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In active wave control, an arbitrary bounded domain with the
smooth boundary is shielded from the outside field (noise) using
additional sources. Unlike passive control, there is no any mechan-
ical insulation in the system. The general solution of the prob-
lem is obtained in unsteady linear formulation. For this purpose,
the theory of potentials introduced by Ryaben’kii is extended to
initial–boundary value problems and the theory of distributions.
Both first- and second-order spatial differentiation operators are
considered. The obtained results can immediately be applied to ac-
tive control problems in electromagnetics and acoustics. Two clas-
sical problems, on a bounded conductor in an electrostatic field
and superconductor in a magnetostatic field, are interpreted as ac-
tive control problems. The control sources for aeroacoustics are
then obtained in the form of a linear combination of single- and
double-layer sources. The constructed solution of the problem re-
quires only the knowledge of the total field on the perimeter of the
shielded domain.

© 2009 Published by Elsevier Inc.

1. Introduction

The paper deals with the active control (AC) problem of shielding a bounded domain from the
field generated outside. All possible internal sound sources are interpreted as “friendly” whereas ex-
ternal sources are considered to be “noise” sources. Furthermore, only the total sound field nearby the
boundary of the protected domain is assumed to be known. In the framework of the active control
methods shielding of the domain is carried out by introducing additional sources so that the total
(sound) field consisting of both primary and secondary sources provides the desirable shielding ef-
fect. This approach is distinctly different from the passive control methods in which the domain has
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to be mechanically insulated. Thus, the active control problem can mathematically be formulated as
an inverse source problem and is immediately related to the problems of active noise shielding (see,
e.g., [2,12,23]) and active vibration control [3,21].

In the current formulation the AC problem was first considered by Malyuzhinets [10] in relation to
wave propagation equation. The solvability of the problem was demonstrated for unbounded spaces
using the fundamental solution of the Helmholtz equation. The inverse source stationary problem was
first solved in a finite-difference general formulation by Ryaben’kii in [14] using the apparatus of the
Difference Potential Method (DPM) [15]. The obtained solution requires only the knowledge of the
total field (containing both “friendly” and noise components) at the computational (grid) boundary of
the protected domain. The general solution [14] was applied to the Helmholtz equation in [9]. It was
shown via the theory of distributions that in continuous spaces the solution [14] can be represented
as a linear combination of single- and double-layer sources. The optimization of the solution was
studied in [6–8]. In [18] the AC problem in composite domains was formulated for the first time.
Its general solution was constructed for finite-difference spaces in [18] and for continuous spaces
in [13]. The principal novelty of the problem, considered in [18] and [13], was that it allowed selective
communication between different sub-domains.

For the acoustics Euler equations in continuous spaces, the AC solution was first constructed
in [17]. It was derived using the apparatus of distributions for time-harmonic waves under rather
general assumptions. The DPM-based discrete solution was shown to approximate the continuous so-
lution as the spatial mesh is refined. In [16], the DPM-based solution was extended to rather broad
range of hyperbolic systems of equations including acoustic equations with constant and variable co-
efficients. It appears that in bounded domains the control sources do not disturb even the echo of the
“friendly” sound component [19]. The detailed mechanism of the active noise shielding based on the
solution [17] was revealed in [19].

The DPM became a powerful mathematical tool for solving complicated problems of mathematical
physics, see e.g. [15]. It is based on the theory of potentials introduced by Ryaben’kii. The theory has
mostly been developed in a finite-difference framework although in [15] the foundations of the theory
are also given in the differential classical form. General aspects of the theory in continuous and dis-
crete spaces are addressed in [11]. Some extension of the DPM formalism to the linear Helmholtz-type
equations with discontinuous solutions can be found in [9], where it is applied to the active sound
control problem. In [15], it is proven by Kamenetskii that the potentials, introduced by Calderón [1]
for elliptic equations and developed by Seeley [20], are equivalent to some forms of the Ryaben’kii’s
potential. It is to be noted that for long time the theory of the DPM was developed by Ryaben’kii
et al. completely independently from the theory of the Calderón potentials.

