to be both uniquely solvable and well–posed. The solution of the BVP is
considered in the generalized (weak) sense. The definition of the potentials is
then formulated via the theory of distributions, which is strongly based on the
notion of the clear trace introduced by Ryaben’kii. Then, the main properties
of the Calderón–Ryaben’kii potentials are considered. They include the gen-
eralized Green’s identity, decomposition of the trace, reduction of the original
BVP to an equivalent boundary pseudo–differential equation. The criterion of
the clear trace is then given. It is shown that the potential can be obtained via
the solution of some BVP with respect to some density of the potential on the
right–hand side. First order and second order differential equations are consid-
ered as particular cases. The application of the Calderón–Ryaben’kii potentials
is demonstrated on the examples of the AS problem and artificial boundary
conditions.
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2 The generalized formulation of the Calderón–
Ryaben’kii potentials

2.1 Statement of the problem

First, let us introduce some domain D0: D
0 ⊆ Rm with smooth boundary Γ0

and a sub-domain D : D ⊂ D0, having smooth boundary Γ.
Let us now consider the following linear BVP:

LU = f, (1)
U ∈ ΞD0 , (2)

where L is some differential operator of order k with sufficiently smooth co-
efficients, U ∈ Rp, f ∈ Rp. Let a linear functional space ΞD0 be such that
the solution of the homogeneous BVP (1), (2) with f = 0 is unique and triv-
ial: U ≡ 0. To avoid any possible confusion, it is supposed that the boundary
conditions are locally formulated at the boundary Γ0. We say that a function
U is a generalized solution of BVP (1), (2) if 〈LU,Φ〉 = 〈f, Φ〉 for any test
function Φ(D

0
) ∈ C∞0 (D

0
). Here, 〈f, Φ〉 denotes a linear continuous functional

associated with a given generalized function f .
Suppose that in (1) the right–hand side f ∈ FD0 where the space FD0 is

defined such that the solution of BVP (1), (2) exists. It is easy to see that if
the solution of BVP (1), (2) exists, then it is unique. Thus, the spaces ΞD0 and
FD0 are isomorphic each other. In addition, we require that if f ∈ FD0 , then
θ(D)f ∈ FD0 , where θ(D) is the Heaviside–type characteristic function equal to
1 in D and 0 outside.

Along with a generalized function φ we introduce a local element [9] φΩ of
φ ∈ ΞD0 on Ω (Ω ⊂ D0) as the restriction of φ to Ω. We also consider the
following additional linear spaces:

FΩ = {fΩ| f ∈ FD0} , (3)
ΞΩ = {UΩ| U ∈ ΞD0} . (4)

We assume further that the space ΞD0 is the space of piecewise bounded func-
tions having generalized regular derivatives up to order k both on D and D− def

=
D0\D. In addition, we require that any function from ΞD0 is bounded along
with its k − 1 derivatives in the appropriate norms.

The specifications on to BVP (1), (2), described above, are sufficient for
further analysis. However, we introduce some additional conditions in order
make this analysis more concrete. Let us suppose that

ΞD0 ⊂ Hs(D) ∩Hs
0(D−),

where s > k − 1/2, Hs and Hs
0 are Sobolev spaces. Thus, f ∈ Hs−k

loc (D) ∩
Hs−k

loc (D−).
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We assume that BVP (1), (2) is well–posed according to Hadamard; i.e. we
require the following estimate:

‖ UD ‖2Hs + ‖ UD− ‖2Hs< C(‖ LU|D ‖2Hs−k + ‖ LU|D− ‖2Hs−k),

where C is some positive constant. In addition, we suppose the space ΞD0

should not be degenerate. Thus, we assume that the boundary conditions are
not over–determined. Thereby, they can contain a linear differential operator of
order not greater than k − 1, and they are not necessarily to be formulated on
the entire boundary. In particular, the linear differential operator L in (1) can
correspond to operators of first order or second order. For the sake of simplicity
we will consider either a system of first–order equations or one higher–order
equation.

The first order operator L is represented by

L := Lf
def
=

m∑
1

Ai ∂

∂yi
+ B, (5)

where
{
yi

}
(i = 1, ..., m) is some Cartesian coordinate system; in (1) U and

f are vector–functions with the dimension of p; Ai, B are p × p matrices:
Ai = Ai(y) ∈ C1(D

0
), B = B(y) ∈ C(D

0
).

The following elliptic operator is the typical case of the second order opera-
tor:

L := Ls
def
= ∇(p∇) + q, (6)

where p ∈ C1(D0), q ∈ C(D0) and p > 0.
Since the solution of BVP (1), (2) is unique, there exists a Green’s operator

G inverse to the operator L : FD0 → UD0 . Along with the operator G we can
introduce the local Green’s operator GD : FD → ΞD as follows:

UD = GDfD
def
= (Gθ(D)f)|D ,

We also introduce on D a differential operator LDVD
def
= LV|D where LV|D is

the restriction of the function LV to D.

2.2 Definition of Calderón–Ryaben’kii’s potentials. Clear
trace

We define an operator PDD : ΞD → ΞD as follows.

Definition 2.1 For any V ∈ ΞD

PDDVD
def
= VD −GDLDVD.
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The function PDDVD can also be rewritten as

PDDVD = (GLV )|D −GDLDVD = (7)

(GLV −Gθ(D)LV )|D =
(
Gθ(D−)LV

)
|D

.

The function PDDVD has the following important properties:

Proposition 2.2 ImPDD = ker LD and P 2
DD = PDD.

