
NUMERICAL INVESTIGATION OF SUPERSONIC VISCOUS 
GAS FLOW OVER LONG BLUNT CONES WITH ALLOWANCE 
FOR EQUILIBRIUM PHYSICOCHEMICAL EFFECTS 
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Supersonic axisymmetric viscous heat-conducting gas flow over long spherically blunted cones is considered over a broad range 
of Reynolds numbers on the basis of the complete system of viscous shock layer equations. An economical numerical method 
based on global iterations is used to solve the viscous shock layer equations. The general influence of the second-approximation 
effects of boundary layer theory and the influence of equilibrium physicochemical processes on the heat loads are determined for 
bodies with a large aspect ratio. 

In order to calculate numerically gas flow over long bodies we will use the complete system of  equations of  a viscous shock 

layer (see, for example, [1]). In the curvilinear coordinate system x, y tied orthogonally to the body, this sysltem contains all 
the terms of  the complete Navier--Stokes equations which contribute to the second approximation of  asymptotic boundary layer 

theory for both the inner and outer expansions. As one of  the boundaries of  the solution domain we will take the detached bow 
shock, whose position is determined in the course of  solving the problem. On the shock wave we impose the generalized 
Rankine--Hugoniot conditions [1]. 

A comparison o f  the numerical solutions o f  the complete Navier--Stokes equations and the viscous shock layer equations, 
which had previously been made only for relatively short bodies (see, for example, [2, 3]), showed that for fairly smooth bodies 
(without a discontinuity in the angle of  inclination of  the generator) the viscous shock layer model gives good accuracy with 
respect to determination of  the values of  the pressure, friction and heat flux on the surface of  the body up to R e o o -  100, i.e., 
even for a perfectly viscous shock layer, when formally the equations are not asymptotically correct. In this case the maximum 

error in determining the aerodynamic and thermal loads on the body is about 1% when Re~ > 103 and about 10% when 

Reoo - 102. Our aim was to investigate the flow over bodies with a large aspect ratio on the basis o f  the viscous shock layer 
equations. 

1. NUMERICAL METHOD OF SOLUTION 

The viscous shock layer equations preserve the elliptical properties of  the problem in subsonic flow regions (see, for 
example, [3, 4]). Moreover,  in the blunt-end zone in order to determine the position of the shock wave at a given point it is 
necessary to take into account the transmission of  information upstream [3], in which the "ellipticity" of  the problem is also 
expressed. 

In order to solve the system of  viscous shock layer equations we will use a method based on global iterations [3, 5]. In 
each global iteration the value of  the tangential component of  the pressure gradient is determined from the relation 

Op (n+l) Opt . Op (n) u 2 
= c t t ~ + ( 1 - a t ) - ~ x ,  O<_a, -~ff Ox <- 

where c3p/Ox is the part of  the pressure gradient which is determined on the basis of  the calculation of  the current (n+ 1)-th 

global iteration, Opg/Ox is the part of  the gradient determined on the basis of  the calculation of  the preceding iteration, u is the 
velocity vector component tangential to the body, and a is the local speed of sound. 

In each global iteration the Canchy problem in x for the viscous shock layer equations is properly posed. In order to 
approximate derivatives of  the type op(n)/Ox the point on the difference grid that stands in front is used. Moreover, in the blunt- 

end zone in each global iteration the position o f  the shock wave is determined on the basis of  the calculation of  the previous 
iteration. 

For calculating the flow over long bodies we used a block-marching realization of  the method proposed in [6]. In this 
approach the entire calculation domain is divided with respect to x into mutually intersecting subdomains (blocks). Starting from 
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the second block, outside the blunt-end zone, the position o f  the shock wave can be determined in the course of  calculating the 

current block. This approach makes possible considerable economies in computer memory and machine time. 
For the numerical solution o f  the system of  equations in each global iteration we used a different scheme with an enhanced 

order of  approximation [5], which was second-order accurate in the longitudinal coordinate and fourth-order accurate in the 
transverse coordinate. Moreover, in the transverse direction we constructed a difference grid adaptive to the solution [7]. In the 

longitudinal direction we used a variable step, which was assigned before solving the problem. 

For calculating the gas flow over a cone with a length equal to 200 bluntness radii R w we used 4--5 blocks with a 120 x 40- 

point total grid. A typical flow time with convergence to 1% over the entire pressure field was 20--30 min on a BI~SM-6 
computer; calculating the first block required 5--7  global iterations and calculating the subsequent blocks 2 - -4  iterations. 

2.  R E S U L T S  O F  T H E  C A L C U L A T I O N S  

Figure 1 shows the distribution of  the local friction coefficient Cf=tzOu/Oy(p`= V2/2) -1  (curve 1), the Stanton number 

St =qw/(p`= V`=H`=) (curve 2), the pressure on the body divided by 0`= V2/2  (curve 3), and the shock wave standoff distance 

divided by R w (curve 4) for the case of  flow over a cone with spherical bluntness and a half-angle 0 = 35 ~ for M`= = 15, 3, = 1.4, 

Re`== 103, Tw=0.05. Here and everywhere in what follows, the basic notation is that usually employed, and the Reynolds 

number Re,= is determined from the free-stream parameters and the blunt-end radius. 

