
IMA Journal of Numerical Analysis(2005) Page 1 of 15
doi: 10.1093/imanum/dri017

Active screening model for hyperbolic equations
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The problem of active screening in application to hyperbolic equations is analysed. According to the
problem, two domains effecting each other via distributed sources terms are considered. It is required
to implement additional sources nearby the common boundary of the domains to ”isolate” one domain
from the other one despite of all the original sources are remained. It is important that the location of the
original sources is unknown whereas the field of their action nearby the boundary is only known.
In the paper, the theory of difference potentials is applied to the system of hyperbolic equations. It allows
one to obtain a single–layer active screening not requiring any additional computations. Local single–
layer and double–layer active screening sources are obtained for an arbitrary hyperbolic system. The
solution does not require either the knowledge of the Green’s function or specific characteristics of the
sources and medium. The optimal single–layer active screening solution is derived in the case of a free
space. In particular, the results are applicable to the system of acoustics equations. The questions related
to a practical realization including the mutual location of the primary and secondary sources, as well as
the measurement point, are discussed. The active noise shielding can be realized via a single–layer source
term requiring the measurements only at one layer nearby the domain screened.

Keywords: Active screening, noise shielding, method of difference potentials, hyperbolic equations.

1. Introduction

The problem of active screening (AS) for hyperbolic equations is analysed. According to the problem,
two domains effecting each other via distributed sources terms are considered. It is required to distribute
additional sources nearby the common boundary of the domains to ”isolate” one domain from the other
despite of all the original sources are remained. It is important that the location of the original sources
is unknown whereas the field of their action nearby the boundary is only known.

This problem is closely related to the problems of active noise and vibration reduction. In the
framework of the active noise shielding, the implementation of additional acoustic sources is conducted
in such a way that the total acoustic undesirable noise in the protected domain is decreased. In contrast to
”passive” noise reduction, the ”active” shielding does not assume any mechanical disconnection of the
domain shielded, therefore it may be potentially more flexible. Meanwhile, both these approaches can
be successfully combined because mechanical obstacles are efficient in shielding from high frequencies
while the active shielding approach is easier for realization in the case of low frequencies. In turn, in the
active vibration control additional vibration sources are distributed along the perimeter of the domain
where the total vibration is to be decreased (or eliminated).

Both the active noise shielding and active vibration control a relatively new directions for research.
First theoretical papers on active shielding were published only about 30 years ago (see Jessel (1968),
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Malyuzhinets (1992), Fedoryuk (1976)), whereas first publications on some possible implementations
appeared much later (see Burgess (1981), Elliotet al. (1987)). Most of active shielding techniques are
based on sound control in selected discrete (see Burgess (1981), Elliotet al. (1987), Cabell & Fuller
(1998)) or directional areas (see Wright & Vuksanovic (1997)). Many approaches, e.g. Kincaid & Laba
(1998), assume detailed information about the sources of noise. There is a number of publications de-
voted to the optimization of the strengths of spatially distributed secondary sources (see Nelsonet al.
(1987)). Comprehensive reviews of theoretical and practical approaches to both active noise shielding
and active vibration control can be found in books (see Nelson & Elliott (1992), Fulleret al. (1996),
Tochi & Veres (2002)). One of major substantial drawbacks of the standard approaches is the require-
ment of information about characteristics of ”adverse” sources including their location. It is worth
noting that this information often is not available in practice.

In acoustics, the problem becomes much more complicated if some ”friendly” field (sound) is as-
sumed to be in the protected area. In this case, along with shielding from the ”adverse” field, the fac-
torisation of ”friendly” and ”adverse” components is to be performed. The suppression of the ”adverse”
field may be not sufficient if it substantially damages the ”friendly” component in the shielded domain.
There is a separate class of methods that requires the information on the total field (both ”friendly” and
”adverse”) only at the perimeter of the domain to be shielded if the problem is linear. It is to be noted
that the knowledge of both the ”adverse” and ”friendly” components is not required. These approaches
are mostly based on the knowledge of Green’ function. For instance, the exact solution of the active
shielding problem is obtained by Malyuzhinets (1992) for the Helmholtz equation with constant coeffi-
cients. The general surface–potential solution of the AS problem for a linear analogue of the Helmholtz
equation with variable coefficients was obtained by Tsynkov (2003). The solution is formulated as a
superposition of the surface single–layer and double–layer potentials; in the general formulation it re-
quires the knowledge of the perimeter distribution of both the field function and its normal derivative.
The approach founded on the Difference Potential theory (see Ryaben’kii (1995), Ryaben’kii (2002))
provides a general approach to solving the AS problem in a finite–difference formulation. This solution
is applicable to arbitrary geometric configurations, medium and boundary conditions. In contrast to the
other methods described above, the ultimate AS solution is achieved in a finite–difference form. From a
practical standpoint this may not be necessarily treated as a drawback because the implementation of the
active shielding assumes some discrete distribution of active shielding sources. This approach has been
analysed in application to the Helmholtz equation in (see Loncaricet al. (2001), Loncaricet al. (2003),
Loncaricet al. (2004), Loncaricet al. (2005)). In these papers the active shielding is mostly obtained
in a double–layer form that assumes numerical second order differentiation of measurement values. On
the basis of the development of finite–difference surface potentials for the Helmholtz equation (or its
analogue), in Tsynkov (2003) it is suggested a single–layer active shielding but its realization requires
solving some external problem.

