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Abstract

In near-wall turbulence modeling it is required to resolve a thin layer nearby the

solid boundary, which is characterized by high gradients of the solution. An accurate

enough resolution of such a layer can take most computational time. The situation

even becomes worse for unsteady problems. To avoid time-consuming computations,

a new approach is developed, which is based on a non-overlapping domain decompo-

sition. The boundary condition of Robin type at the interface boundary is achieved

via transfer of the boundary condition from the wall. For the first time interface

boundary conditions of Robin type are derived for a model nonstationary equation

which simulates the key terms of the unsteady boundary layer equations. In the

case of stationary solutions the approach is automatically reduced to the technique

earlier developed for the steady problems. The considered test cases demonstrate

that unsteady effects can be significant for near-wall domain decomposition. In par-

ticular, they can be important in the case of the wall-function-based approach.
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1 Introduction

In near-wall turbulence modeling, an accurate enough resolution of the flow

structure nearby the wall requires most computational time. This is due to

the fact that the turbulent boundary layer has a very thin laminar sublayer

nearby the wall caused by both the no-slip effect for the velocity and wall-

blocking effect. Away from the wall the flow rapidly becomes turbulent that is

described by high gradients in the solution. Even for stationary problems the

resolution of the laminar sublayer takes up to 90% of computational time [1]

because of an unavoidable mesh refinement. In industrial applications, it might

be prohibitively expensive to use high resolution turbulence models especially

in design where optimization is achieved via the solution of multiple direct

problems.

In RANS modeling, the near-wall resolution is often significantly simplified

via the replacement of the laminar sublayer by special Dirichlet boundary

conditions called the wall functions. The wall-function-based approach can

be interpreted as a domain decomposition in which the near-wall region is

either skipped or limited by the nearest to the wall node. Because sublayer

significantly determines the flow structure, this approach inevitably damages

the accuracy. However, it might be efficient for some classes of problems due

Email address: s.utyuzhnikov@manchester.ac.uk (S. V. Utyuzhnikov).
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to a significant reduction of computational time. In the original form, the

wall functions were based on the thin-plate analytical solution [3]. The wall-

function-based approach is still very popular within industrial community be-

cause of its efficiency and reasonable accuracy. Yet, in most cases, the wall

functions are semi-empirical and have some free parameters to be selected for

special classes of problems. Their choice for new problems does not give much

confidence in the obtained results unless additional calculations are carried

out. The solution can also appear essentially mesh dependent, for example,

if the first node is situated inside the viscous sublayer. Nowadays, there have

been developed more universal wall functions which are determined by the

solution in the core flow such as the scalable wall functions [4], adaptive wall

functions [6], numerical and analytical wall functions [7]. Despite their advan-

tages, all these boundary conditions are locally one-dimensional. Therefore,

their application to complex geometries is always problematic. For example

in the case of a concave corner, there is formally the conflict of two normals

at some near-wall nodes. In fact, this means the boundary condition must be

nonlocal [24]. In addition, all wall functions have been derived only for steady

RANS equations.

Nowadays, unsteady turbulent flows are usually simulated via either unsteady

RANS equations (URANS) or large eddy simulation (LES). As the power

of modern computers remarkably growths, the LES approach becomes more

and more popular even in application to industrial problems. However, the

application of LES to near-wall turbulent flows is very limited because the size

of vortexes to be resolved vanishes to the wall. This requires the generation of

a fine mesh and extremely increases computational time. As estimated in [2],

the cost of a wall-resolved LES is proportional to Re2.4, where Re is the typical

3
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Reynolds number of the problem. To overcome this problem, hybrid RANS-

LES models are often used [8], [9], [10]. The drawback of this approaches is

the necessity of coupling two different governing equations.