In the current paper, the theory of the Calderón–Ryaben’kii potentials is extended to nonstation-
ary problems and the weak solutions using the theory of distributions (see e.g. [5,24]). This extension
allows one to apply the theory to initial–boundary value problems with discontinuous solutions. Here
by the Calderón–Ryaben’kii potentials we understand the extension of the Ryaben’kii difference po-
tentials to continuous spaces. It is to be noted that the used name for the potentials is not traditional
in the literature. Meanwhile, we believe that such a name is the most appropriate one. The general
solution of the nonstationary AC problem is then obtained via the nonstationary potentials.

The application of the extended theory is illustrated by the examples of the Maxwell equations,
wave equation and linearized Euler equations (LEE) for aeroacoustics are considered. In the case of
the Maxwell equation the well-known problems of a bounded conductor in an electrostatic field and
a superconductor in a magnetic field are interpreted as AC problems. The AC source terms for acous-
tics and aeroacoustics are obtained. It is shown that for aeroacoustics the source terms must take into
account the mean flow through the boundary. In all examples the solution of the appropriate problem
is derived as a particular case from the obtained general solution of the AC problem.

2. General statement of the AC problem

We consider some bounded domain D: D ⊆ R
m with smooth boundary Γ0 and a sub-domain

D+: D+ ⊂ D with smooth enough boundary Γ .
Please cite this article in press as: S.V. Utyuzhnikov, Active wave control and generalized surface potentials, Adv. in Appl.
Math. (2009), doi:10.1016/j.aam.2008.12.001
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Fig. 1. Domain sketch.

Suppose that the field U is described by the following linear boundary value problem (BVP) for-
mulated in either R

m or R
m+1:

LU = f , (1)

U ∈ ΞD . (2)

Here, the operator L is a linear differential operator, ΞD is the functional space specified below.
In particular, the operator L acting in R

m+1 may correspond to the acoustic equations. We assume
that BVP (1), (2) is well-posed in the sense of Hadamard for any right-hand side f : f ∈ Lloc

2 (D).
The boundary conditions are supposed to be local and implicitly included in the definition of the
space ΞD . It follows from the linearity of the problem and its well-posedness that the solution of the
homogeneous problem (1), (2) can be only trivial. In addition, we suppose the space ΞD should not
be degenerate. Thus, we assume that the boundary and initial conditions are not over-determined.

The sources on the right-hand side are assumed to be placed both on D+ and outside D+ (see
Fig. 1):

f = f + + f −,

supp f + ⊂ D+,

supp f − ⊂ D− def= D \ D+. (3)

We interpret f + as “friendly” field sources, while f − is considered as an “adverse” field (noise)
sources.

Our key assumption on the input data of the AC problem is that the field U is only known in
the vicinity of the boundary Γ and that any other information on either the adverse field or the
boundary conditions is not available to us. Then, we arrive at the following inverse source problem:
find additional sources G in D− such that the solution of BVP

LW = f + G,

supp G ⊂ D−,

W ∈ ΞD (4)

coincides on the domain D+ with the solution of BVP (1), (2) if f − ≡ 0:

LU+ = f +,

U+ ∈ ΞD . (5)

Thus, it is required that the functions U and W are identical in the domain D+: W D+ = U+
+ .
Please cite this article in press as: S.V. Utyuzhnikov, Active wave control and generalized surface potentials, Adv. in Appl.
Math. (2009), doi:10.1016/j.aam.2008.12.001
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Further, we specify the problem (1), (2) as follows. The function U is supposed to be the solution of
a well-posed initial–boundary value problem (IBVP) in the cylinder K T = D × (0, T ) ⊆ R

m+1 (T > 0):

LU
def= L(pt )

t U + L y U = f ,

U ∈ ΞD . (6)

Here, U ∈ R
n , f ∈ R

n , L(pt )
t

def= A0 ∂ pt

∂t pt is a differential operator with respect to the time variable t ,
A0 is an n × n matrix. The value of pt has to satisfy the requirement of the well-posedness of the
problem.

Next, we consider first- and second-order spatial differential operators L y of general type.
The first-order operator L y is given by

L y := L f
def=

m∑
1

Ai ∂

∂ yi
+ B, (7)

where {yi} (i = 1, . . . ,m) is some Cartesian coordinate system; Ai , B are n × n matrices: Ai =
Ai(y) ∈ C1(D), B = B(y) ∈ C(D).

