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Active screening model for hyperbolic equations
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The problem of active screening in application to hyperbolic equations is analysed. According to the
problem, two domains effecting each other via distributed sources terms are considered. It is required
to implement additional sources nearby the common boundary of the domains to "isolate” one domain
from the other one despite of all the original sources are remained. It is important that the location of the
original sources is unknown whereas the field of their action nearby the boundary is only known.
In the paper, the theory of difference potentials is applied to the system of hyperbolic equations. It allows
one to obtain a single—layer active screening not requiring any additional computations. Local single—
layer and double—layer active screening sources are obtained for an arbitrary hyperbolic system. The
solution does not require either the knowledge of the Green’s function or specific characteristics of the
sources and medium. The optimal single—layer active screening solution is derived in the case of a free
space. In particular, the results are applicable to the system of acoustics equations. The questions related
to a practical realization including the mutual location of the primary and secondary sources, as well as
the measurement point, are discussed. The active noise shielding can be realized via a single—layer source
term requiring the measurements only at one layer nearby the domain screened.

Keywords Active screening, noise shielding, method of difference potentials, hyperbolic equations.

1. Introduction

The problem of active screening (AS) for hyperbolic equations is analysed. According to the problem,
two domains effecting each other via distributed sources terms are considered. It is required to distribute
additional sources nearby the common boundary of the domains to "isolate” one domain from the other
despite of all the original sources are remained. It is important that the location of the original sources
is unknown whereas the field of their action nearby the boundary is only known.

This problem is closely related to the problems of active noise and vibration reduction. In the
framework of the active noise shielding, the implementation of additional acoustic sources is conducted
in such a way that the total acoustic undesirable noise in the protected domain is decreased. In contrast to
"passive” noise reduction, the "active” shielding does not assume any mechanical disconnection of the
domain shielded, therefore it may be potentially more flexible. Meanwhile, both these approaches can
be successfully combined because mechanical obstacles are efficient in shielding from high frequencies
while the active shielding approach is easier for realization in the case of low frequencies. In turn, in the
active vibration control additional vibration sources are distributed along the perimeter of the domain
where the total vibration is to be decreased (or eliminated).

Both the active noise shielding and active vibration control a relatively new directions for research.
First theoretical papers on active shielding were published only about 30 years ago (see Jessel (1968),
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Malyuzhinets (1992), Fedoryuk (1976)), whereas first publications on some possible implementations
appeared much later (see Burgess (1981), Edtiatl. (1987)). Most of active shielding techniques are
based on sound control in selected discrete (see Burgess (1981),eE®ib(1987), Cabell & Fuller
(1998)) or directional areas (see Wright & Vuksanovic (1997)). Many approaches, e.g. Kincaid & Laba
(1998), assume detailed information about the sources of noise. There is a number of publications de-
voted to the optimization of the strengths of spatially distributed secondary sources (seedielkon
(1987)). Comprehensive reviews of theoretical and practical approaches to both active noise shielding
and active vibration control can be found in books (see Nelson & Elliott (1992), Fetllat. (1996),

Tochi & Veres (2002)). One of major substantial drawbacks of the standard approaches is the require-
ment of information about characteristics of "adverse” sources including their location. It is worth
noting that this information often is not available in practice.

