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a b s t r a c t

We formulate and solve a control problem for the field (e.g., time-harmonic sound)
governed by a linear PDE or system on a composite domain in Rn. Namely, we require
that simultaneously and independently on each subdomain the sound generated in its
complement be attenuated to a desired degree. This goal is achieved by adding special
control sources defined only at the interface between the subdomains. We present a
general solution for controls in the continuous and discrete setting.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Active control of sound is a way to attain a desirable alteration of the acoustic field by means of modifying the sources or
adding new sources. This area has been studied for the past four decades, see, e.g., [1–6]; in general, active control of sound
is an inverse source problem [7].
In acoustics, the active control (AC) problem is often identified with active shielding (AS) problem [8], in which a given

subdomain needs to be shielded from the noise generated outside. Shielding can be achieved by introducing the control
sources on the perimeter of the shielded domain. The analysis in the literature is usually limited to considering only external
sources of noise and overall unbounded regions. The use of Calderon’s boundary projections and the method of difference
potentials [9], [10, Chapter 14] allows us to take into account the effect of both internal sources and external boundaries.
Previously, we have obtained a general solution of the AS problem for second order equations in both continuous [11] and
finite-difference formulation [12]. Our approach requires minimum a priori information—only the knowledge of the overall
solution (total acoustic field) on the boundary of the protected region. It does not require any information on either actual
form of the noise sources or properties of the medium. In [13], the technique has been generalized to obtain the continuous
and discrete solution of the problem in the form of surface controls. Consistency of the discrete and continuous solutions has
been shown in [14,15]. The problem of selective shielding in composite regions has been formulated and solved in [16,17]
for the discrete and continuous formulation, respectively. In [18], it has been shown how to take into account the feedback
of active control sources on the input data.
Hereafter, we analyze the composite AC problem, in which the desired extent of cancellation or amplification of sound

on each of the two subdomains can be prescribed. In doing so, the complete shielding of individual subdomains (whether
a given one or both from one another) is attained in the special limit cases. Similarly to the conventional AS, solution of
the new AC problem requires no knowledge of either the sources of noise or the boundary conditions. However, unlike
previously, to attain a predetermined (non-total) degree of cancellation, one additionally needs to know the contribution
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Fig. 1. Schematic.

from one of the two sides to the overall field at the interface. The limit cases of total cancellation (complete shielding) can
still be done based on the knowledge of the overall field only.

2. Continuous formulation of the problem

Consider the following linear boundary value problem (BVP) on the domain D ⊆ Rn:

Lu = f , x ∈ D,
u ∈ ΞD.

(1)

Here, L is a linear differential operator and ΞD is a function space that guarantees the solvability and uniqueness, provided
that the right-hand side f belongs to another appropriate space FD, e.g., FD = D ′D. The quantity u in (1) may be interpreted
as acoustic pressure, in which case L is the Helmholtz operator (see Section 3); u may also be a vector field with pressure
and velocity as components. For simplicity, uwill hereafter be referred to as sound.
We assume that the definition of ΞD includes the boundary conditions on ∂D that may be inherited from physics,

say, sound-soft, sound-hard, or impedance boundary conditions at a finite boundary or Sommerfeld radiation conditions
at infinity.1We also assume that the original physical problem (which is formulated using regular functions rather than
distributions) may only be weakly sensitive to perturbations of the data.
The function u is said to be a generalized solution of BVP (1) if ∀φ(D̄) ∈ C∞0 (D̄) : 〈Lu, φ〉 = 〈f , φ〉. Here, 〈f , φ〉 denotes a

linear continuous functional associated with the given generalized function (distribution) f .
Let us also introduce a domain D+ ⊂ D and its complement D− = D \ D+, where Γ = ∂D+ is sufficiently smooth (note,

Γ ⊂ D−), see Fig. 1. We require that if f ∈ FD, then θD+ f ∈ FD, where θD+ is the indicator equal to 1 on D+ and equal to 0 on
D−. Along with (1), consider a similar BVP:

Lv = f + g, x ∈ D,
v ∈ ΞD.

(2)

The function g , suppg ⊂ D−, is called an active control if the solution of (2) satisfies some predetermined constraints on D+.
For example, v may be required to coincide with the portion of the overall field due only to the sources located inside D+,
which is the complete shielding of D+.
Hereafter, we will assume that solutions of BVPs (1) and (2) are known at the interface Γ either from measurements or

from computations; e.g., acoustic pressure can be measured by microphones.
Let f + def= θD+ f and f −

def
= θD− f so that f = f + + f −, and consider the following two BVPs:

Lu+ = f +, x ∈ D,
u+ ∈ ΞD,

(3)

and

Lu− = f −, x ∈ D,
u− ∈ ΞD.