Proof. From Definition 2.1 it immediately follows that LDPDDWD = 0D. In
turn, if LDWD = 0D, then WD ∈ ΞD and PDDWD = WD. Hence, the operator
PDD is a projection: P 2

DD = PDD. ¤
Next, we introduce a trace operation as follows. Let Γ+

ε be smooth manifolds
parallel to Γ in the sense of [9], [10, Ch. 2]: Γ+

ε ⊂ D, Γ+
ε → Γ if ε → 0. The

trace operator Tr+Γ : Hs(D) → Hs−1/2(Γ) is given by

Tr+Γ UD
def
= lim

ε→0
TrΓ+

ε
UD,

where

TrΓ+
ε

UD
def
= UD(x), x ∈ Γ+

ε .

Similarly, in D− we introduce the trace operator Tr−Γ : Hs(D−) → Hs−1/2(Γ)
and

Tr−Γ UD−
def
= lim

ε→0
UD−(x), x ∈ Γ−ε .

If Tr+Γ UD = Tr−Γ UD− , then the trace on Γ is determined as

TrΓ UD
def
= U(Γ) = Tr+Γ UD = Tr−Γ UD− . (8)

If TrΓ UD does not exist, then the function UΓ = U|Γ has two values: Tr+Γ UD and
Tr−Γ UD− . Then, we introduce the following definition of the trace generalizing
the definition for continuous functions:

TrΓ U
def
=

1
2
(Tr+Γ UD + Tr−Γ UD−). (9)

We now give the definition of the clear trace first introduced by Ryaben’kii [1].
We consider some domain Ω ⊂ Ω0 ⊆ Rm with a boundary γ := ∂Ω. Let XΩ,
π(γ) be Banach spaces of functions defined on Ω and γ, respectively. Then, let
us consider some linear operator: M : XΩ → XΩ.

Definition 2.3 An operator Tr(γ) : XΩ → π(γ) is called a clear trace operator,
associated with the operator M, if for any two functions V and V ′ from XΩ:
Tr(γ)V = Tr(γ)V ′ ∈ π(γ) it follows that MV = MV′. The pair (Tr(γ)V, π(γ))
then creates a clear trace of M. The space π(γ) is called the space of clear
traces.
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From the definition it follows that if Tr(γ)V = 0γ , then MV = 0. Thus,
kerTr(γ) ⊆ kerM . Hence, the choice of the clear trace space is not unique
because any subspace of some space π(Γ) is also a space of clear traces. However,
not every linear operator has a clear trace.

With this regard, following [1], we can introduce the notion of the minimal
clear trace.

Definition 2.4 Let kerTr(γ) = kerM. Then, the clear trace is called the minimal
clear trace.

For practical applications it is better to chose the dimension of a clear trace
space to be as small as possible. This issue will be discussed later.

Having applied Definition 2.3 to the operator PDD, we are able to consider
a clear trace operator Tr+(Γ) associated with the operator PDD: kerTr+(Γ) ⊆
kerPDD. Also, we have Im PDD = ker LD, thus we have kerTr+(Γ) ∩ ker LD =
{∅}. It is worth noting that this property can be used as an alternative definition
of the clear trace operator [1].

The operator Tr+(Γ) in Definition 2.3 of the clear trace does not necessarily
coincide with the Cauchy–data trace operator of the operator L:

Tr+c (Γ) : ΞD0 → πc(Γ) ⊂ ⊕k−1
0 Hs−1/2−j(Γ),

Tr+c (Γ)U = Tr+Γ

(
U,

∂U

∂n
, ...,

∂k−1U

∂nk−1

)T

,

where k is the order of the operator L, n is the external normal vector to
the boundary Γ. The term a normal derivative refers to the regular normal
derivative [9].

From the definition, it follows that the space πc(Γ) is the factor space of
⊕k−1

0 Hs−1/2−j(Γ) with respect to kerPΓ. It is clear that, in contrast to the clear
trace, the operator Tr+c (Γ) is not assigned to any other operator. Examples of
clear traces for classical solutions can be found in [1]. In particular, the operator
of the clear trace can be nonlocal.

Now, we are able to introduce the Calderón–Ryaben’kii potentials as follows.

Definition 2.5 Let V ∈ ΞD0 and ξΓ = Tr+(Γ)VD ∈ π(Γ) where π(Γ) is a space
of clear traces of the operator PDD. Then, a function

UD = PDΓξΓ
def
= PDDVD (10)

is called the potential with the density of ξΓ.

From the definition it follows that the potential PDΓξΓ does not depend on
the complementation of VD to VD0 ∈ ΞD0 . Meanwhile, as mentioned above the
complementary domain D0 is important for practical applications [1].

Let us now introduce an operator LΓ+

def
= Lθ(D) − θ(D)L : ΞD0 → FD0 .

The differential operator LΓ+ acts in a neighborhood of Γ.
The operator LΓ+U can be represented as:

LΓ+U = −ζΓAΓ Tr+c (Γ)U,
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where AΓ is a matrix with the dimension of (k × p) × (k × p), ζΓ ∈ Rk is the
following generalized vector–function:

ζΓ
def
=

(
∂k−1δ(Γ)
∂nk−1

, ...,
∂lδ(Γ)
∂nl

, ..., δ(Γ)
)

. (11)

Here, δ(Γ) is the surface delta–function.

If L := Lf , then AΓ = An
def
=

∑m
1 Ain

i where ni are the coordinates of the
vector n. In turn, if L := Ls, then AΓ = pΓE, where pΓ = p(Γ), E is the unit
2× 2 matrix.