In acoustics, the problem becomes much more complicated if some "friendly” field (sound) is as-
sumed to be in the protected area. In this case, along with shielding from the "adverse” field, the fac-
torisation of "friendly” and "adverse” components is to be performed. The suppression of the "adverse”
field may be not sufficient if it substantially damages the "friendly” component in the shielded domain.
There is a separate class of methods that requires the information on the total field (both "friendly” and
"adverse”) only at the perimeter of the domain to be shielded if the problem is linear. It is to be noted
that the knowledge of both the "adverse” and "friendly” components is not required. These approaches
are mostly based on the knowledge of Green’ function. For instance, the exact solution of the active
shielding problem is obtained by Malyuzhinets (1992) for the Helmholtz equation with constant coeffi-
cients. The general surface—potential solution of the AS problem for a linear analogue of the Helmholtz
equation with variable coefficients was obtained by Tsynkov (2003). The solution is formulated as a
superposition of the surface single—layer and double—layer potentials; in the general formulation it re-
quires the knowledge of the perimeter distribution of both the field function and its normal derivative.
The approach founded on the Difference Potential theory (see Ryaben’kii (1995), Ryaben’kii (2002))
provides a general approach to solving the AS problem in a finite—difference formulation. This solution
is applicable to arbitrary geometric configurations, medium and boundary conditions. In contrast to the
other methods described above, the ultimate AS solution is achieved in a finite—difference form. From a
practical standpoint this may not be necessarily treated as a drawback because the implementation of the
active shielding assumes some discrete distribution of active shielding sources. This approach has been
analysed in application to the Helmholtz equation in (see Lonedrd. (2001), Loncaricet al. (2003),
Loncaricet al. (2004), Loncaricet al. (2005)). In these papers the active shielding is mostly obtained
in a double—layer form that assumes numerical second order differentiation of measurement values. On
the basis of the development of finite—difference surface potentials for the Helmholtz equation (or its
analogue), in Tsynkov (2003) it is suggested a single—layer active shielding but its realization requires
solving some external problem.

In the current paper, the theory of difference potentials is applied to the system of hyperbolic equa-
tions. In particular, the obtained results are applicable to the system of acoustics equations. It allows us
to obtain a single—layer active shielding which does not require any additional computations. Instead,
it may require the measurement of an additional physical value that is the normal component of the ve-
locity. Itis to be noted that the active shielding source terms do not include subtraction of measurement
data. The questions related to a practical realization including the location of the secondary sources,
as well as the measurement point, are discussed. Local single—layer and double—layer AS sources are
obtained for an arbitrary hyperbolic system. The optimal single—layer AS solution is derived in the case
of a free space.
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2. Statement of the active screening problem

Mathematical formulation of the AS problem can be done in the following form. Let us assume that
field (sound) propagation is described by some linear boundary value problem in a dagnain

Lw=S (2.1)
we UDO, (2-2)

whereUp, is a linear subspace of functions definedmnsuch that the solution of problem (2.1), (2.2)
exists and unique.

In particular, the domaiBg may be a free space, and the boundary condition (2.2) can be represented
by the Sommerfeld boundary conditions (see Loncarial. (2001)).

Let us consider now some domdinsuch thatD C Dg. The sources on the right-hand side can be
located both irD and outside obD:

S=Si+ %, (2.3)
supSs C D,
supS; C Do\D.

Here,S; is supposed to be the source of desirable ("friendly”) field, tBeis the source of undesirable
("adverse”) field.

Such a patrtition of the field on "friendly” and "adverse” components is given for the sake of deter-
minicity. It is possible also to consider a somewhat opposite formulation where the dBrgidinis
shielded from the field coming from the domdin

Suppose that we know the distribution of the functienn some vicinity of the boundary db.

It is important to emphasize that only this information is assumed to be available. In particular, the
distribution of the sourceS on the right—-hand side is unknown. The AS problem is reduced to seeking
additional sourceg in Do\ D such that the solution of problem

Lw=S+g, (2.4)
supg € Do\D,
We UDo (2-5)

coincides with the solution of problem (2.1), (2.2) on the subdoririf S= S;. It is worth noting
that an "obvious” solutiory = —S, is not appropriate here because the distributioS,06 unknown.
Moreover, if the densit, is known, the trivial solutiogy = — S, seems not to be realistic for a practical
realization.

3. Difference potential formalism and main theorem

Following the difference potential method by Ryaben’kii (2002), let us consider som&/§rid Do.
Next, introduce subsets of grid® as follows: M+ = M°ND, M~ = M%\M*. Assume that equation
(2.1) is approximated on some stengil by equation

L | = ZamnWEh) - %Tf me MO, ne Np, 3.1

n
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Equation (3.1) is completed by the boundary condition approximating the continuous boundary condi-
tion (2.2):
wh Ul (3.2)

Whereugy is a linear discrete space of functions definedwhthat is a discrete counterpart of the
spacdJp,.

