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a b s t r a c t

Modeling near-wall high-Reynolds-number turbulent flows is a time-consuming problem. A domain
decomposition approach is developed to overcome the problem. The original computational domain is
split into a near-wall (inner) subdomain and an outer subdomain. The developed approach is applied
to a model 2D equation simulating major peculiarities of near-wall high-Reynolds-number flows. On
the base of the Calderon–Ryaben’kii potential theory it is possible to consider the near-wall (inner) prob-
lem independently on the outer problem. The influence of the inner problem can exactly be represented
by a pseudo-differential equation formulated on the intermediate boundary. In a 1D case, it leads to the
wall functions represented by Robin boundary conditions, which can be determined either analytically or
numerically. It is important that the wall functions (or boundary conditions) are mesh independent and
can be realized in a separate routine. Thus, the original problem can only be solved in the outer domain
with some specific nonlocal boundary conditions called nonlocal wall functions. The technique can be
extended to 3D problems straightforward.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that near-wall turbulent flows are very compli-
cated for numerical simulation. Due to the no-slip boundary condi-
tion for the velocity and wall damping effect, a so called laminar
sub-layer appears in the vicinity of the wall. Although the laminar
sub-layer is very thin, its resolution strongly affects the accuracy of
the solution in the entire domain. Thereby, high-Reynolds-number
near-wall flows are characterized by profiles with high gradients
and their resolution requires a fine mesh nearby the wall. The
influence of the wall leads to strong flow anisotropy. Inevitably,
the Boussinesq hypothesis, used in many models of the Reynolds-
averaged-Navier–Stokes equations (RANS), fails. This demands the
development of so called low-Reynolds-number models which in-
clude complicated semi-empirical near-wall correction terms. Prac-
tical computations of industrial flows showed that accurate enough
near-wall resolution takes, at least, half the total computational time
[1]. The use of Large Eddy Simulation (LES) technique allows one to
avoid complicated semi-empirical near-wall models. However, this
approach is very time-consuming because the near-wall vortexes
are determined by the distance to the wall and become very small.
Thereby, correct near-wall resolution is very problematic and often
not realistic in industrial computations. Hybrid approaches [2]
based on the use of domain decomposition with RANS models near-
by the wall and LES outside seem more efficient, however the prob-
lem of the near-wall resolution retains.
ll rights reserved.
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The high-Reynolds-number model also uses the decomposition
approach. In this model the RANS equations are applied in the
main flow, while the near-wall domain is not numerically resolved.
Instead, some boundary conditions called wall functions are set on
some boundary nearby the wall usually assigned with the first
near-wall cell. The wall functions are based on a local approxima-
tion of the near-wall flow. First wall functions [3], suggested by
Launder and Spalding, corresponded to the analytical solution of
the classical problem on a thin plane and were based on the log-
profile. Although such an approximation is quite acceptable for rel-
atively simple near-wall flows, it is not good enough for complex
geometries and flows with strong source terms such as the pres-
sure gradient and buoyancy forces. Nowadays, different modifica-
tions of the wall functions have been suggested. Most of them
use some empirical parameters. If the boundary conditions (wall
functions) appear accurate enough, the high-Reynolds-number
models are very efficient for practical applications. The problem
is that we are often not able to estimate the applicability of the
wall functions until we know the solution to be found. Approaches
based on an approximate near-wall integration allow one to obtain
more universal wall functions [4–6]. Another significant problem
related to most wall functions is a high sensitivity of the solution
to the size of the near-wall cells where the wall functions are set
[1,7–9].

In [10], wall functions are interpreted as the boundary condi-
tions transferred from the wall to some boundary nearby the wall.
The approach has first been developed for a 1D model equation. It
appears that such wall functions are mesh independent, repre-
sented by Robin boundary conditions, and take into account source
terms. Later, the approach has been applied to the RANS equations
on for near-wall turbulent flows. Comput Fluids (2009), doi:10.1016/
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with the k-� model. The near-wall governing equations are repre-
sented by the Reduced Navier–Stokes equations [11] with ‘‘frozen”
derivatives along the wall. The wall functions are derived for all
variables but � in a uniform manner and do not contain any free
parameters. The Robin-type wall functions have been applied for
the study of channel flow and impinging jet at very different input
parameters in [12,13]. The computations confirmed a reasonably
weak dependence of the solution on the near-wall mesh distribu-
tion. In [14], it is shown that the Robin-type wall functions can
be obtained via the theory of the Calderón–Ryaben’kii potentials
[15,16]. This theory allows us to reduce a boundary value problem
(BVP) in a quite arbitrary domain to a boundary equation without
the use of Green’s function. The boundary equation is represented
by a pseudo-differential equation. In [14], this technique is locally
used in the normal to the wall direction.

