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In the active sound control problem a bounded domain is protected from noise generated outside via 

implementation of secondary sound sources on the perimeter. In the current paper we consider a quite 

general formulation in which sound sources are allowed to exist in the region to be shielded. The sound 

generated by the interior sources is considered as desired. It is required to remain it unaffected by the 

control in the protected area. This task proves to be much more complicated than the standard problem 

of active sound control because of the reverse effect of the controls on the input data. A novel practical 

algorithm is proposed that can be used for a real-time control. It accepts a preliminary tuning of the 

control system. In the algorithm the only input information eventually needed is the total acoustic field 

near the perimeter of the region to be shielded. It includes the contribution from both primary and 

secondary sources. In the algorithm the noise component to be attenuated is automatically extracted 

from the total acoustic field. The control system can potentially operate in a real-time regime since it 

only requires a consequent solution of a quadratic programming problem. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The active sound control (ASC) proved to be a very efficient

pproach to attenuate a low frequency noise. This approach has

een intensively developed for the last fifty years. It provides an

coustic protection of a region from noise generated outside. The

oise attenuation is realized via implementation of additional (sec-

ndary) sources on the perimeter of the region to be shielded.

he approach is based on the use of Huygens’ principle. As a re-

ult, secondary sources can be implemented along the perimeter

o generate anti-noise. The required input information on the in-

oming noise can be immediately gained from the measurements.

n case no desired acoustic field is presumed in the protected area,

here are two principal approaches to the ASC: feed-back and feed-

orward controls (see, e.g. [8,9] ). The operation of the feed-back

ystem is based on the minimization of the sound intensity at

 set of sensors situated in the protected region. A common ap-

roach uses the filtered-x least mean square (FxLMS) algorithm

9] to minimize the level of noise. The feed-forward system op-

rates in a predetermined way that depends on the acoustic field

easured before the controls [10] . Practically the ASC is applica-
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le to the attenuation of low-frequency noise because of space and

ime limitations on the control system. Thus, the ASC can be an ef-

ective supplement to the passive control that is basically efficient

n application to mid- and high-frequency noise (basically, above

00 Hz). Currently most applications are related to noise attenu-

tion in ventilation systems, headphones and propeller driven air-

rafts. It is to be noted most of modern ASC systems are adaptive

o small changes in the system to be controlled [9] . 

The problem of ASC becomes much more complicated if interior

ound sources are present. In particular, the feed-back approach

ecomes unapplicable since it is impossible to immediately distin-

uish the noise component to be minimized from the total field.

here is an additional challenge if it is required to retain the in-

erior (desired) sound unaffected by the controls. Apparently, for

he first time this problem was formulated by Fedoryuk in [2] . Af-

erwards it has been considered in a number of publications for

ime-harmonic waves (see, e.g., [1,11,12,18] ). The problem formula-

ion was extended to composite regions in [13,14,20] . In [19] the

onlinear problem of ASC was tackled for the first time with the

se of nonlinear potentials. The unsteady ASC problem was consid-

red in [3,15–17] . The potential-based approach to ASC developed

n these papers was realized in experiments [6,21–23] . In all these

apers a local control is used. This means each control source can

perate independently from the others on the basis of the local

eld from all primary desired and undesired sound sources. In fact
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Fig. 1. Domain sketch. 
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this is a strong assumption since the field generated by the pri-

mary sources cannot be immediately measured. As can be shown,

if the interior sound exists, the local control inevitably must affect

the input data [16] . Such a problem arises with noise attenuation

in the cabin of a car or aircraft as well as with noise reduction in

a room having an open window. Technically, this problem can be

partially overcome with the use of directional measurements. This

approach has been experimentally realized with a different level of

success in [24–27] . A principally different approach is suggested in

[28,29] . It requires a local solution of the wave equation across the

boundary of the protected region with the controls. The boundary

conditions for the wave equation are supposed to be taken from

the measurements. The ASC problem is entirely formulated and

considered in a discrete space. 

In [5,7] , nonlocal controls were derived in the frequency and

time domains, respectively. In the approach the input data are sup-

posed to be measured on the external side of the surface with the

controls. The contribution of the desired field and controls is re-

moved from the total field via the calculation of surface potentials

which have a projection property. Thus, the control becomes non-

local since it is based on the total field over the entire closed sur-

face. This field is used as the density for the surface potentials. In

the current paper we propose a practical algorithm to realize the

control proposed in [5,7] . It is shown that to calculate the surface

potentials the knowledge of Green’s function is not necessary. In-

stead, a preliminary tuning of the control system can be used. 

The rest of the paper is organized as follows. In the next section

a mathematical formulation of the problem is given. The solution

of the problem is based on the use of surface potentials, and in

Section 3 a brief introduction to the generalized Caderón poten-

tials is provided. The key property of the potentials is their projec-

tion property that is used for the ASC as described in Section 4 . It

is shown that the projection-based control is capable of retaining

the interior sound field unaffected. Moreover, the approach can be

applicable if only the total field from both primary and secondary

sources is available nearby the perimeter of the region to be pro-

tected. A practical approach presumes the use of discrete sets of

both sensors and controls. Such an algorithm is first described in

Section 5 in the frequency domain. Then, in the next section, it is

extended to an unsteady formulation. 