In the current paper, the theory of difference potentials is applied to the system of hyperbolic equa-
tions. In particular, the obtained results are applicable to the system of acoustics equations. It allows us
to obtain a single–layer active shielding which does not require any additional computations. Instead,
it may require the measurement of an additional physical value that is the normal component of the ve-
locity. It is to be noted that the active shielding source terms do not include subtraction of measurement
data. The questions related to a practical realization including the location of the secondary sources,
as well as the measurement point, are discussed. Local single–layer and double–layer AS sources are
obtained for an arbitrary hyperbolic system. The optimal single–layer AS solution is derived in the case
of a free space.
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2. Statement of the active screening problem

Mathematical formulation of the AS problem can be done in the following form. Let us assume that
field (sound) propagation is described by some linear boundary value problem in a domainD0:

Lw = S, (2.1)

w∈UD0, (2.2)

whereUD0 is a linear subspace of functions defined onD0 such that the solution of problem (2.1), (2.2)
exists and unique.

In particular, the domainD0 may be a free space, and the boundary condition (2.2) can be represented
by the Sommerfeld boundary conditions (see Loncaricet al. (2001)).

Let us consider now some domainD such thatD ⊂ D0. The sources on the right-hand side can be
located both inD and outside ofD:

S= Sf +Sa, (2.3)

supSf ⊂ D,

supSa ⊂ D0�D.

Here,Sf is supposed to be the source of desirable (”friendly”) field, thenSa is the source of undesirable
(”adverse”) field.

Such a partition of the field on ”friendly” and ”adverse” components is given for the sake of deter-
minicity. It is possible also to consider a somewhat opposite formulation where the domainD0\D is
shielded from the field coming from the domainD.

Suppose that we know the distribution of the functionw in some vicinity of the boundary ofD.
It is important to emphasize that only this information is assumed to be available. In particular, the
distribution of the sourcesSon the right–hand side is unknown. The AS problem is reduced to seeking
additional sourcesg in D0�D such that the solution of problem

Lw = S+g, (2.4)

supg∈ D0\D,

w∈UD0 (2.5)

coincides with the solution of problem (2.1), (2.2) on the subdomainD if S= Sf . It is worth noting
that an ”obvious” solutiong = −Sa is not appropriate here because the distribution ofSa is unknown.
Moreover, if the densitySa is known, the trivial solutiong=−Sa seems not to be realistic for a practical
realization.

3. Difference potential formalism and main theorem

Following the difference potential method by Ryaben’kii (2002), let us consider some gridM0 in D0.
Next, introduce subsets of gridM0 as follows: M+ = M0∩D, M− = M0\M+. Assume that equation
(2.1) is approximated on some stencilNm by equation

Lhw(h)|m≡∑
n

amnw
(h)
n = S(h)

|m , m∈M0, n∈ Nm. (3.1)
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Equation (3.1) is completed by the boundary condition approximating the continuous boundary condi-
tion (2.2):

w(h) ∈U (h)
D0

, (3.2)

whereU (h)
D0

is a linear discrete space of functions defined onM0 that is a discrete counterpart of the
spaceUD0.

Denote the extensions of the setsM0, M+, M− due to the stencil byN0, N+, N−, respectively. It
is clear that the setsN+ andN− intersect each other. We treat their intersection as the grid boundary
γ of the domainD: γ = N+ ⋂

N−. In turn, the grid boundaryγ is split into two nonintersecting sub-
boundariesγ− and γ+: γ = γ+ ∪ γ−, whereγ+ = γ

⋂
D and γ− = γ\γ+. Now the finite–difference

solution of the finite–difference counterpart of the AS problem (2.4), (2.5) is to be founded.
The AS problem is then formulated in a finite–difference form as follows. We consider problem

(3.1), (3.2) where

S(h)
|m = S(h)

f |m+S(h)
a|m, (3.3)

supS(h)
f ∈M+,

supS(h)
a ∈M−.