In the current paper, the approach, derived in [14] for a 1D local
equation, is extended to a multidimensional case. For this purpose,
a model 2D equation is considered. The equation represents a gen-
eralization of the model equation used in [10]. Nearby the wall the
solution of the model equation contains a boundary-layer profile.
Thereby, the flow field can be split into high-gradient flow nearby
the wall and an external field. Using the technique based on the
Calderón–Ryaben’kii potential theory [15,16], the boundary condi-
tions are transferred from the wall to some intermediate boundary
which separate high-gradient inner and outer domains. It is very
important to know that the boundary conditions can be transferred
in advance without the consideration of the outer domain. There-
by, they can be applied to different external boundary conditions
and different geometries. The boundary conditions on the interme-
diate boundary, represented by a pseudo-differential equation, are
nonlocal. If the boundary conditions are exactly transferred from
the wall, we obtain a decomposition method. Alternatively, the
boundary conditions can be transferred approximately. This leads
to a multidimensional generalization of the Robin-type wall func-
tions. In other words, for the first time we obtain nonlocal wall
functions. The nonlocal wall functions capture main flow features
along the wall such as high longitudinal derivatives caused by
either source terms or the curvature of the wall. Although the ap-
proach is applied to a 2D equation, it can naturally be realized in a
3D case.

The paper is organized as follows: in Section 2, the general formu-
lation of a model BVP and domain decomposition are introduced.
Then, in Section 3, the boundary conditions are transferred from
the real boundary to an intermediate boundary via the Calderón–
Ryaben’kii potentials. This technique leads to some kind of the D–
t–N map. First, the partial case of a positive definite operator is con-
sidered in Section 4. The D–t–N map is obtained in the explicit ana-
lytical form. Then, the approach is generalized to the operator of a
general kind. The D–t–N map can be realized numerically as shown
in Section 5 The concept of the nonlocal wall functions is also intro-
duced there. The numerical example of the use of nonlocal functions
and domain decomposition is given in Section 8.

2. Model equation and domain decomposition

Let us consider the following BVP formulated on cylinder
D :¼ X� ½01�:

LU ¼ f ðx; yÞ; ð1Þ
lyUðx;0Þ ¼ awðxÞ; ð2Þ
lxUjcc

¼ bwðyÞ;
Uðx;1Þ ¼ UsðxÞ:

Here, x 2 X � Rm; m ¼ 1;2; X is a single-connected domain
with piece-wise smooth boundary @X; cc :¼ @X� ½01�. Assume that
L is a second-order linear differential operator; lx and ly are first-or-
Please cite this article in press as: Utyuzhnikov SV. Domain decompositi
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der linear differential operators at the boundary with respect to x
and y. We suppose that BVP (1) and (2) is well-posed according to
Hadamard.

As a partial case of BVP (1), we further consider the following
problem on square [0 1] � [0 1]:

ðlðyÞUyÞy þ rðyÞUxx þ bðyÞUy þ cðyÞU ¼ f ðx; yÞ; ð3Þ
lyUðx;0Þ ¼ awðxÞ; ð4Þ
Uð0; yÞ ¼ U0ðyÞ;
Uð1; yÞ ¼ U1ðyÞ;
Uðx;1Þ ¼ UsðxÞ: ð5Þ

where r ¼ al; a > 0; l ¼ ð1� expð�y=�Þ þ dÞ=Re; �� 1; d� 1;
Re� 1; b ¼ Cyp; p > 0.

In the governing equation (3), the first two terms on the left-hand
side simulate dissipative terms in the RANS equations, whereas the
other terms model convective terms, and the right-hand side corre-
sponds to the source terms such as the pressure gradient. The coef-
ficient l represents the effective viscosity coefficient. It is to be
noted that a partial case of the model equation (3) has been consid-
ered in [10]. The equation, used in [10], was the model equation for
the Robin-type 1D wall functions [13]. Later [17], this equation was
used for the development of wall-functions in LES.

It is clear that the parameter a in BVP (3)–(5) is responsible for
the nonlocal effects in x-direction. A typical example of such solu-
tions is flow around a corner with a high curvature. If the coordi-
nate x is related to the wall, the coefficient a can be proportional
to the curvature squared.

Next, we consider a domain decomposition: D :¼ D1 [ D2,
where D1 :¼ X� ½0y��; 0 < y� < 1 and D2 :¼ D n D1. We intend to
split BVP (1) into two BVPs formulated on the domains D1 and
D2. According to the physical sense of the introduced model BVP,
we assume that a BVP in the ‘‘near-wall” domain D1 corresponds
to a high-gradient solution with predominant gradients in the
y-direction. Our task is to separate the solution in the domain D1

from the solution in the rest domain. Such a separation is not triv-
ial because the boundary conditions at the intermediate boundary
y ¼ y� are unknown. It appears that in the linear case, at least, the
boundary condition at y ¼ 0 can exactly be transferred to the inter-
mediate boundary y ¼ y�. However, this boundary condition is not
local any more. In a 1D case, this approach is completed in [10,14].

The domain decomposition can efficiently be realized via the
theory of potentials. In the next Section, a brief introduction to
the theory of the Calderón–Ryaben’kii potentials in application to
the problem in question is given. It is shown that there is an imme-
diate relation between this theory and the domain decomposition
to be done. A detailed information on the theory of Calderón–Rya-
ben’kii potentials can be found in [15,16].