From the definition of the space FD0 it follows that LΓ+U ∈ FD0 if U ∈ ΞD0 .
Then, GLΓ+U = θ(D)U −GLDUD. In the general case, the matrix AΓ includes
tangential differential operators. It should be noted that the matrix AΓ might
be singular; for example, it might have both the first row and the last column
with only zero elements.

Now we prove the following important proposition.

Proposition 2.6 The pair of (Tr+c (Γ), πc(Γ)) is a clear trace of the operator
PDΓ.

Proof. From the definition and relation (7), it follows that

PDDVD = (GΨ)|D ,

where Ψ = LV − θ(D)LV = L(θ(D−)V ) + LΓ+ Tr+c (Γ)V . It is easy to see
that Ψ ∈ FD0 since VD ∈ ΞD. Hence, Green’s operator is determined. If
Tr+c (Γ)V = 0Γ, then PDD = θ(D−)V|D = 0D. Thus, kerTr+c (Γ) ⊂ kerPDD. ¤

Proposition 2.6 implies validity of the definition of the potential PDΓ. It is
to be noted that if we consider the Cauchy data to the order of k + 1:

T̂r
+

c (Γ)U = Tr+Γ

(
U,

∂U

∂n
, ...,

∂kU

∂nk

)T

∈ ⊕n
0Hs−1/2−j(Γ),

then they also provide a clear trace. However, it makes the application of the
clear trace more complicated in this case which is not justified from a practical
point of view.

A clear trace Tr+(Γ) is called a clear trace of canonical type [1] if it is
obtained by linear differential operators applied to VD ∈ ΞD0 at the boundary
Γ. It is clear that Tr+c (Γ) represents an example of a clear trace of canonical
type. Further we will only consider such type of clear traces. Let us now consider
the main properties of the potentials introduced.

3 Properties of Calderón–Ryaben’kii’s potentials

3.1 Generalized Green’s identity and trace decomposition

We can rewrite definition (10) in the following form:

VD = PDΓξΓ+ + GDLDVD, (12)

9



where ξΓ+ = Tr+(Γ)VD. Following [1], this equality is called the generalized
Green’s identity. If we set LDVD = fD, then we obtain the generalized Green’s
formula

VD = PDΓξΓ+ + GDfD. (13)

When applied to the Poisson equation, equality (13) gives us the well–known
Green formula [1].

Along with the operator PDΓ we introduce a boundary operator PΓ : π(Γ) →
π(Γ) as follows.

Definition 3.1 Let ξΓ ∈ ΞD0 and ξΓ = Tr+(Γ)V . Then

PΓξΓ
def
= Tr+(Γ)PDΓξΓ. (14)

From the definition and properties of PDD it immediately follows that the
operator PΓ is a projection: P 2

Γ = PΓ.
The next two propositions give a decomposition of ξΓ+ = Tr+(Γ)V if V ∈

ΞD0 .

Proposition 3.2 Let us consider ξΓ+ = ξ+
Γ+

def
= Tr+(Γ)U+

D where U+
D is defined

such that LU+ = f+, U+ ∈ ΞD0 and supp f+ ⊂ D. Then, U+
D = GDf+

D ,
PDΓξ+

Γ+
= 0D and PΓξ+

Γ+
= 0Γ.

Proof. It immediately follows from the chain:

GDf+
D = GDLU+

|D =
(
GLU+

)
|D = U+

D

The last statement of the proposition follows from Green’s formula (13). ¤
Thus, GDLDUD = UD. Hence, LDGDLDUD = LDUD and the operator LD

is semi-inverse to the operator GD [1].

Proposition 3.3 Let us now consider ξΓ+ = ξ−Γ+

def
= Tr+(Γ)U−

D where U−
D

such that LU− = f
−

, U− ∈ ΞD0 and supp f
− ⊂ D−. Then, U−

D = PDDU−
D

and PΓξ−Γ+
= ξ−Γ+

.

Proof. It is easy to see that

PDDU−
D = PDΓξ−Γ+

= (Gf−)|D = U−
D (15)

Then, having taken Tr+(Γ) from both sides of (15), we obtain

PΓξ−Γ+
= ξ−Γ+

.

¤
Corollary 1. If in BVP (1), (2) f = f++f

−
(supp f+ ∈ D, supp f

− ∈ D
−

),
U ∈ ΞD0 , ξΓ = Tr+(Γ)UD, then PΓξΓ+ = ξ−Γ+

. This immediately follows from
the linearity of the problem.
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Corollary 2. The space π(Γ) of clear trace of ΞD0 onto the boundary Γ is
decomposed into a direct sum of two subspaces: π(Γ) = kerPΓ ⊕ Im PΓ.

Corollary 3. If (ξΓ, π(Γ)) is the minimal clear trace, then PΓξΓ = ξΓ [1]. It
immediately follows from the definition of the minimal clear trace and Corollary
2.

We note here that, generally speaking, ξ−Γ+
is not fully determined by UD−

because the function U ∈ ΞD0 can be discontinuous on Γ and supp f
− ⊂ D−∪Γ.

3.2 Boundary pseudo–differential equation

The next Proposition gives us the representation of the solution of the BVP set
in D via the potential PDΓ.

Proposition 3.4 Assume that

LDVD = fD, (16)
VD ∈ ΞD.