(4)

From the linearity of the BVPs (1), (3) and (4), it immediately follows that u = u+ + u−, x ∈ D.
Next, we introduce the control function g = g+:

g+ = −θD−L(θD+u). (5)

The distribution L(θD+u) in (5) can be represented as follows [18]:

L(θD+u) = LΓ (u)+ θD+{Lu}, (6)

1 In the case of classical solutions, the definition ofΞD may also include the desired extent of regularity for u.
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where {Lu} denotes the regular part of Lu, and the singular distribution LΓ (u) is fully determined by the Cauchy data of the
function u on the boundary Γ [18] (also see example in Section 3):

TrΓ u =
(
u,
∂u
∂n
, . . . ,

∂k−1u
∂nk−1

)T
Γ

. (7)

In formula (7), k is the order of the operator L and n is the outward normal to the boundary Γ .
From (5) and (6), it is clear that suppg+ = Γ and g+ is fully determined by TrΓ u of (7), which is assumed known. Hence,

we arrive at the following theorem.

Theorem 1. The control g+ of (5) renders complete shielding of D+ from the sound generated in D−. The field due to both the
primary source f and secondary control source g = g+ is given by:

v =

{
u+, if x ∈ D+,
u+ u+, if x ∈ D−.

Proof. Consider

f + g = Lu− L(θD+u)+ θD+L(θD+u) = L(θD−u)+ f
+.

Then, the solution of BVP (2) is given by

v = θD−u+ u
+.

This solution is unique, and clearly, vD+ = u
+

D+ . �

Thus, the domainD+ appears shielded from the sources f −, whereas on the domainD− the overall field gets incremented
by u+ due to the secondary sources g+.
Next, let us introduce the following control functions:

g+ = θD̄+L(θD−u
+) and g− = θD−L(θD+u

−), (8)
as well as their linear combination:

gα(α+, α−) = α+g+ + α−g−. (9)
Since {g+} = 0 and {g−} = 0, we have suppgα(α+, α−) ⊂ Γ , and the following theorem holds.

Theorem 2. The field due to both the primary source f and the control source g = gα of (9) is

v =

{
u+ + (1+ α−)u−, if x ∈ D+,
u− + (1+ α+)u+, if x ∈ D−. (10)

Proof. One can see that

f + α+g+ + α−g− = Lu+ α+θD̄+L(θD−u
+)+ α−θD−L(θD+u

−)

= Lu+ α+L(θD−u
+)+ α−L(θD+u

−)− α+θD−\Γ L(θD−u
+)︸ ︷︷ ︸

=0

−α−θD+ L(θD+u
−)︸ ︷︷ ︸

=0

= Lu+ L(α+θD−u
+
+ α−θD+u

−).

Hence, if g = gα on the right-hand side of (2), then v = u + α+θD−u+ + α−θD+u− and formula (10) holds. Uniqueness
promptly follows from the solvability/uniqueness of the original problem. �

Let us consider some implications of Theorem 2. If we set α+ = α− = 0 in (9), then we introduce no control, and v = u.
The choice α+ = 1, α− = −1 is equivalent to (5) and corresponds to the complete shielding of D+. If α+ = 0 and α− = −1,
then we again obtain a complete shielding of D+, however, in contrast to the previous example, the field v on D− remains
equal to u and thus unaffected by the controls. If α+ = α− = −1, then domains D+ and D− appear completely shielded
from one another; this solution was also obtained in [17]. Clearly, by choosing other values of α+ and α− (in particular,
fractional), we can achieve any desired degree of attenuation (or amplification) of the exterior field on a given subdomain.
If α+ = −1 and α− = 1, then we shield the domain D− \ Γ from the field generated in D+. This case corresponds to the

control source
g− = −θD̄+L(θD−u) = −g+,

where g+ is given by (5). Indeed,
g+ + g− = −L(θD+u)+ θD+L(θD+u)− L(θD−u)+ θD−\Γ L(θD−u) = −f + f = 0.

As has been mentioned, the source term g+ depends only on the Cauchy data (7). The same is obviously true for g−. In
other words, these control sources depend only on the total sound field and its derivatives at the interface Γ . However,
for the general control gα of (9) this is no longer true. The sources g+ and g− of (8) are determined by the fields u+ and
u−, respectively. Hence, in addition to the total field we need to know the contribution from the sources in one of the
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subdomains, either D− or D+. This additional information can be extracted by first applying the controls g+ or g− and then
conducting the second set of measurements at the interface, see [17].

3. Example: The Helmholtz equation

Time-harmonic acoustic field (pressure) in an isotropic homogeneous medium is governed by the Helmholtz equation
with a constant wavenumber µ:

∆u+ µ2u = f ,

which is a particular form of equation Lu = f from (1). Then, the control g+ is given by the linear combination of a single
layer and a double layer source terms at the interface Γ , see [13,18]:

g+ =
∂u
∂n

∣∣∣∣
Γ

δ(Γ )+
∂uΓ δ(Γ )
∂n

.

This control is fully determined by uΓ and ∂u
∂n

∣∣
Γ
. To apply the general control gα of (9), we, in addition, need to know u+Γ and

∂u+
∂n

∣∣∣
Γ
.