3. Domain decomposition and the Calderón–Ryaben’kii
potentials

Let us denote the space of smooth enough functions satisfying
boundary conditions (2) by ND. In addition, we require that the
solution of Eq. (1) is unique for any right-hand side f : f ¼
LV ;V 2 ND.

Strictly speaking, under the solution of BVP (1) and (2) we
understand a generalized solution: < LU; U >¼< f ; U > for any
test function U 2 C10 ðDÞ. Here, < f ; U > denotes a linear functional
associated with a given generalized function f ;C10 ðDÞ is the space
of infinitely differentiable functions vanishing at the boundary of
D. Details can be found in [16].

Then, we introduce a potential in the domain D1 as follows [15]:

PD1 VD1 ðzÞ ¼
def

VD1 �
Z

D1

GDðz; yÞLVðyÞdy; z; y 2 Rmþ1: ð6Þ
on for near-wall turbulent flows. Comput Fluids (2009), doi:10.1016/
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Here and further, VD1 is the restriction of a function V 2 ND to
D1; GD is the Green’s function of BVP (1) and (2) with f ¼ LV . It
should be noted that, in fact, explicit Green’s function is not neces-
sarily required. In practical applications, it can efficiently be re-
placed by Green’s operator [15].

It appears that the potential does not depend on the comple-
mentation of VD1 to any function V 0 2 ND [15,16]. In addition, one
can prove [15] that the potential satisfies the homogeneous equa-
tion on the domain D1:

LPD1 VD1 jD1 ¼ 0D1 :

Next, let C be the boundary of D1 : C :¼ @D1. Following [15], let
us introduce the operator of a clear trace TrC : ND ! NC and

TrCVD1 ¼ TrCWD1 ) PD1 VD1 ¼ PD1 WD1 ; ð7Þ

if V 2 ND; W 2 ND. Here, NC is the appropriate space of functions
determined on the boundary C [16].

Thus, the potential is fully determined by the clear trace, and
one can reduce the volume potential to a surface potential with
density nC:

PD1CnC ¼
def

PD1 VD1 ; ð8Þ

where nC ¼ TrCVD1 .
One can prove that the clear trace nC of any function V 2 ND

must satisfy the following boundary equation:

nC ¼ TrCPD1CnC þ TrC

Z
D1

GDðz; yÞfD1 ðyÞdy: ð9Þ

The proof is based on the fundamental property of the poten-
tial: it is a projection [15,16]. It appears that the Eq. (9) does not
depend on either fD2 or the boundary conditions outside D1.

From the general theory of the potentials [16] it follows that
boundary equation (9) gives a necessary and sufficient condition
for any boundary function nC to be smoothly extended from the
boundary C to the domain D1. One should note here that, generally
speaking, Eq. (9) is a vector equation since the clear trace is a vec-
tor-function.

In [14], the clear trace for the problem is obtained in a 1D case.
Then, the Robin-type wall functions are derived via the theory of
the Calderón–Ryaben’kii potentials.

Let us now extend the result of [14] to a multidimensional for-
mulation. First, we introduce C1 :¼ D1 \ D2. Then, the clear trace is
given by

TrCvD1 ¼ lyvðx; 0Þ; lxv jc1
;vðy�Þ;dv

dy
ðy�Þ

� �T

; ð10Þ

where c1 :¼ @X� ½0y��.
To prove this statement, we suppose that two arbitrary func-

tions v and w from ND have the same boundary vector (10). Then,
let us consider function: uD1 ¼ vD1 �wD1 . The function uD1 satisfies
homogeneous boundary conditions on C and can smoothly be ex-
tended to the entire domain D by the nil-function:

uðzÞ ¼ uD1 if z 2 D1;

0 if z 2 D n D1:

(
It is easy to see that u 2 ND and

R
D1

GDðz; yÞLudy ¼
R

D GDðz; yÞLudy ¼
uðzÞ. Thus, from the definition (6), it follows that

PD1 uD1 ¼ PD1 vD1 � PD1 wD1 ¼ 0D1 :

Hence, the boundary vector (10) gives the clear trace.
The boundary equation (9) can be interpreted as the exact

transfer of the boundary condition from the boundary C n C1 to
the intermediate boundary C1. It is easy to see that the intermedi-
ate boundary condition on the boundary C1 is always nonlocal.
Please cite this article in press as: Utyuzhnikov SV. Domain decompositi
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In the next Section, we obtain the nonlocal boundary condition
transfer for a quite general case of BVP (3)–(5), which allows us to
obtain the analytical solution.
4. Analytical D–t–N map

Assume that in Eq. (3) c 6 0 and the boundary condition at y ¼ 0:

lyU 	 x1U �x2Uy; ð11Þ
x1 P 0; x2 P 0;
x1 þx2 > 0:

Let us consider a BVP for Eq. (3) in ½01� � ½0y��, which is sup-
posed to be well-posed:

ðlðyÞWyÞy þ rðyÞWxx þ bðyÞWy þ cðyÞW ¼ f ðx; yÞ;
lyWðx; 0Þ ¼ awðxÞ;
Wð0; yÞ ¼ U0ðyÞ;
Wð1; yÞ ¼ U1ðyÞ;
Wðx; y�Þ ¼ U�ðxÞ:

ð12Þ

Here and further, if we meet discontinuous boundary condi-
tions, we seek a bounded solution.