Then, there exists a solution of (16) with Tr+(Γ)VD = ξΓ ∈ π(Γ) iff

ξΓ = PΓξΓ + Tr+(Γ)(GDfD). (17)

If equality (17) is valid, then the solution of BVP (16) having Tr+(Γ)VD = ξΓ

is unique and given by

VD = PDΓξΓ + GDfD. (18)

Proof. If the solution VD exists then from the generalized Green’s formula
(13) it follows that equality (18) is valid. Applying the operator Tr+(Γ) to both
sides of (18), we obtain (17).

If now equality (17) is valid, then the function VD in (18) has the following
trace ξΓ:

Tr+(Γ)VD = PΓξΓ + Tr+(Γ)(GDfD) = ξΓ

On the other hand, the function VD is a solution of (16). Indeed,

LDVD = LDPDΓξΓ+ + LDGDfD = fD.

It is not difficult now to prove that the function VD with Tr+(Γ)VD = ξΓ such
that LDVD = fD is unique. This immediately follows from the uniqueness of
the potential PDΓξΓ. ¤

Thus, equality (17) provides the necessary and sufficient condition for ξΓ to
be extended to the interior of the domain D as a function VD : LDVD = fD [1].
Although VD from (18) is unique, the solution of the boundary equation (17) is
not unique.

It is also important to note that relation (17) does not depend on the bound-
ary conditions on the external boundary Γ0 and on the structure of the operator
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L in D− provided it does not violate the assumptions of BVP (1). In particular,
equality (17) does not depend on the domain D−. Therefore, equality (17) can
be interpreted as the ”internal” boundary condition [1] for the subdomain D.
It is worth noting that in the case of the operator L corresponding to either the
Poisson equation or Helmholtz equation, equality (17) includes the Fredholm
equation of the second kind for the density of the potential. In addition, equal-
ity (17) contains another equation which excludes the possibility of internal
resonance [1].

As an example, let us consider the following Dirichlet BVP set in D:

LDUD = fD,

UD|Γ = UΓ,

θ(D)fD ∈ FD0 .

UD can be represented as UD = UD,l + UD,f where UD,f = GD(θ(D)fD) and
UD,l is the solution of the following homogeneous BVP: LDUD,l = 0D and
UD,l|Γ = UΓ − UD,f |Γ.

Since, PΓUD,f |Γ = 0Γ, then equality (17) is reduced to the following equation:

PΓ Tr+(Γ)UD,l = Tr+(Γ)UD,l.

The solution of this equation does not depend on the extension of UD,l outside
D in view of the definition of the potential.

The numerical solution of the pseudo–differential equation (17) can be ef-
fectively realized via the DPM. In the numerical realization of the DPM the
choice of the domain D0 and the boundary conditions on Γ0 is important since
they affect the well–posedness of the so called the auxiliary problem [1]. The
auxiliary problem represents a BVP in D0 with a specifically chosen right–hand
side corresponding to θ(D−)LV in (7).

Next, from (18) we have:

VD = PDDVD + GDfD.

Meanwhile, from Corollary 2 of Proposition 3.3, it follows that:

VD ∈ kerPDD ⊕ Im PDD.

Thereby, if VD ∈ Im PDD, then VD = PDDVD and VD retains if the auxiliary
problem changes due to the change of either the boundary conditions or the
domain D−. In turn, if VD ∈ kerPDD, then VD = GDfD. Obviously, V =
G−1θ(D)fD depends on the auxiliary problem. Hence, VD depends either. Thus,
only Im PDD is invariant to the change of the auxiliary problem.

The finite–difference counterpart of Proposition 3.4 is one of the basic the-
orems in the DPM. It allows us to reduce the solution of the BVP set on some
quite arbitrary domain D to the solution of the BVP formulated on some do-
main D0 : D ⊂ D0. Here, we can effectively exploit the fact that the domain
D0 can be as simple as we chose. Then, the numerical solution of the BVP set

12



in D0 can be simpler than the solution of the original BVP if the domain D is
complicated. In other words, it allows us to represent Green’s operator GD via
GD0 which is either known or easy to find.

Along with the potential PDΓ in D, we can introduce the potential QD−Γ in
D− as follows.

3.3 Potential on the external subdomain

Definition 3.5 Let V ∈ ΞD0 , then an operator QD−D− is defined as

QD−D−VD−
def
= VD− −GD−LD−VD− , (19)

where the definition of the operators GD− and LD− are similar to the definition
of GD and LD, respectively.

It is clear that Im QD−D− = ker LD− . Similarly to Tr+(Γ), we are able to
introduce an operator Tr−(Γ) : ΞD0 → π(Γ) such that the pair of (Tr−(Γ), π(Γ))
creates a clear trace associated with QD−D− .

Definition 3.6 Let V ∈ ΞD0 and ξΓ = Tr−(Γ)V ∈ π(Γ). Then

QD−ΓξΓ
def
= QD−D−VD− ,

In the case of the potential QD−D− the total boundary Γt includes the
boundary of the domain D0: Γ0 := ∂D0. A clear trace of QD−D− in space
ΞD0 onto the boundary Γ is given by the pair of (Tr−(Γ), π(Γ)). Meanwhile,
for example, the clear trace in space Hs(D0) does not coincide with the clear
trace in ΞD0 and must be completed by the appropriate boundary condition on
the boundary Γ0. Thus, if we consider the necessary and sufficient condition for
clear trace ξΓt to be extended to the interior of the domain D−:

ξΓt = QΓtξΓt + Tr−(Γt)(GD−fD−), (20)

then the appropriate boundary condition on the boundary Γ0 must be included
in the clear trace.