Denote the extensions of the sé8, M, M~ due to the stencil bjN®, N*, N~, respectively. It
is clear that the setd™ andN~ intersect each other. We treat their intersection as the grid boundary
y of the domainD: y = NTN~. In turn, the grid boundary is split into two nonintersecting sub-
boundariesy™ andy™: y=y" Uy, wherey™ = yN\D andy~ = y\y". Now the finite—difference
solution of the finite—difference counterpart of the AS problem (2.4), (2.5) is to be founded.

The AS problem is then formulated in a finite—difference form as follows. We consider problem
(3.1), (3.2) where

SUSEHNE LA 639
supsS” e M,
supélh) eM™.
It is required to find such an additional source term
g™ : supg™ e M~ (3.4)
that the solution of problem
Lo =3 aminh” =S +9™, me M, (3.5)
m

W Ul

coincides onN™ with the solution of problem (3.1), (3.2) ih) = 0. The functiorw, is assumed to be
known.

The general solution of the AS problem in the discrete formulation is provided by the following
main theorem by Ryaben’kii (1995):

oh=—Lpv |y, meM~ (3.6)
gh=0 meMT, (3.7)
wherev(" is an arbitrary function such that
b (h h
VARRS Uéo), v§,> :Wg, ). (3.8)

The prove of this theorem can be found in Ryaben’kii (2002). It is clear that the funétioin (3.6) is

not unique. A partial case of this function correspond&s“idMo\7 = 0. In this case the AS source term

is only located on the minimal possible support consisting of such nodeg(tdt, 20, me M~. It

is important to note here that in contrast to the continuous case the grid boundary is not necessarily to
be a single—layer.
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4. 1D acoustics system

Let us first consider the example of 1D acoustics system for isentropic flows:
p + pciuy = f(P), (4.1)
U+ pe/p = FY.

Here, p is the pressurep is the density of airy is the velocity andt is the sound speed (P and f({)
are acoustic sources.
Assume that the acoustic sources are time-harmonic:

£P) — p2fPdat, (4.2)
fW = cflugot,

Hence, the dependent variables can be represented in the Fourier harmonics:

p=pcpe™, (4.3)

u=ad®.

Then, the equations for the Fourier images are as follows:

ikp+ Ty = fP), (4.4)
k4 px = fY,

Let us consider AS problem in a free space with the following Sommerfeld boundary condition:

(ikl +C§X> W, =0, (4.5)

where

~ PO 1/1 1
W:(U, p)T7 C2<1 l)

This boundary condition means that the Riemann invafanis remained whered®~ = 0.
The system for the Fourier images can be easily written in the characteristic form:

L*RY = f*, (4.6)
LR =f,

whereL™ =ik + 2, L- =k— 2, R =p+G R =p-0 f*=fP 4 fV, f =fP _fU. The
functionsR™ andR~ are the Fourier images of the Riemann invariants of system (4.1) propagating along
the characteristic§ = c and % = —c, accordingly.

We approximate these equations with account of the hyperbolic properties of the original equations
written in the characteristics. It can be done if we consider the following "upwind” approximation:

<ik+ E) RE @.7)
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(ik— ﬁ) Rn=fm, (4.8)

wherelsy, = Sm— Sn-1 andASy = Sne1 — Sm
We assume that the argac 0 is shielded and in the discrete space it corresponas<td. Then, in
the case of equation (4.7) f&" the boundary = v, is one-layer and correspondsrto= —1. In turn,
in the case of equation (4.8) the boundgae v~ is also one-layer and coincides with the paimt& 0.
Equation (4.7) foR" does not require any source terms to provide the active shielding. It follows
from the physical meaning of this equation because it only describes the transfer of information (sound)
from the area shielded. This result is formally derived below. It is important to note that this conclusion
is based on the free—space statement of the problem. If the d@pasbounded, the active shielding
source term in th& — Riemann invariant equation appears to be responsible for retaining the "friendly”
field reflected from the external boundary®@f ("echo’- effect) and might be substantial.
According to the main theorem, the AS sougs® is given by:

6" =LV, (4.9)
v = (R",RO)T, (4.10)
( + cm) vV —o, (4.11)
~ 0

G- ( 0).