It is clear that the equation in (12) can be rewritten as follows:

aWxx � LyW ¼ U; ð13Þ

where

�LyW ¼def
Wyy þ ebðyÞWy þ ecW ¼ 1

p
ðpW 0Þ0 þ ecW;

where eb ¼ ðly þ bÞl; ec ¼ c=l;U ¼ f=l;p ¼ expð
R y

0
ebdnÞ.

One can prove that the operator bLy :¼ pLy is positive definite
[18]. Hence, it is Hermitian.

Then, the general solution of BVP (12) can be obtained by the
method of separation of variables [18]. One can show that the solu-
tion is given by the Fourier series:

Wðx; yÞ ¼
X1

0

TkðyÞVkðxÞ: ð14Þ

In (14), Tk are determined by the Sturm–Liouville problem:bLyTk ¼ qkkTk;

lyTkð0Þ ¼ 0;
Tkðy�Þ ¼ 0;

ð15Þ

where q ¼ ap.
It is well-known that in the Sturm–Liouville problem kk P 0,

and all Tk are orthogonal to each other in the following scalar prod-
uct: ða; bÞq ¼

R y�

0 qabdy.
Then, in (14), the Fourier coefficients are given by

VkðxÞ ¼
Z y�

0
qWðx; yÞTkðyÞdy ¼ ðW; TkÞq;

where ðTk; TkÞq ¼ 1.
Multiplying (13) by qTk in the sense of the scalar product, one

can obtain a BVP for Vk:

V 00k � kkVk ¼ ck;

Vkð0Þ ¼ ak;Vkð1Þ ¼ bk;
ð16Þ

where ck ¼ 1
a ðU; TkÞq; ak ¼ ðU0; TkÞq; bk ¼ ðU1; TkÞq.

The Green’s function of BVP (16) is given by:

Gkðx; n; kkÞ ¼
1

Jð1Þ �
shð

ffiffiffiffiffi
kk
p

xÞshð
ffiffiffiffiffi
kk
p
ð1� nÞÞ; 0 6 x 6 n;

shð
ffiffiffiffiffi
kk
p
ð1� xÞÞshð

ffiffiffiffiffi
kk
p

nÞ; n 6 x 6 1;

(
ð17Þ

where JðxÞ ¼ Jð1Þ is the Wronskian and Jð1Þ ¼ �
ffiffiffiffiffi
kk
p

shð
ffiffiffiffiffi
kk
p
Þ.
on for near-wall turbulent flows. Comput Fluids (2009), doi:10.1016/
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Taking into account that the Green’s function of the operator bLy

in (15) is the following:

eGnðy;gÞ ¼
1
kn

TnðyÞTnðgÞ:

One can obtain the general Green’s function of the original BVP
(12):

Gðx; n; y;gÞ ¼ pðgÞ
X1

0

TkðyÞTkðgÞGkðx; n; kkÞ:

Then, the general solution of BVP (12) at any internal point is
given by:

W ¼
Z 1

0

Z y�

0
Gðx; y; n;gÞUðn;gÞdndg� a

Z y�

0
U0Gnjn¼0dg

þ a
Z y�

0
U1Gnjn¼1dg�

Z 1

0
awGjg¼0dnþ

Z 1

0
U�Ggjg¼y�dn: ð18Þ

One can show that the solution (18) is represented by a double-
layer potential with the density U�. Its derivative Wy is continuous
up to the boundary y ¼ y�.

Hence,

Wyjy¼y� ¼
Z 1

0

Z y�

0
Gyjy¼y�Uðn;gÞdndg� a

Z y�

0
U0Gynjn¼0;y¼y�dg

þ a
Z y�

0
U1Gynjn¼1;y¼y�dg�

Z 1

0
awGyjg¼0;y¼y�dn

þ
Z 1

0
U�Gygjg¼y� ;y¼y�dn: ð19Þ

The operator on the right-hand side of (19) can be interpreted
as an operator providing a D–t–N map: U�#U�y ¼Wyjy¼y� . Thus,

U�y ¼
Z 1

0

Z y�

0
Gyjy¼y�Uðn;gÞdndg� a

Z y�

0
U0Gynjn¼0;y¼y�dg

þ a
Z y�

0
U1Gynjn¼1;y¼y�dg�

Z 1

0
awGyjg¼0;y¼y�dn

þ
Z 1

0
U�Gygjg¼y� ;y¼y�dn: ð20Þ

Let us set

U� ¼ Uðx; y�Þ; ð21Þ

where U is the solution of BVP (3)–(5).
Then, from the uniqueness of the solution of BVP (12), we have

U�y ¼ Uyðx; y�Þ. Eq. (20) corresponds to the second equation in (9).
One should note that the first equation in (9) is automatically sat-
isfied due to the definition of the D–t–N map.