It is required to find such an additional source term

g(h) : supg(h) ∈M− (3.4)

that the solution of problem

Lhw(h)|m≡∑
n

amnw
(h)
n = S(h)

|m +g(h), m∈M0, (3.5)

w(h) ∈U (h)
D0

coincides onN+ with the solution of problem (3.1), (3.2) ifS(h)
a ≡ 0. The functionwγ is assumed to be

known.
The general solution of the AS problem in the discrete formulation is provided by the following

main theorem by Ryaben’kii (1995):

gh =−Lhv(h)|M− , m∈M− (3.6)

gh = 0, m∈M+, (3.7)

wherev(h) is an arbitrary function such that

v(h) ∈U (h)
D0

, v(h)
γ = w(h)

γ . (3.8)

The prove of this theorem can be found in Ryaben’kii (2002). It is clear that the functionv(h) in (3.6) is
not unique. A partial case of this function corresponds tov(h)|M0\γ = 0. In this case the AS source term
is only located on the minimal possible support consisting of such nodes thatγ

⋂
Nm 6= /0, m∈ M−. It

is important to note here that in contrast to the continuous case the grid boundary is not necessarily to
be a single–layer.
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4. 1D acoustics system

Let us first consider the example of 1D acoustics system for isentropic flows:

pt +ρc2ux = f (p), (4.1)

ut + px/ρ = f (u).

Here,p is the pressure,ρ is the density of air,u is the velocity andc is the sound speed,f (p) and f (u)

are acoustic sources.
Assume that the acoustic sources are time-harmonic:

f (p) = ρc2 f̂ (p)eiωt , (4.2)

f (u) = cf̂ (u)eiωt .

Hence, the dependent variables can be represented in the Fourier harmonics:

p = ρcp̂eiωt , (4.3)

u = ûeiωt .

Then, the equations for the Fourier images are as follows:

ikp̂+ ûx = f̂ (p), (4.4)

ikû+ p̂x = f̂ (u).

Let us consider AS problem in a free space with the following Sommerfeld boundary condition:(
ikI +C

∂

∂x

)
Ŵ|∞ = 0, (4.5)

where

Ŵ = (û, p̂)T , C =
1
2

(
1 1
1 1

)
.

This boundary condition means that the Riemann invariantR̂+ is remained whereaŝR− = 0.
The system for the Fourier images can be easily written in the characteristic form:

L+R̂+ = f̂ +, (4.6)

L−R̂− = f̂−,

whereL+ = ik + ∂

∂x, L− = ik− ∂

∂x, R̂+ = p̂+ û, R̂− = p̂− û, f̂ + = f̂ (p) + f̂ (u), f̂− = f̂ (p)− f̂ (u). The

functionsR̂+ andR̂− are the Fourier images of the Riemann invariants of system (4.1) propagating along
the characteristicsdx

dt = c and dx
dt =−c, accordingly.

We approximate these equations with account of the hyperbolic properties of the original equations
written in the characteristics. It can be done if we consider the following ”upwind” approximation:(

ik +
∇
h

)
R̂+

m = f̂ +
m , (4.7)
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ik− ∆

h

)
R̂−m = f̂−m , (4.8)

where∇sm = sm−sm−1 and∆sm = sm+1−sm.
We assume that the areax < 0 is shielded and in the discrete space it corresponds tom< 0. Then, in

the case of equation (4.7) for̂R+ the boundaryγ ≡ γ+ is one-layer and corresponds tom=−1. In turn,
in the case of equation (4.8) the boundaryγ ≡ γ− is also one-layer and coincides with the pointm= 0.

Equation (4.7) for̂R+ does not require any source terms to provide the active shielding. It follows
from the physical meaning of this equation because it only describes the transfer of information (sound)
from the area shielded. This result is formally derived below. It is important to note that this conclusion
is based on the free–space statement of the problem. If the domainD0 is bounded, the active shielding
source term in thêR+– Riemann invariant equation appears to be responsible for retaining the ”friendly”
field reflected from the external boundary ofD0 (”echo”– effect) and might be substantial.

According to the main theorem, the AS sourceĝ(h) is given by:

ĝ(h) =−LhV
(h)
|M− , (4.9)

V(h)
γ = (R̂+, R̂−)T

γ , (4.10)(
ikI +

1
h

Ĉ∇
)

V(h)
|∞ = 0, (4.11)

Ĉ =
(

1 0
0 0

)
.