One can distinguish weak and strong RANS-LES coupling [11], [19]. In the

weak coupling, a single set of governing equations is derived to be applicable

over entire computational region. In this strategy, RANS and LES models

are blended in one way or another. This results in so-called global RANS-

LES approaches. As indicated in [11], the global models lead to gray-areas

which correspond to the region of blending. In such areas, the model is neither

RANS nor LES. Conversely, this problem does not exist in the strong coupling

with the use of RANS and LES in different regions (zones). In turn, the key

problem of the zonal approach is related to RANS-LES interface. In the zonal

strategy, the RANS models are usually represented by simplified wall models

[13]. The wall model should provide to LES a set of approximate boundary

conditions [14]. Physically, this means the wall model bring information about

wall stresses to the interface boundary.

Similar to RANS, the wall-function based approach, first used [15], can be

interpreted as a simplified zonal approach. There have been several attempts

to modify the wall-function approach (see, e.g., [11], [16]). However, as indi-

cated in [18], the wall-function strategy can fail in application to essentially

unsteady flows. Thus, the use of wall functions with LES and URANS is still

questionable. It seems a more promising strategy is based on the use of the

turbulent boundary-layer equations [12], [14], [19], [17]. In this approach, ap-

proximate interface boundary conditions (IBC) are specified at some height

above the physical location of the wall. These boundary conditions are of

Dirichlet type and obtained via solution of thin-boundary-layer equations at

4
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each time step. As noted in [14], the implementation of such boundary condi-

tions is not straightforward and can cause some non-physical effects such as

the log-layer mismatch [19]. Therefore, this issue requires a careful elaboration.

In paper [20], the algorithm of transferring the boundary condition from the

wall to an interface boundary was suggested. In particular, the near-wall in-

terface boundary can correspond to the first node. In the case of RANS, the

transfer of the boundary conditions requires an approximation of the turbu-

lent viscosity coefficient [21]. It appears that for the locally one-dimensional

transfer, the obtained boundary conditions are of Robin type. Therefore, in

paper [22] they are called the Robin-type wall functions whereas they repre-

sent IBC. It is worth noting here that the conventional wall-function approach

can be interpreted as an attempt to replace the physical no-slip boundary con-

dition (in application to the velocity) by an approximate Dirichlet boundary

condition. With this respect the title of Robin-type wall functions used in [22]

for the IBCs can sound misleading.

The IBCs proved to be mesh independent and do not contain free parameters.

The test cases, which were considered in [21] and [22], demonstrated that the

solution is not very sensitive to the position of the interface boundary while the

achieved accuracy being reasonably good. In [22], it was shown via the theory

of Calderón-Ryaben’kii’s potentials [23] that the IBCs [21] can be extended to

the multi-dimensional case and represented by nonlocal boundary conditions.

This approach was realized in [24] for a two-dimensional model equation.

The technique of the boundary condition transfer cannot be immediately ap-

plied to the unsteady problem because of non-stationary terms. Therefore, this

technique should be extended to unsteady problems and elaborated before its

5
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practical application. In the current paper, for the first time the technique

of the boundary condition transfer [20] is developed and applied for unsteady

problems. It is realized for an unsteady one-dimensional model equation, which

simulates key features of the boundary-layer-type equations. The considered

test cases demonstrate that the contribution of nonstationary terms cannot

be neglected. In Section 2, the model equation suggested in paper [20] is ex-

tended to an unsteady formulation. The technique of non-overlapping domain

decomposition is developed for the model equation in Section 3. On the basis

of this approach, IBCs are derived in Section 4. Then, they are applied for

some test cases in Section 5. In this Section, it is demonstrated that the un-

steady effects can be significant for the accuracy of the approach. This result

explains poor performance of the wall-function approach for unsteady flows

obtained in [18]. As indicated in the Conclusion, the obtained result can be

important for turbulence modeling in the case of essentially unsteady flows.

2 Model Equation

Consider the following one-dimensional model equation:

Ut = LyU + Rh, (1)

defined on an interval Ω := [0, ye] with a Dirichlet boundary condition on the

right-hand side:

lyU (0) = l0, (2)

U (ye) = l1.

6
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Here, Ly is a linear differential operator of second order, which is supposed

to be negative definite in the case of homogeneous boundary conditions; ly is

a linear differential operator of first order. In particular, ly is equivalent to

the unit for a Dirichlet boundary condition and derivative d
dy

for a Neumann

boundary condition.