3.4 Criterion of the clear trace

We now obtain the criterion for a clear trace and derive differential equations
for the potentials PDD and QD−D− . For this purpose, let us now introduce a
boundary operator in D0 as follows:

LΓU
def
= LU − {LU} , (21)

13



where {LU} means the regular part of the function LU in D0. In the case of
Lf with infinitely differentiable coefficients we have:

〈LU,Φ〉 = 〈U,L∗Φ〉 =
∫

D0
(U,L∗Φ)dy =

∫

D

(U,L∗Φ)dy+

∫

D−
(U,L∗Φ)dy = −

∫

D

m∑
1

∂

∂yi
(U,AiT Φ)dy +

∫

D

(LU,Φ)dy+

−
∫

D−

m∑
1

∂

∂yi
(U,AiT Φ)dy +

∫

D−
(LU,Φ)dy = ({LU} ,Φ)+

(An [U ]Γ , Φ).

From here on, (U, V ) is a scalar product of vector–functions U and V , L∗
def
=

−∑m
1 AiT ∂

∂yi + BT , [U ]Γ
def
= Tr−Γ U − Tr+Γ U . Thus,

Lf |ΓU = An [U ]Γ δ(Γ). (22)

It is possible to prove that the properties of the coefficients determined in (5)
are sufficient for equality (22). For this purpose, it is enough to rewrite LfU in
the following equivalent form:

LfU =
m∑
1

∂

∂yi
(AiU) + (B −

m∑
1

∂

∂yi
Ai)U,

U ∈ ΞD0 .

In order to consider the operator Ls, let us consider

∇U = {∇U}+ [U ]Γ nδ(Γ) (23)

and the generalized Green’s formula for distributions [9], [15]:

∆U = {∆U}+
[
∂U

∂n

]

Γ

δ(Γ) +
∂

∂n
([U ]Γ δ(Γ)) .

Then,

∇(p∇U) = {∇(p∇U)}+ pΓ

[
∂U

∂n

]

Γ

δ(Γ) +
∂

∂n
(pΓ [U ]Γ δ(Γ)) .

Hence,

LsU = {LsU}+ pΓ

[
∂U

∂n

]

Γ

δ(Γ) +
∂

∂n
(pΓ [U ]Γ δ(Γ))

and

Ls|ΓU = pΓ

[
∂U

∂n

]

Γ

δ(Γ) +
∂

∂n
(pΓ [U ]Γ δ(Γ)) (24)
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From (22) and (24) it follows that if L := Lf , then AΓ = An, and if L := Ls,
then AΓ = pΓE. If L := ∇l, then by a recurrent chain one can prove that

∇lU =
l−1∑

i=0

∂l−1−iU

∂nl−1−i |Γ
∂iδ(Γ)
∂ni

+ {∇lU}

and AΓ = E, where E is the unit l × l matrix.
Let us consider the general equation of higher order:

LU := L(k)U =
m∑

i,j=1

bij∇iL
(k−1)
j U. (25)

Here, L
(k−1)
j are differential operators of order k − 1, bij are smooth enough

coefficients. Then,

L(k)U = {L(k)U}+ ζ
(k)
Γ AΓ,L(k) [U ]c,Γ ,

where [U ]c,Γ

def
= Tr−c (Γ)U − Tr+c (Γ)U , ζ

(k)
Γ =

(
∂k−1δ(Γ)

∂nk−1 , ..., δ(Γ)
)
, the matrix

AΓ,L(k) is a lower triangular matrix with elements including differential operators
on the manifold Γ. If the coefficients of the operator L(k) are dimensionless, then
the dimension of an element (i, j) of the matrix is given by

dim A
(i,j)

Γ,L(k) = lengthj−i (i ≥ j),

which can be proven via the method of induction. Indeed, from (23) we have

∇L
(k−1)
j U = {∇L

(k−1)
j U}+ [{L(k−1)

j U}]Γnδ(Γ)+ (26)

∇(ζ(k−1)
Γ AΓ,L(k−1) [U ]c,Γ).

In (26), the discontinuity of any derivative can be represented via the disconti-
nuity of the normal derivatives, see e.g. [22]:

[{L(k−1)
j U}]Γ =

k−1∑
1

Dj,p

[
∂k−1−p

∂nk−1−p
U

]

Γ

.

Here, Dj,p are the differential operators of order p on the manifold Γ.
Having considered the appropriate conormal derivatives related to the matrix

bij in (25), we find that the singular part of L(k)U has the form of ζ
(k)
Γ AΓ,L(k) [U ]c,Γ.

Thus, if U ∈ ΞD0 , then LΓU = LΓ [U ]c,Γ and

LΓ = ζΓAΓ [U ]c,Γ

and the function ζ is given by (11). A similar statement is also valid for the
operator LΓ+ .
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Thus, for any function U smooth enough across Γ: Tr+c (Γ)U = Tr−c (Γ)U , we
have

LΓU = 0.

Let us also introduce operator LΓ−
def
= Lθ(D−)− θ(D−)L : ΞD0 → FD0 . Simi-

larly to LΓ+ , we can represent LΓ− as follows

LΓ−U = ζΓAΓ Tr−c (Γ)U.

In the general case the potential PDΓUΓ can be obtained as the solution of
some BVP.

Proposition 3.7 If ξΓ ∈ πc(Γ), then

PDΓξΓ = −GD(LΓξΓ) := −GD(ζΓAΓξΓ) (27)

and the potential PDΓξΓ can smoothly be extended to a function W : W ∈ ΞD0 ,
supp W ⊂ D−.