The vectorV(h) ≡ (v(h)
1 ,v(h)

2 )T satisfying to (4.9) is non-unique. It is possible to choose the vectorV(h)

with the following components:

v(h)
1|γ+ = R̂+

−1,v
(h)
2|γ− = R̂−0 , (4.12)

(ikh+∇)v(h)
1|M− = 0,v(h)

2|N−\γ
= 0.

It is easy to see that vector (4.12) satisfies boundary conditions (4.10), (4.11). Though the boundary

value problem is formulated for the functionv(h)
1 , it is not to be solved since its solution is not explicitly

used.
This immediately leads us to the following active shielding single–layer source term formulated at

the boundaryγ−:

ĝ(h)
u|0 ≡ (ĝ+

0 , ĝ−0 )T =
(

0, − (ik +
1
h
)R̂−0

)T

. (4.13)

This result also has a clear physical interpretation since the field is distributed along the characteristics
incoming to the domain shielded. This information is fully contained in theR̂−– Riemann invariant. In
practice, we can effectively explore the fact that the Riemann invariant is remained along a characteristic.
On the basis of this property it is possible to measure the value of the Riemann invariant in the vicinity
of the boundary at any place where it is convenient to perform it. In fact, it demands the measurement
of the both dependent variables which are the pressure and velocity since the Riemann invariants are
not the physical values. If ”friendly” sound is absent, thenR̂+

0 = 0 and the active shielding requires the
measurement of only one physical value, e.g., the pressure:

ĝ(h)
u|0 =

(
0, −2(ik +

1
h
)p̂0

)T

. (4.14)
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It is worth noting that if the spaceD0 is bounded, then, instead of (4.12) in (4.9), it is possible to
choose the following functionV(h):

V(h)
|N−\γ

= 0 (4.15)

Then, the active shielding source term becomes as follows:

ĝ(h)
b|0 =

(
1
h

R̂+
−1, − (ik +

1
h
)R̂−0

)T

. (4.16)

The upwind approximation (4.7), (4.8) can be easily written in the original variablesû andp̂ after adding
and subtracting equations (4.7), (4.8):

ikp̂m+
∆̇

2h
ûm = f̂ (p)

m +
∆2

2h
p̂m, (4.17)

ikûm+
∆̇

2h
p̂m = f̂ (u)

m +
∆2

2h
ûm, (4.18)

where∆̇sm = sm+1−sm−1 and∆2sm = sm+1−2sm+sm−1.
In the original variables, the AS free–space vector is given by:

Ĝ(h)
u|0 =

1
2
(ĝ−0 ,−ĝ−0 )T . (4.19)

It is clear that this result is somewhat ”optimum” in a free space since it is obtained by the intermediate

analysis of spreading the Riemann invariants. Indeed, any vectorĝ(h)
b|0 is suitable for the active shielding

in a free space. At the limit ofkh<< 1, in the original variables this vector equals

Ĝ(h)
b|0 =

1
2h

(R̂−0 − R̂+
0 , R̂−0 + R̂+

0 )T , (4.20)

and its first norm is given by ∥∥∥Ĝ(h)
b|0

∥∥∥
1
=

1
2h

(|R̂−0 + R̂+
0 |+ |R̂−0 − R̂+

0 |). (4.21)

The minimum of the norm is reached atR̂+
0 = 0. It immediately follows from an inequality:

|R̂−0 |6
1
2
(|R̂−0 + R̂+

0 |+ |R̂−0 − R̂+
0 |) (4.22)

Thus, ∥∥∥Ĝ(h)
u|0

∥∥∥
1
6

∥∥∥Ĝ(h)
b|0

∥∥∥
1
. (4.23)

The minimum of the active shielding source term is also reached atR̂+
0 = 0 in L2. It is proved below

in a more general case.
Let us try now to obtain the same result via the formal procedure. According to general solution

(3.6), the vector of the source terms is given by

Ĝ(h) =−[ikI − ∆2

2h
+

∆̇

2h
Â]V(h), (4.24)

Â =
(

0 1
1 0

)
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with the functionV(h) satisfying to boundary conditions (4.10), (4.11).
Since the boundaryγ is a double–layer for the entire system (4.17), (4.18), from the formal proce-

dure it is not clear that the active shielding source term is only localized at the pointm= 0 unless the
characteristic form is considered. To develop a general approach, the formal analysis of AS is provided
for a general hyperbolic 1D system in the next section.