The second-order operator is given by the following elliptic operator:

L y := Ls
def= −∇(p∇) − q, (8)

where p ∈ C1(D), q ∈ C(D) and p > 0.
Suppose that space ΞD includes functions which are smooth enough with respect to the variable t

and satisfy homogeneous initial conditions. That is, if U ∈ ΞD , then

dk

dtk
U (x,0) = 0 (k = 0, . . . , pt − 1). (9)

Let us say that a function U is a generalized solution of BVP (1), (2) if 〈LU ,Φ〉 = 〈 f ,Φ〉 for any
function from some space of test functions. Here, 〈 f ,Φ〉 denotes a linear continuous functional asso-
ciated with the given generalized function (distribution) f . Along with a generalized function f , we
introduce f D+ as the restriction of f to D+ [24].

If the right-hand side in (6) is a regular function, then the IBVP (6), (2) for finding the weak
solution is reduced to the following requirement:

T∫
0

∫
D

(LU − f ,Φ)dx dt = 0

for any basic (test) function Φ ∈ C∞
0 (KT ), where (·,·) means a scalar product.

It is to be noted that the specifications set on BVP (1), (2) are in general sufficient for further
analysis. However, we introduce some additional conditions to make this analysis more specific. The
functional space ΞD is defined in such a way that the weak solution of IBVP (6), (2), (9) satisfies the
governing equation in the classical sense almost everywhere, and it is bounded. Thus, we assume that
for any 0 < t < T : ΞD ⊂ Hs(D \ Γ ) := Hs(D+) ∩ Hs

0(D−), Hs
0 and Hs are Sobolev spaces, s > k − 1/2,

s �= integer + 1/2, k is the order of the operator L y . Then, the condition of the well-posedness implies
the following estimate to be valid:

‖U D+‖2
Hs + ‖U D−‖2

Hs < C
(‖LU |D+‖2

Hs−k + ‖LU |D−‖2
Hs−k

)
,

where C = C(T ) is some positive constant.
Please cite this article in press as: S.V. Utyuzhnikov, Active wave control and generalized surface potentials, Adv. in Appl.
Math. (2009), doi:10.1016/j.aam.2008.12.001
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Next, suppose that in (1) the right-hand side f ∈ F D where the space F D such that the solution
of BVP (1), (2) exists. Thus, spaces ΞD and F D are isomorphic to each other. Hereafter, we assume:
f ∈ F D ⇒ θ(D+) f ∈ F D , where θ(D+) is the characteristic function of D+ is equal to 1 on D+ and 0
outside. Obviously, this assumption is valid on default for the AC problem since f + ∈ F D .

The solution of the stationary problem can be interpreted as the limiting stationary solution of the
appropriate IBVP. Formally, this corresponds to the assumption on A0 ≡ 0 and time independence.

The general solution of the AC problem, formulated above, is based on the theory of potentials
described in the next section. The introduced potentials can in general be considered as an extension
of the Ryaben’kii potentials to nonstationary problems and weak solutions.

3. Calderón–Ryaben’kii potentials for IBVPs

Let us first introduce in R
m+1 an operator P D+ :ΞD+ → ΞD+ , ΞD+ = {U D+ | U ∈ ΞD}, as follows.

Definition 1.

P D+ V D+(x, t)
def= V D+ −

∫
T

∫
D+

Gr(x|y, t|τ )LV (y, τ )dy dτ .

Here, Gr is Green’s function of the linear BVP (1), (2), (6), (9).

In the stationary case this definition coincides with the definition of the potential introduced by
Ryaben’kii [15].

Alternatively, one can introduce the following definition of the operator P D+ via the theory of
distributions:

Definition 2.

P D+ V D+
def= L−1

D+
(
θ(D−)LV

)
, (10)

where L−1
D+ g

def= L−1 g|D+ , θ(D−) is the characteristic function of D− .

It is worth noting that since the IBVP is well-posed the inverse operator L−1 in Definition 2 is
defined.