2. Problem formulation 

We suppose that some bounded region is acoustically protected

from the noise generated outside. This means ideally there is no

noise inside the protected region as the ASC operates. In addition,

we allow a desired sound to be generated inside the protected re-

gion. It is required that the desired sound retains inside the pro-

tected region without changes. The boundary of the protected re-

gion is supposed to be acoustically transparent. The only way to

tackle this problem is to distribute secondary acoustic sources out-

side the protected region. Practically the secondary sources should

be situated on the boundary of the domain to be shielded in such

a way that the total field satisfies the requirements formulated

above. 

Next, consider a mathematical formulation of the problem. For

this purpose, introduce domain D : D ⊆ R 

3 and a bounded sub-

domain D 

+ : D 

+ ⊂ D . We suppose that the boundaries of domains

D and D 

+ are the Lipschitz, and they are noted by �0 and �, re-

spectively. 

Assume that sound field U is described by the following

boundary-value problem (BVP) with homogeneous boundary con-

ditions: 

LU = f, (1)
 V  
 ∈ �D . (2)

ere, the operator L is a linear differential operator. It can cor-

espond to the linearized Euler equations (LEE) or the Helmholtz

quation. �D is some functional linear space such that the inclu-

ion (2) implicitly implies the boundary and initial (if needed) con-

itions. 

To consider the LEE, introduce a first-order operator by 

 f 
de f = A 

0 ∂ 

∂t 
+ 

3 ∑ 

1 

A 

i ∂ 

∂y i 
, (3)

here 
{

y i 
}

(i = 1 , 2 , 3) is the Cartesian coordinate system;

 

k , (k = 0 , . . . , 3) are 4 × 4 matrices: A 

k = A 

k ( y ) ∈ C 1 ( D ) . In the

ase of the unsteady formulation, we presume homogeneous ini-

ial conditions for the case of simplicity. 

We also consider a second-order operator to analyze the

elmholtz equation: 

 s 
de f = −∇ (p∇ ) − q, (4)

here p ∈ C 1 ( D ) , q ∈ C( D ) and p > 0. 

In the further analysis, the solution of BVP (1) and (2) is con-

idered in a weak sense. Thus, a function U is a solution of

VP (1) and (2) if 〈 LU, �〉 = 〈 f, �〉 for any test function �( D 

0 
) ∈

 

∞ 

0 
( D 

0 
) . Here, 〈 f , �〉 denotes a linear continuous functional associ-

ted with a given generalized function f . 

It is supposed that the acoustic sources are distributed both in

 

+ and outside D 

+ (see Fig. 1 ): 

f = f + + f −, 

upp f + ⊂ D 

+ , 

upp f − ⊂ D 

− de f = D \ D 

+ . (5)

Presume that we are going to protect region D 

+ from noise

enerated outside D 

+ , in D 

−. Thus, f + are interpreted as desired

ources, while f − generating noise. 

The ASC problem can be formulated as an inverse source prob-

em. It is required to find controls G 0 such as supp G 0 ⊂� and the

olution of BVP: 

V = f + G 0 , 

 ∈ �D (6)
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n D 

+ coincides with the desired sound U 

+ . Thus, we require 

 D + = V D + . 

Here and further, U D + means the restriction of U to D 

+ . 
Since the entire problem is linear, the desired field in D is de-

cribed by the following BVP 

U 

+ = f + , 

 

+ ∈ �D . (7) 

A key problem in the formulation is related to the input data.

or a practical purposes, the input data are supposed to be avail-

ble from immediate measurements (or calculations) in a vicinity

f the boundary �. 

The general solution to the ASC problem, formulated above, is

ased on the theory of surface potentials. A brief introduction to

his theory is given in the next section. 

. Calderón projectors 

The solution to ASC problem can be realized via the Calderón

rojectors in the form first introduced by Ryaben’kii [1] for regular

unctions. This form makes the Calderón projectors more suitable

or practical usage, in particular for computations. 

Following [1] , see also [5] , consider an operator P D + : �D + →
D + , where �D + = { V D + | V ∈ �D } , as follows: 

 D + V D + 
de f = L −1 

D + (θ ( D 

−) LV ) , (8) 

here L −1 
D + g 

de f = L −1 g | D + , θ ( D 

−) is the characteristic function of D 

−. 

One can show (see [1,3,5] ) that in the case of the Poisson and

elmholtz equations potential (8) can be reduced to the classical

ingle- and double-layer potentials formulated via Green’s func-

ion. 

One can prove that the potential P D + V D + is fully determined by

he Cauchy data [1,5] . 

Next, introduce the trace operator Tr � : H 

s (D 

+ ) → H 

s −1 / 2 (�) : 

r �U D + 
de f = lim 

ε→ 0 
Tr �+ 

ε
U D + , (9) 

here 

r �+ 
ε
U D + 

de f = U D + ( x ) , x ∈ �+ 
ε . 