5. AS for 1D hyperbolic system

Let us consider the general linear system of the hyperbolic type and its Fourier image:

ikŴ+AŴx = 0, (5.1)

where we assume that
A = SΛS−1 (5.2)

and the matrixΛ = diag{λk} is a diagonal matrix of the real eigenvalues of the matrixA.
For the vector of the Riemann invariantsŶ = S−1Ŵ, the upwind approximation can be written in the

following form:

ikŶm+
1
h

Λ
+∇Ŷm+

1
h

Λ
−

∆Ŷm = 0, (5.3)

whereΛ+ = 1
2(Λ + |Λ |),Λ− = 1

2(Λ −|Λ |), |Λ |= diag{|λk|}.
It can be rewritten as follows:

ikŶm+
Λ

2h
∆̇Ŷm =

|Λ |
2h

∆2Ŷm, (5.4)

here∆̇Sm = Sm+1−Sm−1, ∆2Sm = Sm+1−2Sm+Sm−1.
Having turned back to the original variables, we get the ”upwind” scheme for the Fourier images:

ikŴm+
A
2h

∆̇Ŵm =
1
2h

S|Λ |S−1
∆2Ŵm. (5.5)

Further, we follow the previous section approach. Having obtained the AS source terms for the
Riemann invariants, they can be written in the physical variables. Thus, we first split the AS source term
as follows:

S−1Ĝ(h)
γ− =

Λ

h
I+
λ

Ŷγ+ +(ikI − Λ

h
)I−

λ
Ŷγ− , (5.6)

whereI−
λ

= diag{signλ−} is a diagonal matrix having nonzero elements equaled to –1 if the appropriate

eigenvalue is negative. We consider two possible values of the matrixI+
λ

. If the auxiliary functionV(h)

is defined according to (4.15), thenI+
λ

= diag{signλ+}, similarly to I−
λ

. In the case of a free space,

the optimal solution corresponds to the functionV(h) not including the contribution of the outcoming
Riemann invariants, henceI+

λ
≡ 0.

In the physical variables the source term is given by:

Ĝ(h)
b|γ− =

1
h

AB+Ŵγ+ +(ikI − 1
h

A)B−Ŵγ− , (5.7)

where the projection matrixesB+ andB− are as follows:

B− = SI−
λ

S−1,B+ = SI+
λ

S−1.
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Whereas, in a free space the AS solution is the following:

Ĝ(h)
u|γ− = (ikI − A

h
)B−Ŵγ− . (5.8)

Thus, in 1D case the AS source term can be locally approximated only atγ−. Formula (5.8) automat-
ically takes into account only incoming invariants. Only derivatives (their approximations) along the
incoming characteristics are included in (5.8) . All incoming Riemann invariants are remained along
the appropriate incoming characteristics unless source terms exist. Therefore, they can be measured at
any point between the boundary, where the AS is implemented, and the nearest source. Though the
entire vectorW is to be measured, it can be represented as a superposition of both incoming and out-
coming Riemann invariants. The latter Riemann invariants do not effect on the AS source terms and
their contribution is automatically filtered by formula (5.8).

In contrast to the Helmholtz equation analysis, the AS is reached on a single–layer without solving
any external problem. It is worth noting that in the case of the second-order-equation analysis the AS
having a compact support includes a subtraction of two measurable values divided byh2.

Let us assume that we measure the acoustic field at the layerγ
−
+ immediately outside of the boundary

γ− and the domainD. In the 1D example it corresponds to the pointm= 1. The vectors atγ− andγ
−
+

can be related each other via the∆ -approximation:

(ikh+Λ∆)Ŷγ = 0

or
Ŷγ− = (Λ − ikhI)−1

ΛŶ
γ
−
+
. (5.9)

This relation does not consistent for the outcoming invariants but they do not effect on our analysis.
Then, having substituted (5.9) in (5.8), we are able to formulate the AS term in the original Fourier
variables as follows:

Ĝ(h)
u =−1

h
AB−Ŵ

γ
−
+
. (5.10)

In this treatment we perform the measurements at the layerγ
−
+ and set the AS sources at the layerγ−. It

is easy now to obtain the appropriate relation for the original time–dependent variables:

G(h)
u =−1

h
AB−W

γ
−
+
. (5.11)

From the general AS solution (5.7) it follows that in the general case under the assumption ofkh<<
1 the AS solution is given by

G(h)
b =

1
h

AW
γ
−
+
. (5.12)

Let us consider a quite general case of a self–conjugated matrixA. In particular, the acoustics
equations can be represented via such a matrix. Then,∥∥∥G(h)

b

∥∥∥2

2
=

1
h4 (AW,AW) >

1
h4 (AB−W,AB−W) =

∥∥∥G(h)
u

∥∥∥2

2
(5.13)

Along with the screening of the internal volume from the external field, we are able to consider
screening the external field from the internal field. The consideration, similar to the analysis given
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above, leads us to the following results. Having neglected by the reflection from the boundary of the
internal volume, the AS source term is given by