4. Discrete formulation of the AC problem

Consider a finite-difference counterpart of problem (1):∑
n∈Nm

amnun = fm, m ∈ M,

uN ∈ ΞN .
(11)

Here,M is the grid for the right-hand side fm; Nm is the stencil associated with every nodem ∈ M; amn,m ∈ M , n ∈ Nm, are
the coefficients of the scheme; N = ∪Nm,m ∈ M , is the grid for the solution un;ΞN is the space of grid functions uN = {un},
n ∈ N , such that the solution of BVP (11) exists and is unique for any right-hand side fM = {fm}, m ∈ M . Inclusion uN ∈ ΞN
of (11) therefore approximates the inclusion u(x) ∈ ΞD of (1).
Let us specify a subsetM+ ⊂ M and define the sets:M− = M \ M+; N+ = ∪Nm, m ∈ M+; and N− = ∪Nm, m ∈ M−.

The grid boundary γ is defined as γ = N+ ∩ N−.
A grid function gm, m ∈ M , is said to be a discrete active control if the solution vn of the BVP∑

n∈Nm

amnvn = fm + gm, m ∈ M,

vn ∈ ΞN ,
(12)

satisfies some predetermined constraints either on N+ or on N− or on the entire N .
Similarly to what has been done in Section 2, we introduce

f +m =
{
fm, ifm ∈ M+,
0, ifm ∈ M−, and f −m =

{
0, ifm ∈ M+,
fm, ifm ∈ M−,

and consider two BVPs formulated for the sound generated insideM+ andM−, respectively:∑
amnu+n = f

+

m , m ∈ M,
u+N ∈ ΞN ,

(13)

and ∑
amnu−n = f

−

m , m ∈ M,
u−N ∈ ΞN .

(14)

For the solutions of BVPs (11), (13), and (14), we obviously have uN = u+N + u
−

N .
Let us consider the following control function [cf. formula (5)]:

gm =
{
0, ifm ∈ M+,
−

∑
amnūn, ifm ∈ M−, where ūn =

{
un, if n ∈ γ ,
0, elsewhere. (15)

Then, the solution vN = {vn}, n ∈ N , of BVP (12) coincides on N+ ⊂ N with the solution of BVP (13), see [12]. Hence, the
grid domain N+ becomes completely shielded from the exterior sound.
In addition, introduce the control functions [cf. formulae (8)]:

g+m (ū
+

N ) =

{∑
amnū+n , ifm ∈ M+,

0, ifm ∈ M−,
where ū+n =

{
u+n , if n ∈ γ ,
0, elsewhere, (16)



Author's personal copy

1850 V.S. Ryaben’kii et al. / Applied Mathematics Letters 22 (2009) 1846–1851

and

g−m (ū
−

N ) =

{
0, ifm ∈ M+,∑
amnū−n , ifm ∈ M−, where ū−n =

{
u−n , if n ∈ γ ,
0, elsewhere, (17)

as well as their linear combination [cf. formula (9)]:

gm(α+, α−) = α+g+m (ū
+

N )+ α
−g−m (ū

−

N ). (18)

Note that to define the control (15) it is sufficient to know only the total field un at the grid boundary γ , whereas to
define the controls (16), (17), and (18) we additionally need to know either u+n or u

−
n on γ . This extra information can be

retrieved by first applying the control (15) and then conducting the second set of measurements on γ , which will produce
vn
∣∣n∈γ = u+n ∣∣n∈γ .

Theorem 3. The field due to both the primary source fm and the control (18) is [cf. formula (10)]

vn =

u
+

n + (1+ α
−)u−n , if n ∈ N+ \ γ ,

u−n + (1+ α
+)u+n , if n ∈ N− \ γ ,

(1+ α+)u+n + (1+ α
−)u−n , if n ∈ γ .

(19)

Proof. Consider the function:

v̂n =

α
−u−n , if n ∈ N+ \ γ ,
α+u+n , if n ∈ N− \ γ ,
α+u+n + α

−u−n , if n ∈ γ ,
(20)

so that v̂n + un = vn, where un solves BVP (11) and vn is given by (19). For v̂n of (20), we have:∑
n∈Nm

amnv̂n =

{
α−
∑
amnu−n + α

+g+m (u
+

N ), ifm ∈ M+,
α+
∑
amnu+n + α

−g−m (u
−

N ), ifm ∈ M−.

As BVP (12) is uniquely solvable, its solution for gm given by (18) coincides with (19). �

Theorem 3 is a discrete counterpart of Theorem 2, and it brings along a very similar set of implications. By choosing
different values of α+ and α−, we can have N+ or N− completely shielded from their respective complements, or we can
have both N+ \ γ and N− \ γ completely shielded from one another, or in general, we can have the exterior sound on each
subdomain attenuated or amplified by a prescribed factor. It is important to note that according to (19), the fields on the
domains N+ \ γ and N− \ γ do not depend on the values of α+ and α−, respectively. Hence, the control (16) affects only
the field on N+, whereas the control (17) may alter the field only on N−. Further details on the discrete setting can be found
in [19].

5. Conclusions

We consider a steady-sate or time-harmonic field governed by a linear PDE or system on a region composed of two
subdomains separated by a common interface. The original sources of the field are located on both subdomains, and on the
interface we introduce additional sources called controls. The controls are designed so that on each subdomain they enable
a desired degree of cancellation (or intensification) of the field due to the sources on the complementary subdomain. The
general solution for controls is obtained for both continuous and discrete formulation.
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