Note that Definition 2 follows from Definition 1. Indeed, from Definition 1

P D+ V D+ = (
L−1LV − L−1(θ(D+)LV

))
|D+ = L−1

D+
(
θ(D−)LV

)
.

For further consideration, Definition 2 is more useful because it does not utilize Green’s function.
The authors of [15] introduced the notion of a clear trace Tr(Γ )U D , assigned to the operator P D+ ,

which can be defined as

Tr(Γ )V D+ = Tr(Γ )W D+ ⇒ P D+ V D+ = P D+ W D+ . (11)

Here, Tr(Γ ) is a boundary operator: ΞD+ → ΞΓ , ΞΓ ⊂ ⊕k−1
j=0 Hs−1/2− j(Γ ), where k is the order of

the operator L y .
Then, we arrive at the definition of a surface potential P D+Γ :ΞΓ → ΞD+ with density ξΓ .

Definition 3.

P D+Γ ξΓ
def= P D+ V D+ , (12)

where ξΓ = Tr(Γ )V .
Please cite this article in press as: S.V. Utyuzhnikov, Active wave control and generalized surface potentials, Adv. in Appl.
Math. (2009), doi:10.1016/j.aam.2008.12.001
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Thus, the value of the potential P D+Γ ξΓ is determined completely by its density ξΓ or the clear
trace [15].

Next, we obtain the clear trace for the operator L. For this purpose, let us introduce a trace op-
eration as follows. Let Γ +

ε be smooth manifolds parallel to Γ in the sense of [5, Ch. 2]: Γ +
ε ⊂ D+ ,

Γ +
ε → Γ if ε → 0. Then, the trace operator Tr+Γ : Hs(D+) → Hs−1/2(Γ ) is given by

Tr+Γ U D+
def= lim

ε→0
TrΓ +

ε
U D+ , (13)

where

TrΓ +
ε

U D+
def= U D+ (x), x ∈ Γ +

ε .

One can also introduce the operator Tr−Γ : Hs
0(D−) → Hs−1/2(Γ ) in a similar way.

Then, the potential P D+Γ ξΓ can be determined by the following propositions.

Proposition 1. If L y := L f , then

P D+Γ ξΓ = −L−1
D+ AnξΓ δ(Γ ), (14)

where ξΓ
def= Tr(Γ )V = Tr+Γ V D+ , V ∈ ΞD , An = ∑

Aini , n is the outward normal to the boundary Γ .

Proof. For any test function Φ ∈ C∞
0 (KT ), we have

〈LV ,Φ〉 = −
m∑
1

〈
Ai V ,∇iΦ

〉 − 〈∇ AV ,Φ〉 + 〈B V ,Φ〉

= −
m∑
1

∫
T

∫
D

(
Ai V ,∇iΦ

)
dx dt − 〈∇ AV ,Φ〉 + 〈B V ,Φ〉

= −
m∑
1

[∫
T

∫
D−

(
Ai V ,∇iΦ

)
dx dt +

∫
T

∫
D+

(
Ai V ,∇iΦ

)
dx dt

]
− 〈∇ AV ,Φ〉 + 〈B V ,Φ〉

= 〈{LV },Φ〉 + ∫
T

∫
Γ

(
An[V ]Γ ,Φ

)
dx dt = 〈{LV },Φ〉 + 〈

An[V ]Γ δ(Γ ),Φ
〉

= 〈
L
(
θ(D−)V

)
,Φ

〉 + 〈
θ(D+)L(V ),Φ

〉 − 〈
AnξΓ δ(Γ ),Φ

〉
.

Here, {LV } is the part of LV with the support D \ Γ , ∇ A
def= ∑m

1 ∇i Ai , [·]Γ means the discontinuity
across the boundary Γ :

[W ]Γ def= Tr−Γ W − Tr+Γ W .

Thus, from Definition 2 we have

P D+ V D+ = L−1
D+

[
L
(
θ(D−)V

) − AnξΓ δ(Γ )
]
. (15)

Meanwhile, the value of P D+ V D+ does not depend on θ(D−)V . To prove it, let us consider Ṽ :
Ṽ D+ = V D+ and Ṽ ∈ ΞD . Then, from (15), we obtain P D+ V D+ − P D+ Ṽ D+ = 0D+ .