The vectov( = (v(1h)7v(2h))T satisfying to (4.9) is non-unique. It is possible to choose the vatdr
with the following components:

~

v v —

Vi = =R,V o = oo (4.12)
v (h)

(ikh+O)v im- = O V-, = 0.

It is easy to see that vector (4.12) satisfies boundary conditions (4.10), (4.11). Though the boundary
value problem is formulated for the functiuﬂ"), itis not to be solved since its solution is not explicitly
used.

This immediately leads us to the following active shielding single—layer source term formulated at
the boundaryy:

.
do= (6. G&) = (0» (ik+ﬁ)§a> : (4.13)

This result also has a clear physical interpretation since the field is distributed along the characteristics
incoming to the domain shielded. This information is fully contained inkhe Riemann invariant. In
practice, we can effectively explore the fact that the Riemann invariant is remained along a characteristic.
On the basis of this property it is possible to measure the value of the Riemann invariant in the vicinity
of the boundary at any place where it is convenient to perform it. In fact, it demands the measurement
of the both dependent variables which are the pressure and velocity since the Riemann invariants are
not the physical values. If "friendly” sound is absent, t@’n: 0 and the active shielding requires the
measurement of only one physical value, e.g., the pressure:

o1\
Gio = (o, 2(|k+h)po> : (4.14)
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It is worth noting that if the spacBg is bounded, then, instead of (4.12) in (4.9), it is possible to
choose the following functiow (M-

(h)
V\N*\V

Then, the active shielding source term becomes as follows:

=0 (4.15)

no (1la 1.\"
oy = (FRow (kPR ) (4.16)

The upwind approximation (4.7), (4.8) can be easily written in the original variaizles p after adding
and subtracting equations (4.7), (4.8):

kpor Ao _qw deg
ikPm+ 5 0n = fn + =P, (4.17)
N A o, Az
|kUm+%pm m -+ o Um, (4.18)
whereAsy = Smi1—Sn-1 andAzSm = Smi1— 2Sm+ Sm-1.-
In the original variables, the AS free—space vector is given by:
~(h ~
Gllp = (go —G)"- (4.19)

It is clear that this result is somewhat "optimum” in a free space since it is obtained by the intermediate
analysis of spreading the Riemann invariants. Indeed, any @Sds suitable for the active shielding
in a free space. At the limit d¢h << 1, in the original variables this vector equals

~(h 1 ~ A~ o~
Ghio = o5 (Ro —R5.Ro +R3)", (4.20)
and its first norm is given by
|65, = o (1Rs +Rs 1+ 1R ~Rg . (4.21)
The minimum of the norm is reachedl%g = 0. Itimmediately follows from an inequality:
P .
Rol < 5(IRs +RS|+IR ~Rg ) (4.22)
Thus,
A
|l < lesell, (.29

The minimum of the active shielding source term is also reachﬁ@ at0inLy. Itis proved below
in a more general case.
Let us try now to obtain the same result via the formal procedure. According to general solution
(3.6), the vector of the source terms is given by
A -~

- Ao
h) — ikt — 22 (h)
G = [kl - 52 + S AV™, (4.24)
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with the functionv (" satisfying to boundary conditions (4.10), (4.11).

Since the boundary is a double—layer for the entire system (4.17), (4.18), from the formal proce-
dure it is not clear that the active shielding source term is only localized at thempe#f unless the
characteristic form is considered. To develop a general approach, the formal analysis of AS is provided
for a general hyperbolic 1D system in the next section.