Proof. If ξΓ ∈ πc(Γ), then from the trace theorem [10, Ch.1] there exists
V ∈ Hs(D) ∩ Hs

0(D−) : Tr+c (Γ)V = ξΓ. Since the potential PDΓξΓ does not
depend on VD− , we can set UD = VD and UD− = 0D− . It is clear that UD ∈ ΞD.
Taking into account that Tr+c (Γ)U = ξΓ, we have

〈LU,Φ〉 = ({LU}D , Φ)− (LΓξΓ, Φ).

for any test function Φ . Hence, LU − θ(D)LU = LΓ+U = −LΓξΓ ∈ FD0 , and
equality (27) is valid.

For any ε > 0 there exits [9] a function ηε ∈ C∞(Rm) such that 0 ≤ ηε(x) ≤
1, ηε = 1 on D and D ⊂ supp ηε ⊂ Dε ⊂ D0 where Dε → D if ε → 0. Thus,
there exists ε0 : WD0 = ηε0UD ∈ ΞD0 . It is easy to see that LDVD = 0D and
supp LD0WD0 ⊂ D−. ¤

The last statement of the Proposition also follows from the trace theorem
[10, Ch.1].

Similarly to Proposition 3.7, one can prove that

Proposition 3.8 If ξΓ ∈ πc(Γ), then

QD−ΓξΓ = GD−(LΓξΓ) := GD−(ζΓAΓξΓ) (28)

and the potential QD−ΓξΓ can smoothly be extended to a function W : W ∈ ΞD0 ,
supp W ⊂ D.

The next Proposition immediately follows from Propositions 3.7 and 3.8:

Proposition 3.9 If ξΓ ∈ πc(Γ), then the solution of BVP

LU = LΓξΓ, (29)
U ∈ ΞD0
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is given by

U =

{
−PDΓξΓ, in D

QD−ΓξΓ, in D−.
(30)

Let L = Ls and ξΓ ∈ πc(Γ). If ξΓ = (ξ0, 0)T , then the potentials PDΓξΓ and
QD−ΓξΓ are represented by the potential of a double–layer:

LsU =
∂

∂n
(pΓξ0δ(Γ)) (31)

U ∈ ΞD0 .

In turn, if ξΓ = (0, ξ1)T , then the potentials PDΓξΓ and QD−ΓξΓ correspond to
the potential of a single–layer:

LsU = pΓξ1δ(Γ) (32)
U ∈ ΞD0 .

In both cases PDΓξΓ = −UD and QD−ΓξΓ = UD− .
In some simple cases, we can obtain the relation between the classical poten-

tials and the Calderon–Ryaben’kii potentials. For example, having considered
the Laplace operator instead of Ls in BVP (31), its solution is given by the
potential of a double layer [9]:

PDΓξΓ =
∫

Γ

ξ0
∂Gr

∂n
dσ,

where Gr is the Green’s function, the surface integral represents the appropriate
convolution.

Taking into account the uniform limit of the double–layer potential on the
boundary [9], we arrive at the following Fredholm equation of second kind:

Tr+Γ PDDVD =
ξ0

2
+

∫

Γ

ξ0
∂Gr

∂n
dσ. (33)

where VD ∈ ΞD. Equation (33) determines an operator T : VD → ξ0. One
can prove [1] that the operator T corresponds to the clear trace. Indeed, ξ0 is
equal to zero only if the potential PDDVD equals zero. The clear trace operator
represented by T , obviously, is nonlocal.

The next proposition is important for the analysis of the discontinuities of
the generalized Calderón–Ryaben’kii potentials across the boundary Γ.

Proposition 3.10 Let us consider the following BVP in D0

LU = LΓξΓ,

U ∈ ΞD0 .

Assume that ξΓ ∈ πc(Γ). Then,

PΓ Tr−c (Γ)U = 0Γ, (34)

QΓ Tr+c (Γ)U = 0Γ. (35)
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Proof. Since the potential PDΓ Tr−(Γ)U does not depend on the extension
to D− we can set V

D
− = U

D
− in Definition 2.5 of the potential PDΓ. The

function V
D
− can smoothly be extended to D+: Tr+(Γ)V = Tr−(Γ)U . Thus,

supp LV ⊂ D+. Hence, PDΓ Tr−c (Γ)U = 0D. Similarly, one can prove (35). ¤
Corollary. PΓQΓξΓ = QΓPΓξΓ = 0Γ.
Now, we can prove the criterion of a clear trace

Proposition 3.11 The pair of (ξΓ, πc(Γ)) is a clear trace iff ζΓAΓξΓ ∈ FD0 .

Proof. In one implication this statement follows from Propositions 3.7 and
3.8. To prove this statement in the opposite implication, let us consider the
following BVP:

LU = ζΓAΓξΓ,

U ∈ ΞD0 .

Function V + = θ(D)U is the solution of BVP

LV + = −ζΓAΓ Tr+c (Γ)U,

V + ∈ ΞD0 ,

while function V − = θ(D−)U is the solution of BVP

LV − = ζΓAΓ Tr−c (Γ)U,

V − ∈ ΞD0 ,

and ξΓ = [U ]c,Γ. Hence, V +
D = PDΓ Tr+c (Γ)U while V −

D = QD−Γ Tr−c (Γ)U . From
Propositions 3.7 and 3.8, there exist functions W+ ∈ ΞD0 and W− ∈ ΞD0 :
W+

D = V +
D , suppW+ ⊂ D− and W−

D− = V −
D− , suppW− ⊂ D+.