Hence, ξΓ = UΓ is the clear trace. Thus, we can extend V to D− by zero and obtain that
P D+Γ ξΓ = −L−1

+ AnξΓ δ(Γ ). �

Please cite this article in press as: S.V. Utyuzhnikov, Active wave control and generalized surface potentials, Adv. in Appl.
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In order to consider the second-order operator Ls , let us note [24] that

∇U = {∇U } + [U ]Γ nδ(Γ ).

Green’s formula for distributions [22,24] reads as by:

�U = {�U } +
[

∂U

∂n

]
Γ

δ(Γ ) + ∂

∂n

([U ]Γ δ(Γ )
)
.

Then, one can obtain that

∇(p∇U ) = {∇(p∇U )
} + pΓ

[
∂U

∂n

]
Γ

δ(Γ ) + ∂

∂n

(
pΓ [U ]Γ δ(Γ )

)
,

where pΓ = p(Γ ).
Hence, we have

LsU = {LsU } + pΓ

[
∂U

∂n

]
Γ

δ(Γ ) + ∂

∂n

(
pΓ [U ]Γ δ(Γ )

)

and

LU = {LU } − pΓ

[
∂U

∂n

]
Γ

δ(Γ ) − ∂

∂n

(
pΓ [U ]Γ δ(Γ )

)
. (16)

Thus, it appears that for the second-order operator Ls the potential P D+ξΓ is represented by a lin-
ear combination of single- and double-layer potentials.

Proposition 2. If L y := Ls, then

P D+Γ ξΓ = L−1
D+

((
pΓ ξ

(2)
Γ

)
δ(Γ ) + ∂

∂n

(
pΓ ξ

(1)
Γ δ(Γ )

))
, (17)

where ξΓ = (ξ
(1)
Γ , ξ

(2)
Γ )T and ξΓ

def= Tr(Γ )V = Tr+Γ (V D+ , ∂
∂n V D+ )T , V ∈ ΞD .

The proof of the proposition is similar to the proof of Proposition 1 if we take into account equal-
ity (16).

Thus, we arrive at the general result formulated in the next proposition.

Proposition 3. If ξΓ
def= Tr(Γ )V , V ∈ ΞD , then the potential P DΓ ξΓ is determined and

P DΓ ξΓ = −L−1
D+

(
AΓ ζ(ξΓ )

)
. (18)

If L y := L f , then ξΓ = VΓ , ζ(ξΓ ) = VΓ δ(Γ ) and AΓ = An.
If L y := Ls, then ξΓ = (VΓ , ∂

∂n V )T , ζ(ξΓ ) = (VΓ
∂
∂n δ(Γ ), ∂

∂n V δ(Γ ))T and AΓ = −pΓ (1,1).

Thus, in Proposition 3, the clear trace ξΓ ∈ Ξ(Γ ) is represented by the Cauchy data. As we see,
the clear trace is only determined by the spatial-differential part of the operator L.
Please cite this article in press as: S.V. Utyuzhnikov, Active wave control and generalized surface potentials, Adv. in Appl.
Math. (2009), doi:10.1016/j.aam.2008.12.001
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Next, we obtain an important property of the potential used in further consideration. Along with
“friendly” field U+ , let us consider “adverse” field U− : U− = L−1 f − . Then, one can immediately
verify the following important properties of the potential:

P D+ U+
D+ = 0D+ , (19)

and

P D+ U−
D+ = U−

D+ . (20)

These properties were first obtained in the stationary formulation in [15,18].
Hence, from the linearity of the problem we obtain that:

P D+ U D+ = U−
D+ . (21)

Thus, the field generated in D+ does not contribute to the potential, while the field generated
outside D+ is projected by the operator P D+ onto itself. Hence, the operator P D+ is a projection.

4. General solution of AC problem

On the basis of the potential introduced in the previous section one can obtain the general solution
of the AC problem formulated in Section 2.

From (19) we have that the requirements of the noise cancelation is equivalent to the following
equality:

P D+ L−1
D+( f + G) = P D+ L−1

D+ f + = 0D+ . (22)

This implies that the total field generated by both f and G on D+ is equivalent to the field only
generated on D+ . Meanwhile, the field generated on D+ should not contribute to the potential.