5. AS for 1D hyperbolic system

Let us consider the general linear system of the hyperbolic type and its Fourier image:
ikW + AW = 0, (5.1)

where we assume that
A=3sast (5.2)
and the matrixA = diag{A«} is a diagonal matrix of the real eigenvalues of the maftix
For the vector of the Riemann invariaits= S~W, the upwind approximation can be written in the
following form:
I § s 1 ~
|kYm+ HA+DYm+ HA_AYm = 0, (53)
whereA™ = 2(A +|A[),A™ = 3(A — |A]),|A| = diag{| A}
It can be rewritten as follows:
o Ao Al o
KYm+ ==AYm = ——A2Y, 4
ik¥m + o A¥m = 2 A2Ym, (5.4)

hereASy = Sny1—Sn-1, 42Sn=Snt1—25n+Sn 1.
Having turned back to the original variables, we get the "upwind” scheme for the Fourier images:

A1 1
KW+ 5 AV = o SIAIS AW, (5.5)

Further, we follow the previous section approach. Having obtained the AS source terms for the
Riemann invariants, they can be written in the physical variables. Thus, we first split the AS source term
as follows:

160 _ A4y il — Ay
s'G, _H|;Yﬁ+(|k| —F)IAYT, (5.6)

wherel,” = diag{sign ~ } is a diagonal matrix having nonzero elements equaled to -1 if the appropriate
eigenvalue is negative. We consider two possible values of the nh?trii the auxiliary functionv ("

is defined according to (4.15), the;j = diag{sigml "}, similarly tol,". In the case of a free space,
the optimal solution corresponds to the functif?) not including the contribution of the outcoming

Riemann invariants, hendg = 0.
In the physical variables the source term is given by:

gm _1

—~ . 1 PN
by = pAB W+ (ikl — ZA)B™W,

- - (5.7)

where the projection matrixds™ andB~ are as follows:

— -1 1
B~ =S|, SB" =slsL
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Whereas, in a free space the AS solution is the following:

G- = (ki — %)B*WT. (5.8)

Thus, in 1D case the AS source term can be locally approximated omply. &ormula (5.8) automat-

ically takes into account only incoming invariants. Only derivatives (their approximations) along the
incoming characteristics are included in (5.8) . All incoming Riemann invariants are remained along
the appropriate incoming characteristics unless source terms exist. Therefore, they can be measured at
any point between the boundary, where the AS is implemented, and the nearest source. Though the
entire vectoW is to be measured, it can be represented as a superposition of both incoming and out-
coming Riemann invariants. The latter Riemann invariants do not effect on the AS source terms and
their contribution is automatically filtered by formula (5.8).

In contrast to the Helmholtz equation analysis, the AS is reached on a single—layer without solving
any external problem. It is worth noting that in the case of the second-order-equation analysis the AS
having a compact support includes a subtraction of two measurable values dividgd by

Let us assume that we measure the acoustic field at thejfayermediately outside of the boundary
v~ and the domai. In the 1D example it corresponds to the paimt= 1. The vectors ay~ andy,
can be related each other via theapproximation:

(ikh+AA)Y, =0

or
Y.

- =(A— ikhl)*lA\?ﬂ. (5.9)

This relation does not consistent for the outcoming invariants but they do not effect on our analysis.
Then, having substituted (5.9) in (5.8), we are able to formulate the AS term in the original Fourier
variables as follows: L

G’ = —HAB Wﬁ. (5.10)
In this treatment we perform the measurements at the layand set the AS sources at the layer It
is easy now to obtain the appropriate relation for the original time—dependent variables:

m_ 1o
Gy’ = —LAB"W,.. (5.11)

From the general AS solution (5.7) it follows that in the general case under the assumdicn-of

1 the AS solution is given by
m_1
G, = PR (5.12)
Let us consider a quite general case of a self-conjugated n#atriba particular, the acoustics

equations can be represented via such a matrix. Then,

m2_1 1 e o ) ][2
|6, = s awaw) > (a8, a8-w) = [l (5.13)

Along with the screening of the internal volume from the external field, we are able to consider
screening the external field from the internal field. The consideration, similar to the analysis given
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above, leads us to the following results. Having neglected by the reflection from the boundary of the
internal volume, the AS source term is given by

At ) _ BN ~
Gy = —LaV, = (k+ ALV, Y = (ik+ HA)B*Wﬁ (5.14)