Ĝ(h)
u|γ+ =−LhV

(h)
|γ+ = (ik +A

∇
h

)V(h)
γ+ = (ik +

1
h

A)B+Ŵγ+ (5.14)

Here, we consider a layerγ+
− that is the nearest layer toγ+ in D (m = −2, in 1D case). Since, in

turn, we take into account only the outcoming invariants, the vectors atγ+ andγ
+
− are related via the

∇–approximation:
(ikh+Λ∇)Ŷγ = 0

or
Ŷγ+ = (Λ + ikhI)−1

ΛŶ
γ
+
−
. (5.15)

Then, the source term is formulated via the vectorW only at the layerγ+
− :

Ĝ(h)
u|γ+ =−1

h
B+AŴ

γ
+
−

=−1
h

AB+Ŵ
γ
+
−
. (5.16)

As an example, let us apply the developed general results to the acoustics system of equations (4.1).
In this case, the matrixes are as follows:

A =
(

0 1
1 0

)
, S=

(
1/2 1/2
1/2 −1/2

)
,

Λ =
(

1 0
0 −1

)
, B− =

(
−1/2 1/2
1/2 −1/2

)
.

Having setR̂−M−\γ
= 0, we obtain:

gγ− =−1/2(ik +
1
h
)R̂−0 (1,−1)T (5.17)

This term coincides with the source term (4.13), (4.19) derived via the immediate Riemann–invariant
analysis.

Using (5.10), the AS source term can be written via the valueŴ1:

gγ− = g0 =−1
h

B−AŴ1 =− 1
2h

R̂−1 (1,−1)T . (5.18)

In the case of the external screening:

g
γ
+
−

= g−1 =−1
h

B+AŴ−2 =− 1
2h

R̂+
−2(1, 1)T . (5.19)

In the physical variables, the AS source terms can be represented in the following general form (see
Nelson & Elliott (1992)):

pt/c2 +ρux = ρqvol, (5.20)

ρut + px = fvol,
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whereqvol is the volume velocity per a unit volume andfvol is the force per a unit volume (see Nelson
& Elliott (1992)).

From (4.19) and (5.18), one obtain that in the case of screening the domainD

qvol =− 1
2h

R−1 , (5.21)

fvol =
1
2h

R−1 ,

whereR− = p
ρc −u. If the internal sources are absent and there is no reflection from the boundaries,

thenR− = 2 p
ρc

It is easy to exclude one of the two variables in (5.20) and derive the equation for, e.g., the pressure:

− 1
c2 ptt + pxx = gp, (5.22)

where

gp =
∂

∂x
fvol−ρ

∂

∂ t
qvol.

From (5.21), it follows that

gp =
ρ

2h
(R−t +cR−x ). (5.23)

If the internal sources are absent and there is no reflection, then

gp =
2pt

hc
. (5.24)

For the Fourier images of the pressure we have:

k2 p̂+ p̂xx = ĝp, (5.25)

where

ĝp =
ik
h

R̂−1 = i
2k
h

p̂1. (5.26)

On the other hand, it is possible to consider the Helmholtz equation for the pressure immediately:

k2p̂+ p̂xx = 0. (5.27)

Having approximated it, we obtain the following finite-difference equation:

k2p̂m+
1
h2 (p̂m+1−2p̂m+ p̂m−1) = 0. (5.28)

If the aream< 0 is shielded, the main theorem yields the following possible double–layer solution:

ĝ(h)
0 =−(

p̂−1−2p̂0

h2 +k2p̂0). (5.29)

This expression includes the subtraction of two measured valuesp̂−1 and p̂0 and their division byh2.
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In Loncaricet al. (2003), it is shown that without the internal sources the local AS source term at
the pointm= 0 is given by

q̂(h)
0 =−p̂0(2

q−1
h2 +k2), (5.30)

whereq = 1− 1
2k2h2− ikh

√
1− 1

4k2h2. Thus,

q̂(h)
0 = i

2k
h

p̂0

√
1− 1

4
k2h2 ≈ i

2k
h

p̂0. (5.31)

In the latest equality we assume thatkh<< 1 that means the mesh is fine enough to resolve the wave
length.

The source termŝgp, given by (4.19), and̂q(h)
0 approximately equal each other. In Loncaricet al.

(2003) it is proved that the local source term (5.30) corresponds to the minimal source term inL1 among
the all possible AS solutions provided by the main theorem.