Next, from Proposition 3, it follows that

P D+ L−1
D+ f = P D+Γ ξΓ = L−1

D+
(−AΓ ζ(ξΓ )

)
, (23)

where ξΓ = Tr(Γ )U .
On the other hand, from (20) we have:

P D+ L−1
D+ G = L−1

D+ G. (24)

Thus, from (22), (23) and (24), we obtain:

L−1
D+

(
G − AΓ ζ(ξΓ )

) = 0D+ . (25)

The general solution of (25) is given by

G = AΓ ζ(ξΓ ) + G v , (26)

where G v = LVa and Va is an arbitrary function: Va ∈ ΞD , supp Va ⊂ D− .
In (26), the first term corresponds to a source distributed on the boundary Γ , while the second

term includes volume source terms.
In particular, it is possible to retain only the surface potential source:

G0 = AΓ ζ(ξΓ ). (27)
Please cite this article in press as: S.V. Utyuzhnikov, Active wave control and generalized surface potentials, Adv. in Appl.
Math. (2009), doi:10.1016/j.aam.2008.12.001
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By immediate substitution, one can prove that the solution of BVP (4) is the following:

W (x, t) =
{

U+(x, t), x ∈ D+,

U (x, t) + U+(x, t), x ∈ D−.

One can show that the source term (27) gives us, in particular, the AC sources obtained in [9] and [17]
be means of the theory of distributions.

It is to be noted that the simple alteration of the normal sign immediately gives us the insulation
of the domain D− from the field generated in D+ .

In the next two sections we consider several examples of AC sources for stationary and non-
stationary problems. We assume that some boundary conditions are set for each problem and the
appropriate BVP is well-posed. The AC source term, representing the general solution (27), is obtained
for the Maxwell equations and aeroacoustic equations.

5. Maxwell equations. Electro- and magnetostatics problems

In this section we obtain the AC sources for the electrostatics and magnetostatics equations. For
this purpose, the classical problems on a bounded conductor in an electrostatic field and bounded
superconductor in a magnetostatic field are interpreted as AC problems.

5.1. A bounded conductor in electrostatic field

Consider a bounded conductor in an external electrostatic field Eout . Since there is no current
inside the body (the problem is static), the internal electric field must be equal to zero. The zero state
of this field is reached via the redistribution of the charges on the body surface.

Let us consider this problem as an AC problem. Then, the contribution of the surface charges
is similar to shielding the body from the external field Eout . From the Maxwell equations for an
electrostatic field it follows that

div E = 4πρ + gd, (28)

curl E = gc . (29)

Here, E is the electric field, ρ is the density of charges, gd and gc are the AC source terms.
Consider Eqs. (28), (29) as a partial case of the governing equation in (4). Then, f − = 4πρ , and

the appropriate matrix An from Proposition 1 is given by

An =
⎛
⎜⎝

n1 n2 n3
0 −n3 n2

n3 0 −n1
−n2 n1 0

⎞
⎟⎠ , (30)

if U = (E1, E2, E3)
T , where Ei (i = 1,2,3) are the coordinates of the vector E in some Cartesian

coordinate system.
From Proposition 1 we obtain that

gd = Eout|Γ · nδ(Γ ),

gc = n × Eout|Γ δ(Γ ),

where Eout|Γ is the external field on the perimeter of the body.
The external field Eout|Γ must be orthogonal to the boundary, otherwise there is current on the

surface. Hence, gc ≡ 0.
Please cite this article in press as: S.V. Utyuzhnikov, Active wave control and generalized surface potentials, Adv. in Appl.
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Let us now represent the AC source gd in the following form: gd = 4πσρδ(Γ ). Then, the distribu-
tion of the surface charges is given by

σρ = 1

4π
Eout|Γ . (31)

5.2. A bounded superconductor in magnetostatic field

It is well known that the magnetic field does not penetrate inside a superconductor. Hence, it must
be tangential to the boundary immediately outside the superconductor [4].

If we interpret this problem as an AC problem, then, from the Maxwell equations for a static
magnetic field, we have:

div H = gd, (32)

curl H = 4π

c
σE + gc . (33)

Here, H is the magnetic field, σ is the conductivity, c is the speed of light, gd and gc are the AC
source terms.