Here, we consider a layer” that is the nearest layer tp" in D (m= —2, in 1D case). Since, in
turn, we take into account only the outcoming invariants, the vectoy$ aindy™ are related via the
(—approximation:

(ikh+AD)Y, =0

or
Yy = (A +ikhl)"*AY;. (5.15)

Then, the source term is formulated via the ve®tbonly at the layery™:

ay __lovay __liong
Gyys = — B AW,. = —AB'W,,. (5.16)

As an example, let us apply the developed general results to the acoustics system of equations (4.1).
In this case, the matrixes are as follows:

)
Ao (1 0N o (-2 12
(0 1)’ (1/2 1/2>
Having seﬁ&l,\y = 0, we obtain:

9, = —1/2(ik+%)§5(1,—1)T (5.17)

This term coincides with the source term (4.13), (4.19) derived via the immediate Riemann—invariant
analysis. R
Using (5.10), the AS source term can be written via the viiue

1~ 1.
9 =Go=—1B AN =R (1,-1)". (5.18)
In the case of the external screening:
1 -+ AVA/ 1s¢ T
gy =01=—{B AN = —%R_z(l, nr. (5.19)

In the physical variables, the AS source terms can be represented in the following general form (see
Nelson & Elliott (1992)):

Pt/C%+ pUy = PGvol, (5.20)
P+ pPx = fyol,
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whereq,o is the volume velocity per a unit volume ariig, is the force per a unit volume (see Nelson
& Elliott (1992)).
From (4.19) and (5.18), one obtain that in the case of screening the dGmain

1_
Qvol = _%Rl ) (521)
1_
fvol = 2h Rl )
whereR™ = p—pc —u. If the internal sources are absent and there is no reflection from the boundaries,
thenR™ =21

It is easy to exclude one of the two variables in (5.20) and derive the equation for, e.g., the pressure:

1
2 Pt + Pxx = Op; (5.22)

where
0 0
Op = Ix fuol — pﬁQvol-
From (5.21), it follows that
gp = 5 (R +CR.). (5.23)
If the internal sources are absent and there is no reflection, then

_2m

%=t (5.24)
For the Fourier images of the pressure we have:
KD+ Pxx = Gp, (5.25)
where b ok
Op = = in\L (5.26)

On the other hand, it is possible to consider the Helmholtz equation for the pressure immediately:
k2P + Pxx = 0. (5.27)

Having approximated it, we obtain the following finite-difference equation:
2o 1 .o s o
k*Pm + 73 (Pmi-1 — 2Pm + Pm-1) = 0. (5.28)
If the aream < 0 is shielded, the main theorem yields the following possible double—layer solution:

5 .25
@éh):%p 1—4Po

z k% Po). (5.29)

This expression includes the subtraction of two measured v@lugand pp and their division byn?.
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In Loncaricet al. (2003), it is shown that without the internal sources the local AS source term at
the pointm = 0 is given by

-1
6 = —po2d-7 110, (5.30)

. 1 2K
do _|Fpm/1—zk2h2zlﬁpo. (5.31)

In the latest equality we assume tlkdit< < 1 that means the mesh is fine enough to resolve the wave
length.

The source termgp, given by (4.19), anaﬁf)h) approximately equal each other. In Loncaeical.
(2003) it is proved that the local source term (5.30) corresponds to the minimal source taramiong
the all possible AS solutions provided by the main theorem.

6. 3D statement

Let us now consider the fully 3D statement of the problem. The system of equations for the Fourier
components can be written in the following form:

3
iKW+ S AW, =0. (6.1)
1R
=

Suppose that system (6.1) is hyperbolic. Then,
Aj= SjAjSTl,

where the matrixes of eigenvalugs = diag{)tk}j have only real diagonal elements.
The generalization of the scheme (5.5) is the following:

i

Unfortunately, in the general case system (6.1) cannot be reduced to a diagonal form. Therefore, the
immediate generalization of the one—layer AS source terms (5.7), (5.8) is not possible. The general
source term (4.9) in the general form is based on the double—layer measuremehte\artheless, one
can derive an approximate local single—layer AS source term.