6. 3D statement

Let us now consider the fully 3D statement of the problem. The system of equations for the Fourier
components can be written in the following form:

ikŴ+
3

∑
j=1

A jŴx j = 0. (6.1)

Suppose that system (6.1) is hyperbolic. Then,

A j = SjΛ jS
−1
j ,

where the matrixes of eigenvaluesΛ j = diag{λk} j have only real diagonal elements.
The generalization of the scheme (5.5) is the following:

ikŴm+
3

∑
j=1

1
2h j

A j ∆̇Ŵm =
3

∑
j=1

1
2h j

Sj |Λ j |S−1
j ∆2Ŵm. (6.2)

Unfortunately, in the general case system (6.1) cannot be reduced to a diagonal form. Therefore, the
immediate generalization of the one–layer AS source terms (5.7), (5.8) is not possible. The general
source term (4.9) in the general form is based on the double–layer measurements atγ. Nevertheless, one
can derive an approximate local single–layer AS source term.

Let us rewrite system (6.2) in the orthogonal coordinate system
{

ξ i
}

related to the boundary of the
domain shielded:

ikŴ+
3

∑
k=1

AkŴξk
= 0, (6.3)

where

Ak =
3

∑
j=1

∂ξ k

∂x j A j .
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Assume that the surface of the boundary corresponds toξ 3 = const. System (6.3) can be approximated
in the same way as the original system (6.1):

ikŴm+
3

∑
j=1

1
2h j

A j ∆̇Ŵm =
3

∑
j=1

1
2h j

Sj |Λ j |S−1
j ∆2Ŵm, (6.4)

where
A j = SjΛ jS

−1
j .

Having setv(h)
|M−\γ

= 0 in general solution (3.6), we obtain the double–layer distribution of the AS

source terms on the layersγ− andγ
−
+ . It is important to note that the source terms on the layerγ

−
+ do

not include the approximations of any derivatives but in the normal direction. On the other layerγ−,
the contribution of the approximations alongξ 1 andξ 2 areO(1) while the contribution of the normal
derivative isO(h−1

3 ). Thus, under the assumption ofh3 → 0 only the normal derivative is remained. It
leads us to a quasi 1D case.

Similarly to solution (5.12), under the assumption ofh3 → 0 we have the following AS source term:

G(h)
b|γ− =

1
h3

A3Wγ− . (6.5)

The optimum free–space solution is given by

G(h)−
u|γ− =− 1

h3
A3B

−
3 W

γ
−
+
, (6.6)

where

B
−

3 = S3I−
λ ,3S

−1
3 , (6.7)

I−
λ ,3 is a diagonal matrix having nonzero elements equaled to –1 if the appropriate eigenvalue of the

matrixB
−

3 is negative.
In the case of the acoustics equations

pt +ρc2∇u = ρc2qvol, (6.8)

ut +∇p/ρ = fvol,

the matrixA3 is as follows:

A3 =


0 n1 n2 n3

n1 0 0 0
n2 0 0 0
n3 0 0 0

 , (6.9)

wheren j = ∂ξ 3

∂x j ( j = 1,2,3) are the components of the normal to the boundary.
Then, the general AS source term under the assumption ofkh3 << 1 is given by

G(h)
b|γ− = h−1

3

(
ρc2vn,

p
ρ

n1,
p
ρ

n2,
p
ρ

n3

)T

γ−
, (6.10)
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wherevn is the normal component of the velocity. This means

qvol = h−1
3 vn|γ− , (6.11)

bvol = h−1
3 pγ−n.

The projection matrixB
−

3 is represented as follows:

B
−

3 =
1
2


−1 n1 n2 n3

n1 −n11 −n12 −n13

n2 −n21 −n22 −n23

n3 −n31 −n32 −n33

 , (6.12)

whereni j = nin j .
Then, the optimal free-space AS source vector is given by:

G(h)
u|γ− =−1

2
h−1

3 R−
γ
−
+

c(ρc,−n1,−n2,−n3)T , (6.13)

whereR− = p
ρc −vn. In this case

qvol =−1
2

h−1
3 R−

γ
−
+
, (6.14)

bvol =
1
2

h−1
3 R−

γ
−
+

ρcn.

If both the ”friendly” sound and reflection from the shielded area are absent, then we can setR− = 2p
ρc.

In this case, the measurement of only one value (either the pressure or normal velocity) is required.
The obtained source term can be approximately used in a multidimensional case as a local 1D AS

solution. In this case, the solution is considered in the direction normal to the boundary of the shielded
domain and includes the normal component of the velocity. The more direction of the external wave
front is close to the normal one the more solution is accurate. A similar case appears in the problem
of non–reflecting boundary conditions when the local characteristic–type boundary conditions are used
(see Tsynkov (1998)). In contrast to the non–reflecting boundary conditions, the local data obtained
from the measurements allows us to reach a local solution either of single–layer or double–layer.