It is clear that the operator L and appropriate matrix An are the same as in the previous example.
Hence, we obtain that

gd = Hn|Γ δ(Γ ),

gc = n × HΓ δ(Γ ),

where Hn = H · n.
Since the magnetic field is tangential to the boundary, we have gd ≡ 0.
Let us set that gc = 4π

c jbδ(Γ ). Then, from Eq. (32) we obtain the bound current density:

jb = c

4π
n × HΓ . (34)

Thus, the magnetic external field induces a bound current jb which can be interpreted as an AC
source.

The AC problem, closely related to the active noise shielding problem, is addressed in the next
section.

6. Aeroacoustics. Active noise shielding

Let us first consider acoustic equations represented by the wave equation.

6.1. Wave equation

In the case of the wave equation

utt − ∇(p∇u) − qu = f , (35)

the operator L in (1) is the following: L := ∂2

∂t2 + Ls .
From the general solution (27) and Proposition 3, we immediately obtain the AC source term:

g0 = −pΓ

∂u
δ(Γ ) − ∂ pΓ uΓ δ(Γ )

. (36)
Please cite this article in press as: S.V. Utyuzhnikov, Active wave control and generalized surface potentials, Adv. in Appl.
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The particular case of a time-harmonic wave u = veiωt results in the source for the Helmholtz
equation obtained in [22].

The general case of aeroacoustics is described by the LEE.

6.2. Linearized Euler equations

In the case of the LEE model, we consider small acoustic perturbations of the mean flow. Then,
neglecting both viscous terms and high-order terms with respect to the perturbations, we arrive at
the following set of equations:

1

ρ0c2
0

(
p′

t + (u0,∇)p′) + 1

ρ0c2
0

(u′,∇)p0 + ∇ · u′ = 1

ρ0c2
0

f (p) + qvol,

ρ0
(
u′

t + (u0,∇)u′ + (u′,∇)u0
) + ∇p′ = f(u) + fvol, (37)

where u′
j ( j = 1,2,3) are the components of the particle velocity u′ in some Cartesian coordinate

system; p′ is the sound pressure; c0 is the speed of sound; the functions marked by 0 correspond
to some main flow; qvol is the volume velocity per a unit volume and fvol is the force per a unit
volume [12]; f (p) and f(u) are possible additional sound sources.

If we set

U = (
u′

1, u′
2, u′

3, p′)T
, (38)

then the matrix An is given by

An =

⎛
⎜⎜⎝

n1 n2 n3
un

ρ0c2
0

ρ0un 0 0 n1
0 ρ0un 0 n2
0 0 ρ0un n3

⎞
⎟⎟⎠ , (39)

where un = u0 · n.
Thus, we obtain the following AC sources:

qvol =
(

u′ · n|Γ + un

ρ0c2
0

p′|Γ
)

δ(Γ ),

fvol =
(

p′|Γ n + ρ0unu′|Γ
)
δ(Γ ). (40)

It can be seen that the flux through the boundary Γ affects the AC sources (40).
If the main flow is at rest (acoustic equations), then AC sources (40) coincide with the active noise

shielding source terms obtained in [17]. Eliminating the particle velocity u′ in the acoustic equations,
one can obtain the source (36) from both (37) and (40).

7. Conclusion

The potentials introduced by Ryaben’kii have been generalized to IBVPs and the theory of distribu-
tions. The clear traces, assigned with the potentials, have been found for the first- and second-order
spatial differential operators. The general solution of a nonstationary AC problem has been obtained
using the theory of the potentials. In particular, this solution is applicable to the problems of electro-
magnetics and aeroacoustics. The general solution of the AC problem has been applied to the classical
problems on a bounded conductor in electrostatic field and a bounded superconductor in a magneto-
static field. In aeroacoustics, the AC problem is reduced to active noise shielding. The control sources
have been obtained in the form of single- and double-layer sources. The solution only requires the
knowledge of the total field (“friendly” and noise) on the perimeter of the shielded domain.
Please cite this article in press as: S.V. Utyuzhnikov, Active wave control and generalized surface potentials, Adv. in Appl.
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