Thus, Eq. (19) gives us the boundary condition on the intermediate
boundary y ¼ y�. It is easy to see that the boundary condition (19) is
nonlocal. One should note that Eq. (19) does not depend, for example,
on the boundary condition (5). If the function Us changes, then both U�

and U�y can change but their relation given by the Eq. (19) retains.

5. Numerical D–t–N map

In a general case, we are obviously not able to obtain the
Green’s function and represent the D–t–N map via the integral
equation. However, the required D–t–N map can be obtained
numerically.

Next, in the domain D1 we consider the BVP similar to (12):

LW ¼ f ;

lyWðx;0Þ ¼ awðxÞ;
lxW jc1

¼ bðyÞ;
Wðx; y�Þ ¼ U�:

ð22Þ
Please cite this article in press as: Utyuzhnikov SV. Domain decompositi
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Then, we consider the following D–t–N map:

Uast
n ¼ RC1 U�: ð23Þ

Here, RC1 : U� ! U�n ¼Wyjy¼y� is the Poincaré–Steklov operator
determined by BVP (22), in which U�ðxÞ is an input function. Thus,
the pseudo-differential operator RC1 is determined by the deriva-
tive Wyðx; y�Þ:

RC1 U� 	Wyðx; y�; U�Þ:

It is easy to see that the operator RC1 is linear and acts nonlocal-
ly on the entire boundary C1 because its application requires the
solution of BVP (25) in the domain D1, which depends on the entire
function U�ðxÞ.

Similar to the previous consideration, the intermediate bound-
ary condition at C1 : y ¼ y� < 1 can be given by the boundary equa-
tion (23). Yet the calculation of the operator RC1 requires the
solution of BVP (22). Our task is to obtain a representation of
RC1 U� fast enough to make the domain decomposition efficient.

For further consideration, we represent the solution of BVP (1)
and (2) on the domain D1 as a sum: W ¼We þWi, where We and
Wi are the solutions of the following BVPs:

LWe ¼ f ;
lyWeðx; 0Þ ¼ awðxÞ;
lxWejc1

¼ bðyÞ;
Weðx; y�Þ ¼ 0;

ð24Þ

and

LWi ¼ 0;
lyWiðx;0Þ ¼ 0;
lxWijc1

¼ 0;
Wiðx; y�Þ ¼ U�:

ð25Þ

It is clear that the function We yields the explicit part of the
solution of BVP (22) that does not depend on U�.

5.1. Separation of variables

First, let us consider the case of separation of variables. Assume
that L :¼ bLx þ bLy, where bLx and bLy are operators depending on x and
y, respectively. Suppose that bLx is positive definite. Then, the oper-
ator RC1 can explicitly be obtained by the Fourier method of sepa-
ration of variables. Indeed, in this case, the eigenvalues
kk ðk ¼ 0;1; 
 
 
Þ of the operator bLx are positive and its eigenfunc-
tions /k ðk ¼ 0;1; 
 
 
Þ are orthogonal to each other. In addition,
the solution of BVP (22) can be represented by a regularly converg-
ing Fourier series.

We can always choose the eigenfunctions and their numeration
in such a way that

0 6 k0 6 k1 6 
 
 


and ð/n;/nÞ ¼ 1; ðn ¼ 0;1; 
 
 
Þ, where ð
; 
Þ is some scalar product.
We seek the general solution of (25) in the form of the Fourier

series:

Wiðx; yÞ ¼
X1

0

bu�nvnðyÞ/nðxÞ; ð26Þ

where bu�n ¼ ðU�;/nÞ; vnðy�Þ ¼ 1; ðn ¼ 0;1; 
 
 
Þ.
Substituting (26) into (25), we obtain a BVP for each vn:bLnvn ¼ 0;

lyvnð0Þ ¼ 0;
vnðy�Þ ¼ 1:

ð27Þ

Here, bLn :¼ bLy þ knI; I is the unit operator.
on for near-wall turbulent flows. Comput Fluids (2009), doi:10.1016/
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Then, since the system of functions /n ðn ¼ 0;1;2; . . .Þ is full,

W�
ijyðx; y�Þ ¼

X1
0

bu�nv�0ðy�Þ/nðxÞ þ
X1

1

bu�n v 0nðy�Þ � v 00ðy�Þ
� �

/nðxÞ

¼ U�ðxÞv 00ðy0Þ þ
X1

1

bu�n v 0nðy�Þ � v 00ðy�Þ
� �

/nðxÞ: ð28Þ

Thus, we obtain that

RC1 U� ¼ U�ðxÞv 00ðy�Þ þ
X1

1

bu�n v 0nðy�Þ � v 00ðy�Þ
� �

/nðxÞ þW 0
ejyðx; y�Þ:

ð29Þ
5.2. General case

In the general case, let us introduce a set of basis functions snðxÞ.
Then, we consider the following set of appropriate BVPs:

Lwn ¼ 0;
lywnðx;0Þ ¼ 0;
lxwnjc1

¼ 0;
wnðx; y�Þ ¼ snðxÞ:

ð30Þ

Next, we construct the operator RC1 as follows. In the domain
D1, the input function U� is approximated as

U�ðxÞ �
XN

n¼0

u�nsnðxÞ;

where N P 0, the coefficients u�n are determined by variational
problem:

min
u�n
kU�ðxÞ �

XN

0

u�nsnðxÞkL2
: ð31Þ

Then, the function Wi is approximated by the set of functions
wn:

Wiðx; yÞ �
XN

0

u�nwnðx; yÞ: ð32Þ

If s0 	 1 and N P 1, then approximation (32) can be rewritten
as:

Wiðx; yÞ �
XN

0

u�nwnðx; yÞ þ ðU�ðxÞ �
XN

0

u�nsnðxÞÞw0ðx; yÞ

¼ U�ðxÞw0ðx; yÞ þ
XN

1

u�nðwnðx; yÞ � snðxÞw0ðx; yÞÞ: ð33Þ

One should note that if N ¼ 0, then we arrive at the following
simple approximation:

Wiðx; yÞ � U�ðxÞw0ðx; yÞ:

Thus, the derivative W 0
ijyðx; y�Þ is represented similar to the

expansion (28):

W 0
ijyðx; y�Þ � U�ðxÞw00ðx; y�Þ þ

XNP1

1

u�n w0nðx; y�Þ � snðxÞw00ðx; y�Þ
� �

:

ð34Þ

Hence,

RC1 U� � U�ðxÞw00ðy�Þ þ
XNP1

1

u�nðw0nðx; y�Þ � snðxÞw00ðx; y�ÞÞ

þW 0
ejyðx; y�Þ: ð35Þ
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6. Domain decomposition

Let us set U�ðxÞ ¼ Uðx; y�Þ in (22), where U is the solution of BVP
(1) and (2) to be found. Then, Eq. (23) yields:

U0yjy¼y� ¼ RC1 Uðx; y�Þ: ð36Þ

The solution of BVP (22) is unique. Hence, W ¼ UD1 .
The pseudo-differential equation (36) can be interpreted as the

exact boundary condition on the intermediate boundary y ¼ y� for
the BVP in the domain D2. Yet the use of this boundary condition is
not straightforward because the function Uðx; y�Þ is unknown. It is
clear that Uðx; y�Þ cannot be determined in the framework of a BVP
formulated only on D1. We obtain this function as soon as the BVP
on D2 is solved with the appropriate intermediate boundary condi-
tion (36).

Thereby, we arrive at the following domain decomposition. In
the external domain D2 we have a BVP:

LV ¼ f ; ð37Þ
lxV jc2

¼ bðyÞ;
Vðx;1Þ ¼ UsðxÞ;
Vyðx; y�Þ ¼ RC1 V ; ð38Þ

where cj2 :¼ @X� ½y�1�.
Hence, the BVP (37) and (38) is fully determined. Then, we are

able to solve BVP (22) with U� ¼ Vðx; y�Þ. From the uniqueness of
the solution it follows that V ¼ UD2 and W ¼ UD1 .

The solution of BVP (37) and (38) involves a function
RC1 Vðx; y�Þ. It cannot be calculated immediately since Vðx; y�Þ is
unknown. Under some conditions an iterative process can be orga-
nized. On this way, the nonlocal term of (38) is taken from the pre-
vious iteration. Meanwhile, such kind of a domain decomposition
is not usually efficient. In a 1D case, it is equivalent to the realiza-
tion of a Robin boundary condition via an iterative procedure. Even
if the both sides of the Eq. (38) are considered simultaneously, the
decomposition may not be efficient unless a special consideration
of the operator RC1 is used.

One can note that by the use of the spectral approach described
above, the pseudo-differential operator in (38) is explicitly repre-
sented by (35). It is important to emphasize here that, in (35),
the functions wn and We do not depend on the BVP in the outer do-
main and can be found in advance from the solution of BVPs (30)
and (24), respectively. Thus, these functions are to be calculated
only once. Then, outside the domain D1, they can be used for very
different boundary conditions, the right-hand side f and domain
D2. A similar statement is applicable to the Eqs. (29) and (27).

Meanwhile, the solution of BVP (37) still retains complicated
because the expansion coefficients u�n are unknown. They should
be found from Eq. (31) as the BVP is solved. In the case of explicit
numerical methods, the Eq. (31) can be used straightforward to
provide the solution at the boundary nodes via the solution at
the internal nodes nearest to the boundary. If an implicit algorithm
is used, the appropriate matrix becomes ill-structured.