Let us now consider the function: Ũ = W− −W+ ∈ ΞD0 , and Tr+c (Γ)Ũ =
Tr+c (Γ)W− − Tr+c (Γ)W+ = ξΓ. Then, PDΓξΓ = −W+

D = −UD. Similarly,
QD−ΓξΓ = W−

D− = UD− .
Thus, the pair of (ξΓ, πc(Γ)) is the clear trace of the potentials PDD and

QD−D− . ¤
Following [1], we can combine the potentials PDΓ and QD−Γ into the Cauchy–

type operator [1] RD0Γ : π(Γ) → ΞD0 with density ξΓ ∈ π(Γ) as follows:

RD0ΓξΓ
def
=

{
−PDΓξΓ on D,

QD−ΓξΓ on D−.
(36)

The pair ([V ]c,Γ , πc(Γ)) creates a clear trace associated with the operator RD0Γ

and RD0ΓξΓ ∈ ΞD0 . This statement follows from Definition 2.3, the properties
of the potentials PDΓ and QD−Γ, and the uniqueness of the solution of the BVP
(29).

By immediate substitution one can prove that the solution of (29) is repre-
sented by

U = V −G {LV }D0 , (37)
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where V ∈ ΞD0 and [V ]c,Γ = ξΓ. From (30), (36) and (37) it can be shown that
for any V ∈ ΞD0 the following equality is valid:

VD0 = RD0Γ [V ]c,Γ + G {LV }D0 . (38)

Thus, we can decompose the space ΞD0 as follows: ΞD0 = Ξc,D0 ⊕ Ξd,D0 .
Here, Ξc,D0 is the space of continuous functions across Γ, Ξd,D0 is the space of
discontinuous functions satisfying the homogeneous equation on both domains
D and D−.

From (38), it follows that if a function V ∈ ΞD0 has a discontinuity on Γ:
[V ]c,Γ = ξΓ, and V satisfies the homogeneous equation on both D and D−, then
it is uniquely recovered via the potentials PDΓξΓ and QD−ΓξΓ. Thus, there is a
deep analogy between these potentials and the Cauchy type integral in complex
analysis.

The following proposition gives a relation between PΓ and QΓ.

Proposition 3.12 Let the pair of (ξΓ, πc(Γ)) be a clear trace. Then,

PΓξΓ + QΓξΓ = ξΓ. (39)

Proof. It immediately follows from Propositions 3.9 and 3.11 if we set U =
GD0LΓξΓ. ¤

Thus, the space of the Cauchy data of continuous functions U : [U ]c,Γ =
0Γ, U ∈ ΞD0 is decomposed into a direct sum of clear traces of functions satis-
fying the homogeneous equation (1) on either domain D or domain D−. This
result was proved by Seely [4] for elliptic equations. In the general case of
discontinuous functions from ΞD0 , this statement is not valid.

It appears that the boundary equality (39) can be extended to any function
V ∈ Ξ if we set ξΓ = [V ]c,Γ. Indeed, from (38) it follows that V = U + W ,
where U = RD0ΓξΓ and W = G {LV }D0 . Then, ξΓ = [U ]c,Γ, and equality (39)
immediately follows from Proposition 3.10 and the following equalities:

PΓξΓ = −Tr+c (Γ)U,

QΓξΓ = Tr−c (Γ)U.

Let us next introduce the generalized Cauchy data on Γ:

Trc(Γ)V
def
=

1
2
(Tr+c (Γ)V + Tr−c (Γ)V ).

Then, equality (39) is also valid for ξΓ = Trc(Γ)V .
In this case, following the previous proof we consider V = U + W . Then,

equality (39) is obtained from

PΓ Trc(Γ)U =
1
2

Tr+c (Γ)U,

QΓ Trc(Γ)U =
1
2

Tr−c (Γ)U,

and Proposition 3.12.
Now, let us consider some applications of the Calderón–Ryaben’kii poten-

tials.
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4 Active noise shielding problem

Suppose that problem (1), (2) describes an acoustic field in the domain D0. The
sources situated in D are considered as wanted, while those situated outside D
are interpreted as unwanted sources of noise.

Assume that we know the value of the function U in some neighborhood of
the boundary Γ. We note that only this information is assumed to be available.
In particular, the distribution of the sources f := F on the right-hand side of the
BVP is unknown. The AS problem is reduced to searching additional sources g
on D− such that the solution of the BVP

LU (g) = F + g, (40)
F ∈ FD0 ,

supp g ⊂ D
−

,

U (g) ∈ ΞD0

coincides on D with the solution U of BVP (1), (2) if F = f+. An ”obvious”
solution F = −f− is not applicable here because the distribution of f− is
unknown. The solution of this problem can be derived via the generalized
potentials as follows.

Let us introduce the following two BVPs:

LU+ = f+, (41)

supp f+ ⊂ D,

U+ ∈ ΞD0 , (42)

and

LU− = f−, (43)

supp f− ⊂ D−,

U− ∈ ΞD0 . (44)

From Proposition 3.2, it follows that the requirements of the noise cancelation
is equivalent to

PDDL−1
D (f + g) = PDDU+

D = 0D

On the other hand, from Proposition 3.7 and Proposition 3.3, we have:

PDDL−1
D f = PDΓξΓ = L−1

D (−ζΓAΓξΓ),

where ξΓ = Trc(Γ)U , and

PDDL−1
D g = L−1

D g.
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Thus, we can choose

g = g0 + LW, (45)

g0
def
= ζΓAΓξΓ, (46)

where W is any function from ΞD0 such that supp W ⊂ D−.
It can be shown that the solution of BVP

LV = g0, (47)
V ∈ ΞD0

is the following:

L−1g0 =

{
−U−, in D

U+, in D−.
(48)

The term g0 represents the surface potential part of the AS solution [19]. In
the application to the differential operators Lf and Ls, we obtain the following
AS source terms:

g0|f = AnUΓδ(Γ)

and

g0|s = pΓ
∂U

∂n |Γ
δ(Γ) +

∂

∂n
(pΓUΓδ(Γ)) .