Let us rewrite system (6.2) in the orthogonal coordinate sys{téh}} related to the boundary of the
domain shielded:

3
iKW + Z Nng =0, (6.3)
K=1
where

5 S g,
A= 2

IIMw
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Assume that the surface of the boundary corresponds te const System (6.3) can be approximated
in the same way as the original system (6.1):

1

where L
A =SA;5"

Having setv‘(M) v = 0 in general solution (3.6), we obtain the double—layer distribution of the AS
source terms on the layeps andy, . Itis important to note that the source terms on the lgyedo
not include the approximations of any derivatives but in the normal direction. On the otheryfayer
the contribution of the approximations alofig and£2 areO(1) while the contribution of the normal
derivative isO(hgl). Thus, under the assumptiontef — 0 only the normal derivative is remained. It
leads us to a quasi 1D case.

Similarly to solution (5.12), under the assumptiorhgf— 0 we have the following AS source term:

m _ 14
thﬁ = h—3A3W . (6.5)
The optimum free—space solution is given by
h-__l1xo-
G, = h3A3B3 W, (6.6)
where
B- _ai- a1
By =S, .S, (6.7)

I/f,a is a diagonal matrix having nonzero elements equaled to —1 if the appropriate eigenvalue of the

matrix B is negative.
In the case of the acoustics equations

P+ pc?0u = o, (6.8)
ut +0p/p = fval,

the matrixAgz is as follows:

0 ny no n3
~ | m O O 0
Az = m 0 0 o | (6.9)
ns 0 O 0
wheren; = %i?(j = 1,2, 3) are the components of the normal to the boundary.
Then, the general AS source term under the assumptikhgof < 1 is given by
pop_ P\
GE)T;, = hgl <PC2Vn7 7nl> 7n27 n3> ) (610)
PP P Jy
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wherev, is the normal component of the velocity. This means

Ovol = h§1Vn|;m (6.11)

bvoI = hglprn-

The projection matri¥B; is represented as follows:

-1 Ny 17 n3
z-_1f m -nmg -n -n
By = 1 11 12 13 7 (6.12)
2 n  —N21  —N2 —N23
N3 —N31  —N32 — N33

wheren;; = nin;.
Then, the optimal free-space AS source vector is given by:

h 1 4
Gf”?)ﬁ =—5hs 1Rﬁc(pc,—n1,—n2,—n3)T, (6.13)

whereR™ = p—”c —Vp. In this case

1, 4,
Qvol = *Ehg 1Rﬁa (6-14)

1
byol = éhglR};pcn.
If both the "friendly” sound and reflection from the shielded area are absent, then we ¢&n-s ‘C).

In this case, the measurement of only one value (either the pressure or normal velocity) is required.

The obtained source term can be approximately used in a multidimensional case as a local 1D AS
solution. In this case, the solution is considered in the direction normal to the boundary of the shielded
domain and includes the normal component of the velocity. The more direction of the external wave
front is close to the normal one the more solution is accurate. A similar case appears in the problem
of non—reflecting boundary conditions when the local characteristic—type boundary conditions are used
(see Tsynkov (1998)). In contrast to the non—reflecting boundary conditions, the local data obtained
from the measurements allows us to reach a local solution either of single—layer or double—layer.

The same kind of AS solution is remained in the case of a broadband spectrum if the problem is
linear. Indeed, the AS solution for Fourier components does not explicitly depend on both the frequency
and phase. Since each frequency additively contributes to the measurement data, from the principle of
superposition it follows that the source based on these data provides the AS.

7. Concluding remarks

The general single—layer solution of AS has been obtained for an arbitrary system of hyperbolic equa-
tions in a finite—difference form. The solution does not require either the knowledge of the Green’s
function or characteristics of the sources and medium. The AS can be realized via a single—layer source
term requiring the measurements only at one layer nearby the domain screened. In the case of the
domain shielded in a free space, the optimal single—layer solution has been obtained. The mutual lo-
cation and influence of the AS source and measurement point has been considered. Single—layer and
double—layer AS solutions have been obtained for a general 3D case.
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