Equation (1) represents the general form of the boundary-layer-type equation.

The right-hand side Rh is an appropriate source term which can simulate, e.g.,

the pressure gradient and any unsteady driving force in the momentum equa-

tion. Overall, equation (1) can be interpreted as a nonstationary generalization

of the model equation suggested in [20].

In further consideration we assume that

Lyu ≡ vuy + (µuy)y, (3)

Rh = c0 + f,

where v(y) ≡ c1y
β, c1, β > 0 are positive constants, c0 is a constant, f is an

unsteady driving force, µ = µ(y) is a function which simulates the effective

viscosity coefficient:

µ = (1− exp(−y/ǫ) + ǫ0)/Re,

Re, ǫ, ǫ0 are constant such that Re >> 1, ǫ << 1, ǫ0 << 1.

Consider on interval (0, δ) : 0 < δ < ye the space of functions that are sup-

posed to be smooth enough and satisfy the homogeneous boundary conditions.

Then, operator (3) proves to be negative definite. Indeed:

(Lyu, u) = −1

2
(u2, v′)− (µuy, uy) ≤ 0.

Here, (·, ·) is an inner product: (a, b) =
∫ δ
0 abdy.

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

On the other hand, equation (1) can be rewritten as follows:

ρ′Ut = L′
yU + ρ′Rh. (4)

where

L′
yu ≡ (µρ′uy)y,

and

ρ′ = exp(
∫ y

0

v

µ
dy′).

One can prove, see e.g. [25], that the operator L′
y has the full system of eigen-

functions which are orthogonal with the weight of ρ′.

3 Non-overlapping Domain Decomposition

Along with the domain Ω, let us introduce domain Ω− : Ω− := [0, δ], 0 <

δ < ye. Then, the domain Ω is split into two subdomains Ω− and Ω+, where

Ω+ := [δ, ye].

To realize a nonoverlapping domain decomposition, we introduce two auxiliary

boundary value problems (BVPs) formulated in the domain Ω−. They are

represented by

BVP 1:

LyV0 + c0 = 0, (5)

lyV0(0) = 0,

V0(δ) = 0,

and BVP 2:

8
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LyV = 0, (6)

lyV (0) = 0,

V (δ) = 1.

In addition, we consider two auxiliary initial BVPs (IBVPs), which are for-

mulated as follows.

IBVP 1:

W0|t = LyW0, (7)

lyW0(0, t) = 0,

W0(δ, t) = 0,

W0(y, 0) = w0(y),

where w0(y) = U(y, 0)− V0(y)− V (y)U(δ, 0),

and IBVP 2:

Wt = LyW − dUδ

dt
V, (8)

lyW (0, t) = 0,

W (δ, t) = 0,

W (0, y) = 0.

Then, the solution in the inner domain Ω− is represented by

U = V0 + V Uδ + W + W0,

where Uδ = U(δ, t).

9
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In the domain Ω−, there is the system of eigenfunctions Ψp of the operator

L′
y:

L′
yΨp = −λpρ

′Ψp, p = 1, 2, ...,

which is full and orthogonal: (Ψm, Ψn)ρ′ ≡ ∫ δ
0 ρ′ΨmΨndy = δmn, where m, n =

1, ... ; δmn is the Kronecker symbol equal to 1 if m = n and 0, otherwise; λp,

a p-th eigenvalue, which is real and positive.

Then, the solution to IBVP (7) is given by

W0 =
∞∑

1

Ck(t)Ψk.

Here, see e.g. [25]:

Cp = ap exp(−λkt), p = 1, 2, ...

and

ap = (W0, Ψp)ρ′ ≡
∫ δ

0
ρ′W0Ψpdy, p = 1, 2, ...

Next, the solution to IBVP (8) reads

W =
∞∑

1

ĈpΨp,

where

Ĉp = −(V, Ψp)ρ′

∫ t

0
exp(−λp(t− τ))

dUδ

dτ
(τ)dτ =

− (V, Ψp)ρ′ [Uδ − Uδ(0) exp(−λpt)− λp exp(−λpt)
∫ t

0
exp(λpτ)Uδ(τ)dτ ], p = 1, 2, ...