A possible way to overcome the problem is the following. One
can note that

RC1 U� ¼ RC1 U�ðx�Þ þRC1 ðU
� � U�ðx�ÞÞ; x� 2 C1:

Then, the boundary condition (38) at any point x� 2 C1 can be
rewritten as:

V 0yðx�; y�Þ ¼ Vðx�; y�ÞRC1 ð1Þjx¼x� þRC1 ðV � Vðx�; y�ÞÞjx¼x� : ð39Þ

Although the first term in (39) is nonlocal, it does not depend on
the expansion coefficients. It corresponds to both the first and last
terms in (35). One can consider the first term in (39) as the ‘‘diago-
nal” and take it from a current iteration, while the second term is
on for near-wall turbulent flows. Comput Fluids (2009), doi:10.1016/
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taken from the previous iteration. Some justification to this
assumption will be given in the next Section. In this case, the expan-
sion coefficients u�n in (31) are calculated on the basis of the solution
at the previous iteration. Thus, at each iteration, we have a Robin
boundary condition. The iterations can be included in an iterative
procedure required for solving the elliptic BVP on D2. One should
note that in turbulent flows the external problem is always nonlin-
ear, and the appropriate iterations, related to the nonlinearity, are
necessary. Yet a high-accuracy decomposition is not probably justi-
fied in this case because of the required linearization of the govern-
ing equations in the near-wall area (domain D1) and an inevitable
error caused by that. It is important to note that in the algorithm
developed we have not required the linearity of the problem on
the domain D2.

In the most general case, we can carry out the transfer of the
boundary condition via the Difference Potential Method by Rya-
ben’kii (DPM) [15]. In the DPM a BVP is first reduced to a boundary
equation. Therefore, the expansion coefficients can be found in a
natural way as the boundary equation is solved. It is to be noted
here that the DPM can efficiently be applied for the problems with
complex geometries.

7. Nonlocal wall function

Let us retain only the first term on the right-hand side in (39).
Then, we arrive at the following intermediate boundary condition:

V 0yðx; y�Þ ¼ Vðx; y�Þw00jyðx; y�Þ þW 0
ejyðx; y�Þ: ð40Þ

Here, We is obtained from (24), while w0 is determined by BVP:

Lw0 ¼ 0;
lyw0ðx; 0Þ ¼ 0;
lxw0jc1

¼ 0;
w0ðx; y�Þ ¼ 1:

Thus, we arrive at the intermediate boundary condition of Robin-
type, which does not contain any expansion coefficients un. How-
ever, it captures some nonlocal effects because they include the
functions Weðx; yÞ and w0ðx; yÞ. Therefore, we shall interpret such
a boundary condition as a nonlocal wall function. More precisely,
under the wall function we understand any function from space
NC, which satisfies the boundary equation (40). It is important to
underline that both the functions We and w0 do not depend on
the solution on the external domain D2, and they can be calculated
in advance.

One can note that for Eq. (24) the boundary conditions in x-
direction can be unknown. Then, if we assume that the boundaries
are situated in the areas of weak enough dependence of the solu-
tion on x, it is natural to set the homogeneous Newmann boundary
conditions. In addition, the error generated by these approximate
boundary conditions should be small if the near-wall domain D1

is thin enough.
Thus, the solution V in the domain D2 is obtained with the bound-

ary condition (40). Then, in the domain D1 we immediately have:

Wðx; yÞ ¼ Vðx; y�Þw0ðx; yÞ þWeðx; yÞ: ð41Þ

In the turbulent flow modeling, we often require fluxes to a
wall. They can be obtained from Eq. (41) at once because both
the functions w0 and We are known in advance:

W 0
yðx;0Þ ¼ Vðx; y�Þw00jyðx; 0Þ þW 0

ejyðx;0Þ:

One should note that if we simplify the operator L setting a ¼ 0
in (3): L :¼ lLy, then the operator RC1 becomes local. In this case,
the operator RC1 is only based on the solution of a BVP with respect
to the variable y. Then, the nonlocal function (40) is reduced to the
Robin-type wall function [14]:
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V 0yðx; y�Þ ¼ Vðx; y�Þ ew 00ðy�Þ þ fW 0
ejyðx; y�Þ: ð42Þ

Here, ew0 is obtained from a 1D BVP:

Ly ew0 ¼ 0;
ly ew0ð0Þ ¼ 0;ew0ðy�Þ ¼ 1;

while the function fW e is determined by a 1D BVP:

lLy
fW e ¼ f ;

ly
fW eðx; 0Þ ¼ 0;fW eðx; y�Þ ¼ 0:

Obviously, in this case the solution in the domain D1 is given by:

Wðx; yÞ ¼ Vðx; y�Þ ew0ðx; yÞ þ fW eðx; yÞ:

In the next Section, we consider an example of BVP (3)–(5). The
numerical solution is obtained both in the entire single domain and
by the domain decomposition. The domain decomposition is real-
ized via the exact and approximate decomposition approaches. In
the latter case, the 1D and nonlocal wall functions are tested on
very different solutions. As the 1D wall function [10], we use the
boundary condition (42). In this case, the boundary condition is ex-
actly transferred to the intermediate boundary provided that the
derivatives with respect to x are neglected.

8. Numerical nonlocal wall functions and decomposition
method

Assume that in BVP (3)–(5) � ¼ 3 
 10�2; d ¼ 10�2; b ¼ y; c ¼
�y2; f ¼ 102x2; Us ¼ 1þ 102x2; aw ¼ 0; ly :¼ 1.