The same kind of AS solution is remained in the case of a broadband spectrum if the problem is
linear. Indeed, the AS solution for Fourier components does not explicitly depend on both the frequency
and phase. Since each frequency additively contributes to the measurement data, from the principle of
superposition it follows that the source based on these data provides the AS.

7. Concluding remarks

The general single–layer solution of AS has been obtained for an arbitrary system of hyperbolic equa-
tions in a finite–difference form. The solution does not require either the knowledge of the Green’s
function or characteristics of the sources and medium. The AS can be realized via a single–layer source
term requiring the measurements only at one layer nearby the domain screened. In the case of the
domain shielded in a free space, the optimal single–layer solution has been obtained. The mutual lo-
cation and influence of the AS source and measurement point has been considered. Single–layer and
double–layer AS solutions have been obtained for a general 3D case.



Active screening model for hyperbolic equations 15 of 15

8. Acknowledgment

This research was supported by the Engineering and Physics Sciences Research Council (EPSRC) under
grant GR/26832/01 and the first author was also supported by the Russian Foundation for Basic Research
(RFBR) under grant 05-01-00426A.

REFERENCES

JESSEL, M.J. (1968) Sur les absorbeurs actifs, Proceedings 6th ICA, Tokyo, 1968, Paper F-5-6, 82.
MALYUZHINETS , G.D. (1992) An unsteady diffraction problem for the wave equation with compactly supported

right-hand side, Proceeding of the Acoustics Institute, USSR Ac Sci., 1971, 124–139 (in Russian).
FEDORYUK, M.V. (1976) An unsteady problem of active noise suppression, Acoustic J.,22, 439–443 (in Russian).
BURGESS, J.C. (1981) Active adaptive sound control in a duct: A computer simulation, J. Acoust. Soc. Amer.,70,

715–726.
ELLIOT, S.J., STOTHERS, I.M. & N ELSON, P.A. (1987) A multiple error LMS algorithm and its application to

the active control of sound and vibration, IEEE Trans., Acoustics, Speech and Signal Processing ASSP-35,
1423–1434.

CABELL , R.H. & FULLER, C.R. (1998) Active control of periodic disturbances using principal component LMS:
Theory and experiment, in 3rd AST/HSR Interior Noise Workshop, Part I: Sessions A, B, and C, NASA
Langley Research Center, Hampton, VA.

WRIGHT, S.E. & VUKSANOVIC, B. (1997) Active control of environment noise, II: Non-compact acoustic sources,
J. Sound Vibration,202, 313–359.

K INCAID , R.K. & L ABA , K. (1998) Reactive tabu search and sensor selection in active structural control problems,
J. Heuristics,4 (3), 199–220.

NELSON, P.A., CURTIS, A.R.D., ELLIOTT, S.J. & BULLMORE, A.J. (1987) The minimum power output of free
field point sources and the active control of sound, J. of Sound Vibration,116(3), 397–414.

NELSON, P.A. & ELLIOTT, S.J. (1992). Active control of sound, Academic Press, San Diego, CA, USA.
FULLER, C.R., NELSON, P.A. & ELLIOTT, S.J. (1996) Active control of vibration, Academic Press.
TOCHI, O. & VERES, S. (2002) Active sound and vibration control. Theory and applications, The Institution of

Electrical Engineers.
TSYNKOV, S.V. (2003) On the definition of surface potentials for finite-difference operators, J. of Scientific Com-

puting,18 (2), 155–189.
TSYNKOV, S.C. (1998) Numerical solution of problems on unbounded domains. A review, J. of Applied Numerical

Mathematics,27, 465–532.
RYABEN ’ KII , V.S. (1995) A difference shielding problem. Functional Analysis and Applications,29 (1), 70–71.
RYABEN ’ KII , V.S. (2002) Method of difference potentials and its applications, Berlin, Springer-Verlag.
LONCARIC, J., RYABEN ’ KII , V.S. & TSYNKOV, S.V. (2001) Active shielding and control of noise, SIAM J. Appl.

Math.,62 (2), 563–596.
LONCARIC, J. & TSYNKOV, S.V. (2003) Optimization of acoustic source strength in the problems of active noise

control, SIAM J. Appl. Math.,63 (4), 1141–1183.
LONCARIC, J. & TSYNKOV, S.V. (2004) Optimization of power in the problem of active control of sound, Mathe-

matics and Computers in Simulation,65, 323–335.
LONCARIC, J. & TSYNKOV, S.V. (2005) Quadratic optimization in the problems of active control of sound,52,

381–400.