Then,

W = −UδW +
∞∑

1

ΦpΨp,

where

W =
∞∑

1

CkΨk,

10
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Φp = (V, Ψp)ρ′(Uδ(0) exp(−λpt) + λp exp(−λpt)
∫ t

0
exp(λpτ)Uδ(τ)dτ), p = 1, 2, ...

and

Cp = (V, Ψp)ρ′.

Thus, the entire solution in the inner domain is given by

U = V0 + UδV +
∞∑

1

CkΨk − Uδ

∞∑

1

CkΨk +
∞∑

1

ΦkΨk

or

U = V0 + UδV +
∞∑

1

(Ck + Φk)Ψk, (9)

where

V = V −
∞∑

1

CkΨk.

This solution cannot be obtained until Uδ is known. However, as shown in the

next Section, one can find the IBC without the solution in the outer domain

Ω+.

4 Unsteady Interface Boundary Condition

Having differentiated equation (9) at y = δ, we arrive at the IBC, which is

represented by a Robin boundary condition:

U ′ = V ′
0 + V

′
U +

∞∑

1

(Ck + Φk)Ψ
′
k. (10)

Here and further, the prime denotes differentiation. This equation represents

a boundary condition for function U to be used in the outer region. It is clear

that the third term on the right-hand side, which is given by the sum, is

only relevant to the unsteady effects. Without the third term, the boundary

11
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condition (10) coincides with the steady IBC obtained in [20]:

U ′ = V ′
0 + V

′
U. (11)

Thus, instead of the original IBVP in the domain Ω, we can first solve the

IBVP in the domain Ω+ with the IBC set at y = δ. Then, if required, we can

obtain the solution in the domain Ω− represented by equation (9).

The entire algorithm consists of the following steps.

10. Solution of the spectral problem.

One possible algorithm to tackle this problem is as follows.

It starts from an initial approximation u(0) satisfying the homogeneous bound-

ary conditions. At an n-th iteration

λ(n) =
1

2
(u(n)2, v′) + (µu(n)

y , u(n)
y ).

Then, the next prediction is obtained from the solution of equation

Lyu
(n+1) = −λ(n)u(n+1)

with homogeneous boundary conditions.

As soon as the iterative process converges, we obtain the first eigenfunction

Ψ(1) and eigenvalue λ(1). Next, we consider the space orthogonal to the eigen-

function to find out the next eigenfunction. The algorithm is then repeated.

Each time we consider the subspace orthogonal to the eigenfunctions have

been obtained.

20 Next, we calculate the basis functions V0 and V from BVPs (5) and (6).

12
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30. The IBC is calculated from (10).

40. The BVP in the outer domain is solved.

50. The solution in the inner domain is obtained if required.

Now, let us consider the effect of unsteady terms in the IBC (10) for a number

of test cases.

5 Test Cases

The test cases were considered for the following input parameters for equation

(1): c0 = 1, c1 = 1, β = 2, Re = 102, ǫ = 0.03, ǫ0 = 0.01, while the interface

boundary was set at δ = 0.1. The appropriate viscosity profile is shown in

Figure 1.

The boundary conditions introduced in (2) were as follows:

U(0, t) = 0, U(1, t) = 1.

The initial profile was set to be linear:

U(y, 0) = y.

The boundary condition was transferred from the left-hand side boundary

y = 0 to the interface boundary y = δ. The effect of nonstationary terms

in the IBC (10) was analyzed via comparison against the steady IBC (11).

In the case of unsteady IBC, different number of Fourier harmonics N was

considered.

13
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In the next figures, the solutions are represented both in the inner and outer

domains regarding the stationary IBC (SIBC) and nonstationary IBC (NIBC).

In the first series of test cases the driving force is not taken into account.

In the next three figures, the profiles are shown for t = 1. In Figure 2, the

solid line represents the single-block benchmark solution; the dashed-solid line

corresponds to the composite solution with N = 1. For the comparison, the

composite solution with steady IBC (N = 0) is given by the dashed-dotted-

solid line. One can see a significant error in the case of the steady IBC while

the unsteady IBC gives a reasonably good prediction. This prediction can be

improved if we increase the number of Fourier harmonics to N = 2 as shown

in Figure 3. Starting from N = 3, the composite solution graphically coincides

with the benchmark solution.