In particular cases of the Euler acoustics equations and Helmholtz equation the
AS solution (46) provides the source terms obtained in [19] and [8], respectively.

The solution (46) is general and can be applied to different kind of the
operator L; for example, it can be used for the Maxwell equations [21].

Let us now analyze the solution of BVP (40) with g determined by (45), (46).
The realization of the source (46) is based on the knowledge (measurement) of
Trc(Γ)U . Once the AS source is implemented, the field changes in the shielded
domain D and, possibly, outside. Moreover, the field U (g) becomes discontinu-
ous across the boundary Γ. In the domain D we have Tr+c (Γ)U (g) = Trc(Γ)U+.
Thus, the measured field coincides with the case f− ≡ 0 and the AS is not re-
quired. Hence, the implementation of the AS source leads to some uncertainty.
This fact can especially be important if the field f− changes in time.

In the external domain D−, the field corresponding to Tr−c (Γ)U (g) may also
change in comparison to UΓ due to the additional field generated by the sec-
ondary source g if f+ 6= 0, in particular. On the other hand, from Proposition
3.10 we have PΓ Tr−c (Γ)U (g) = Trc(Γ)U−. Thus, the potential PΓ Tr−c (Γ)U (g)

filters the contribution of the secondary term g0, and the value of the AS source
term is given by

g0 = ζΓAΓPΓ Tr−c (Γ)U (g). (49)
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Hence, the measurements must be performed at the external boundary and the
realization of AS requires the solution of a BVP in the domain D0. We note
that the AS (49) gives an optimal solution because PΓ Trc(Γ)U+ = 0Γ. Thus,
this solution efficiently filters the ”friendly” sound which does not require to
be shielded. From (47) and (48), it follows that the secondary source does not
affect the field outside D if f+ ≡ 0. Then, the solution of the additional BVP
is not required since PΓ Tr−c (Γ)U (g) = Tr−c (Γ)UΓ and the right–hand side is
assumed to be immediately obtained from the measurements.

The developed AS solution can immediately be applied to nonstationary
problem with some minor modifications in the theory.

5 Artificial boundary conditions

Assume BVP (1), (2) holds such that the source terms are only situated on D:
supp f ⊂ D. It is possible to exactly transfer the boundary conditions from the
boundary Γ0 to the boundary Γ. In the continuous space they are formulated
as follows. Having applied Proposition 3.4 to the domain D−, we find that the
vector–function

ξΓ = Tr−c (Γ)U ∈ πc(Γ) ⊂ ⊕k−1
0 Hs−1/2−j(Γ)

can be extended to UD ∈ ΞD if and only if

QΓξΓ = ξΓ. (50)

Thus, the condition (50) determines the subspace π+
c (Γ) of the boundary vector–

functions from πc(Γ) to be the trace Tr+c (Γ)UD of the solution of BVP (16).
Thus, it is possible to say that the boundary condition on the original bound-

ary Γ0 is exactly transferred to the boundary Γ via the condition (50). It is clear
that this boundary condition is not local. It can be reformulated in the form of
a pseudo–differential boundary equation

∂U

∂n |Γ
= RΓUΓ, (51)

where RΓ is a nonlocal operator of Poincaré–Steklov type. The described ap-
proach is used in [23] to develop nonlocal wall–functions for turbulence modeling.
Another particular class of the Poincaré–Steklov operators are provided by the
Dirichlet-to-Neumann (DtN) maps [24].

In turn, it is possible to transfer the boundary conditions from the boundary
Γ (if they are set there) to a remote artificial boundary Γ0. This makes sense if
the domain D is complex while the domain D0 is ”simple”.

For this purpose, let us consider a uniquely solvable and well–posed BVP,
which is formulated on D ⊂ D0:

LU = f,

lΓU = αΓ,
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where lΓ is some differential operator on the boundary Γ.
Assume that ξΓ is the solution of the following set:

QΓξΓ = ξΓ, (52)

l̂ΓξΓ = αΓ.

The first equation in (52) determines the subspace π+
c (Γ), while the second equa-

tion restricts it to the traces of the functions satisfying the boundary conditions.
Then, the solution of the following BVP formulated on D0

LW = f − ζΓAΓξΓ, (53)
W ∈ ΞD0

is given by W = θ(D)UD. It immediately follows from the previous section
since −ζΓAΓξΓ provides the AS of the domain D− from the field generated by
f .

6 Conclusion

The general theory of the Calderón–Ryaben’kii potentials has been considered
via the theory of distributions. The theory allows us to reduce a uniquely
solvable and well–posed linear BVP to a boundary pseudo–differential equation.
The DPM provides an efficient way for the numerical solution of the boundary
equation. The definition of the Calderón–Ryaben’kii potentials is based on the
notion of a clear trace. The criterion of the clear trace has been formulated.
On the basis of the Calderón–Ryaben’kii potential theory, the solution of the
active shielding problem has been obtained in a general formulation. For the
first time, the AS solution takes into account the diffraction effects such as
the feedback of the AS on the input (measurement) data. It has been shown
that the Calderón–Ryaben’kii potentials provide an efficient approach for the
exact transfer of boundary conditions from the original boundary to an artificial
boundary.
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