It is interesting to note that in the region of  the pressure "spoon" there is a local maximum of  the friction coefficient. This 
effect is observed for fairly large cone angles ( >  30~ but in all cases the pressure "spoon" leads at least to the formation of  
a friction and heat flux "shelf." 

In addition to modeling a perfect gas flow with constant 3' we investigated the effect o f  equilibrium physieochemical 
processes on the heat flux. For calculating the transport coefficients of  the air we used tables compiled by S. A. Vasil'evskii 
and I. A. Sokolova. Figure 2 gives the heat flux distribution along the descent trajectory o f  a spherically blunt cone in the 

earth's atmosphere (Rw= 1 cm, 0 =  10 ~ Tw=500~ Here and in what follows, z corresponds to the axial coordinate reckoned 
from the vertex o f  the cone and divided by R w. 

Curves a correspond to the heat flux distributions for a polytropic gas (with constant specific heat) and curves b to those 
for chemical-equilibrium air at the same values o f  M`= and Re`=. Curves 1 correspond to an altitude H = 5 0  km and a flight 

velocity V=3 km/sec, curves 2 to H = 5 5  km and V=5 km/sec, and curves 3 to H = 6 0  km and V=7 km/sec. With fall in the 
temperature of  the gas during its motion downstream in the shock layer the corresponding curves approach each other, and at 
the lower point of  the trajectory (curve 1) coincide. The maximum difference in the heat fluxes corresponds to the region of  
the pressure "spoon." At the lower point of  the trajectory the zone of  maximum difference in the heat fluxes is displaced into 
the region of  the junction between the sphere and the cone. From an altitude o f  approximately 45 krn and below the air 
throughout the shock layer can be regarded as a polytropic gas. 

The variation of  the effective specific heat ratio 3' and the temperature in the shock layer for the mid-point of  the trajectory 
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is shown in Fig. 3. Curves 1--7 (a) correspond to z=0 ,  0.6, 1, 2, 3, 9, and 12. On the cold wall "y= 1.4. As was to be 

expected, in the high-temperature region y takes minimum values. For fairly !arge z the gas in the inviscid flow region may 
be regarded as polytropic with 3 '= 1.4. In this region the temperature of  the gas is close to the temperature of  the wall. The 

temperature profiles 1--5 (b) correspond to z =  1.36, 2, 3.9, 12, and 41. 

In Fig. 4 we have plotted the profiles of  the tangential velocity component divided by the free-stream velocity for a cone 

with 0=  10 ~ when M ~  =20,  Reo~ =3" 103, and Tw=0.026. Curves 1--5 correspond to the sections x=cons t  with x=0 .83 ,  1.5, 

3.4, 12, and 100 (in lengths Rw). With increase in x the profiles become more and more full. Outside the boundary layer for 

targe values of  x (of the order of  100R w and more) the flow is almost uniform. 

Since the complete viscous shock layer equations are solved over the entire region of flow between the bow shock and the 
surface of  the body, the second-approximation effects of  boundary layer theory are automatically taken into account. Comparison 

with the classical boundary layer asymptotics, corresponding to Re~--,oo, enabled us to estimate the total contribution of  the 
second-approximation effects. 

In Fig. 5 we have plotted the heat flux distribution along the surface of  a cone with spherical bluntness (0 = 10 ~ M ~ = 20, 

Tw=0.5 ). Curves 1--3 correspond to the values Re~,=3.1.103, 104, and 106. The difference in the curves according to the 

Reynolds number is attributable to the influence of  second-approximation effects. The maximum difference corresponds to the 

region of  the pressure "spoon." On the cold wall (Tw=0.025) the difference between the analogous curves is much less and 
amounts to 15--20%. It should be noted that although the vortex interaction effect has a strong influence on the heat flux [6], 
the total contribution o f  the second-approximation effects is much lower. 

Figure 6 shows the pressure distribution along the surface o f  a cone with 0 = 15 ~ traveling at H = 3 0  km and V= 15 km/sec 

when Reoo =6" 105. The points represent the data of  [9] corresponding to ideal gas flow, The broken curve represents calculations 
made by a marching method [10] with regularization of  the Cauchy problem. In the case under consideration this approach 
introduces a significant error over a distance of  up to two bluntness radii, mainly where there is an extensive subsonic region. 
Further downstream the second global iteration introduces an unimportant change into the marching calculations and is more 
necessary for checking the accuracy of  the latter. The pressure values calculated from the viscous shock layer model are in good 
agreement with the values for ideal gas flow. 

The author wishes to thank S. A. Vasil'evskii and I. A. Sokolova for providing the tables used to calculal:e the transport 
coefficients and G. A. Tirskii for his constant interest and useful discussions. 
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