The profile of the ‘‘viscosity” coefficient l corresponding to
these data is shown in Fig. 1. The coefficient rapidly changes from
a relatively small ‘‘laminar” viscosity ll ¼ d=Re to a much bigger
‘‘turbulent” viscosity lt � 1=Re.

In the boundary conditions (4), the functions U0 and U1 are cho-
sen in such a way that they satisfy the following 1D BVP:

ðlðyÞvyÞy þ bvy þ cv ¼ 0;

vð0Þ ¼ 0;vð1Þ ¼ Us:
ð43Þ
on for near-wall turbulent flows. Comput Fluids (2009), doi:10.1016/
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Such boundary conditions mean that the flow becomes locally
1D in a vicinity of the boundaries x ¼ 0 and x ¼ 1. Condition (43)
models a near-wall flow in which nonlocal effects due to the source
term and wall curvature are only localized in some domain.

It is clear that in BVP (3)–(5), (43) the nonlocal effects are deter-
mined by the value of the parameter a. Further, the domain
decomposition method as well as the 1D and nonlocal wall func-
tions are tested for two very different values of a. The computa-
tional domain is split into two subdomains at point y� ¼
0:1 : ½0 1� :¼ ½0 0:1� [ ½0:1 1�.

If a ¼ 1, then the term with Uxx asymptotically vanishes if Re
tends to infinity. Here, there is an immediate analogue with a clas-
sical boundary-layer type flow. In this case, the 1D wall-function
approach (42) gives a rather good prediction of the solution. In
Fig. 2, the profile of the solution at point x ¼ 0:8 is shown. In this
plot and further, the solid line corresponds to the ‘‘exact” solution
y
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obtained on a single domain using a fine enough mesh. In the com-
posite profile, the dashed line represents the near-wall solution,
while the dash-dotted line shows the solution obtained in the out-
er domain. The prediction of the friction coefficient Cf ¼ l @U

@y ðx;0Þ
is also reasonably good and given in Fig. 3.

If a significantly increases, then the 1D wall function (42) be-
comes unacceptable. For a ¼ 10, it is demonstrated by the solution
profile U at the point x ¼ 0:8 and the distribution of the coefficient
Cf in Figs. 4 and 5, respectively.

The nonlocal-wall-function approach (41) gives a much better
prediction. In this case, the profile of U almost coincides with the
exact solution. Meanwhile, the approximation of the friction coef-
ficient Cf is also quite good. It is shown in Fig. 6.

The use of trigonometrical functions as the basis functions in (33):

s2n�1 ¼ sinð2pnxÞ; s2n ¼ cosð2pnxÞ ðn ¼ 0; . . . ;NÞ;
y
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Fig. 4. 1D wall function. Profile of U at x ¼ 0:8; a ¼ 10.
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results in the domain decomposition method. Taking into account
the first harmonics (N ¼ 1) already provides a good enough predic-
tion as shown by the dash-dotted line in Fig. 6. In the case of N ¼ 2,
the profile of Cf almost coincides with the exact solution.

In the example considered, it is important to note that the
boundary condition (41) at the intermediate boundary does not
depend on the solution in the external domain. Thus, the same
boundary condition (nonlocal wall-function) can be used for very
different external boundary conditions, e.g., the function Us in
(5). It is clear that the computational time required for the solution
of the BVP in the interval ½y�1� is significantly less than in the ori-
ginal domain because it does not include areas with high gradients
of the solution. The efficiency of the approach assumes, of course,
some serial computations are to be required for the problem with
different external conditions. However, it usually occurs in the
modeling of turbulent flows. In general, the same conclusion re-
tains if we use more the complicated intermediate boundary con-
dition (38) and (35). In this case, the calculation of several
functions w0nðx; y�Þ is required.

9. Conclusion

For the analysis of domain-decomposition approaches to near-
wall turbulent flows, a model 2D equation has been suggested.
The equation has a high-gradient near-boundary profile and simu-
lates RANS equations at high-Reynolds-numbers. A domain
decomposition method has been developed. It allows one to mostly
resolve the near-wall layer independently on the outer domain.
Thereby, in the suggested approach the boundary conditions are
Please cite this article in press as: Utyuzhnikov SV. Domain decompositi
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transferred in advance from the wall to some intermediate bound-
ary. The boundary conditions on the intermediate boundary can be
realized in a separate routine. The method allows one to avoid a
time-consuming near-wall resolution. A concept of nonlocal wall
functions has been suggested. The nonlocal wall functions take into
account flow properties along the wall and can be important in the
case of complex geometries and significant local source terms.

One should note that the generalization of the developed tech-
nique to 3D problems is straightforward. The implementation of
the method to RANS equations requires the development of some
linear model near a wall (domain D1). It can be done via the
approximation of the efficient viscosity coefficient and convective
terms similar to the analytical and Robin-type wall functions
[5,6,14]. In contrast to these approaches, the developed technique
is nonlocal and requires the solution of either 2D or 3D auxiliary
BVPs.

In the future work, the approach will be implemented in RANS
and LES.
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