By t = 10, the solution becomes stationary. As shown in Figure 4, the com-

posite solution with the steady IBC coincides with the benchmark solution.

In the case of a highly oscillatory driving force the difference between the

steady and unsteady IBCs is significantly more essential. Consider the follow-

ing driving force

f = σ(1− exp(−αy)) sin(ωy) sin(ωt)

with σ = 2× 103, ω = 9.42× 102.

The driving force is not taken into account in the inner domain. This is similar

to LES approach combined with RANS or wall functions [8]. The neglect of

the driving force can make an essential effect on the solution especially in

the case of the steady IBC. In Figure 5, the solid line corresponds to the

single block solution. One can see that the solution significantly oscillates
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around the unperturbed solution. In the case of the steady IBC, the error

is significantly more than that in the unperturbed case. The unsteady IBC

performs much better even with N = 1. However, the error is also more

significant in comparison to the unperturbed case (see Figure 2). The increase

of N to three allows us to improve the accuracy as shown in Figure 6.

In all cases, there is a sharp drop of the solution nearby the interface boundary

because the contribution of the driving force is not taken into account in the

boundary conditions. The behavior of the solution reminds the well-known

Gibbs effect or a ringing artifact in signal processing. At t = 10, this effect is

not essential as the mean flow is steady. As shown in Figure 7, the steady and

unsteady IBCs give the same solution.

Finally, it is worth noting a similar effect occurs in the zonal approach RANS-

LES approach where RANS does not spark turbulence in LES [11]. To over-

come this problem, one can consider adding synthesized turbulent fluctuations

[8] to the IBC for triggering the LES equations to resolve turbulence in the

outer domain. However, this effect cannot be represented by the current linear

model.

6 Conclusions

The technique of the boundary condition transfer has been extended to un-

steady problems. According to this approach, a non-overlapping domain de-

composition is realized. In this way, the inner domain with high gradients can

be separated from the outer domain. At the interface boundary, the boundary

conditions can be obtained as the result of the transfer of the boundary con-
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dition from the real boundary to an interface one. The boundary conditions

depend on neither the solution in the outer domain nor the boundary condi-

tions at the external boundary. Thus, the outer domain can be calculated for

a different right-hand side and boundary conditions with the same IBC.

The test cases demonstrate that the transfer of the boundary condition that

does not take into account unsteady effects can lead to a significant error. This

result is very important in application to turbulence modeling based on the

use of wall functions that are always derived in a stationary formulation.

In the future work the suggested approach will be applied to the URANS

equations to simulate essentially unsteady flows. It seems the technique also

has a potential to be used in LES to avoid time-consuming near-wall compu-

tations. However, in the latter case they should be significantly elaborated yet

to overcome the non-physical effects that intrinsic to near-wall layer models.
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Fig. 1. Viscosity profile: Re = 100.
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Fig. 2. Profile at t = 1. Solid line is single block solution; dashed and solid line

corresponds to N = 1; dashed-dotted and solid line, N = 0.
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Fig. 3. Profile at t = 1. Solid line is single block solution; dashed and solid line

corresponds to N = 2; dashed-dotted and solid line, N = 0.
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Fig. 4. Profile at t = 10. Solid line is single block solution; dashed-dotted and solid

line corresponds to the steady IBC.
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Fig. 5. Profile at t = 1 with an oscillatory driving force. Solid line is single block

solution; dashed-dotted and solid line corresponds to the steady IBC; dashed and

solid line corresponds to N = 1;
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Fig. 6. Profile at t = 1 with an oscillatory driving force. Solid line is single block

solution; dashed-dotted and solid line corresponds to the steady IBC; dashed and

solid line corresponds to N = 3;
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Fig. 7. Profile at t = 10 with an oscillatory driving force. Solid line is single block

solution; dashed-dotted and solid line corresponds to the steady IBC.
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