Here, �+ 
ε are smooth manifolds parallel to � [4] : �+ 

ε ⊂
 

+ , �+ 
ε → � if ε → 0 . 

Then, the Cauchy data Tr �V D + are given by 

r �V D + = 

{
V �, if L := L f , 

(V, ∂V 
∂ n 

) T �, if L := L s . 
(10) 

ere n is the outward normal to the boundary �. 

As shown in [3,5] , 

 D + �ξ� = −L −1 
D + ( A �ζ (ξ�) ) , (11) 

epresents a surface potential with density ξ� = Tr �V D + if 

 � = 

{
A n 

de f = 

∑ 3 
1 A i n 

i , if L := L f , 
−p �(1 , 1) , if L := L s , 

nd 

(ξ�) = 

{
ξ�δ(�) , if L := L f , 

(ξ (1) 
�

∂ 
∂ n 

δ(�) , ξ (2) 
�

δ(�)) T if L := L s , 

here ξ� = (ξ (1) 
�

, ξ (2) 
�

) T , δ( �) is the surface delta–function associ-

ted with �. 

One can show (see, e.g. [5] ), that in application to the

elmholtz equation the potential (11) can be reduced to the clas-

ical single- and double-layer potentials by setting either ξ� =
(0 , 1) T or ξ = (1 , 0) T , respectively. 
�
In the general case of L s , the potential P D + ξ� is represented by

 linear combination of single- and double-layer potentials: 

 D + �ξ� = L −1 
D + 

(
ξ (2) 
�

δ(�) + 

∂ 

∂ n 

(ξ (1) 
�

δ(�)) 

)
. (12) 

For our further analysis, it is very important that the potentials

8) are projectors: 

 D + �Tr �(L −1 
D + f 

+ ) = 0 D + , (13)

nd 

 D + �Tr �(L −1 
D + f 

−) = L −1 
D + f 

−. (14)

The solution to the ASC problem is based on the property of

rojection and given in the next section. 

. Active sound control 

.1. Active sound control without a reverse effect 

Next, we decompose the total acoustic field into desired sound

 

+ and noise U 

−: 

 = U 

+ + U 

−. 

It is clear that 

 

−
D + = L −1 

D + f 
−. 

Then, from the property of projection it follows that 

 D + �Tr �U D + = U 

−
D + . (15)

Thus, the potential operates as a filter to subtract the noise

omponent from the total field. Then, to cancel the noise, it is re-

uired to generate the field that is equal to U 

− with an opposite

oise or ”anti-noise” [31] . From the Huygens principle it is suffi-

ient to generate anti-noise in a vicinity of the boundary �. 

The required result can be achieved (see, e.g., [3] ) if the sec-

ndary source G 0 is distributed on boundary �: 

 0 = A �ζ ( Tr �U) . (16) 

In more detail, in the case of the first order operator L f the con-

rol (16) is given by 

 0 = A n U �δ(�)) , (17) 

hilst with the second order operator L s it is represented by 

 0 = 

∂ p �
∂ n 

δ(�) + 

∂ 

∂ n 

(p �δ(�)) , (18) 

here n is the outward normal to �. 

.1.1. Linearized Euler equations 

Next, consider an application of the control (17) to the LEE: 

1 

ρ0 c 
2 
0 

(p t + ( u 0 , ∇) p) + 

1 

ρ0 c 
2 
0 

( u , ∇) p 0 + ∇ · u 

= 

1 

ρ0 c 
2 
0 

f (p) + q v ol , 

0 ( u t + ( u 0 , ∇) u + ( u , ∇) u 0 ) + ∇p = f 
(u ) + f v ol . (19) 

Here u j ( j = 1 , 2 , 3) are the components of the particle velocity

 in some Cartesian coordinate system; p , the sound pressure; c 0 ,

he speed of sound; ρ0 , the density; the functions marked by 0

orrespond to some mean flow; q vol , the volume velocity per a unit

olume; f v ol , the force per a unit volume [8] and f ( p ) and f 
(u ) 

are

ossible additional sound sources. 

In the case of 

 = (u 1 , u 2 , u 3 , p) T , (20) 
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matrix A n reads 

A n = 

⎛ ⎜ ⎝ 

n 1 n 2 n 3 
u 0 n 
ρ0 c 

2 
0 

ρ0 u 0 n 0 0 n 1 

0 ρ0 u 0 n 0 n 2 

0 0 ρ0 u 0 n n 3 

⎞ ⎟ ⎠ 

, (21)

where u 0 n = u 0 · n . 

Then, from (17) the control is given by [3] 

q v ol = 

(
u · n | � + 

u 0 n 

ρ0 c 
2 
0 

p | �

)
δ(�) , 

f v ol = (p | �n + ρ0 u 0 n u | �) δ(�) . (22)

Obviously, if u 0 = 0 , then we arrive at the acoustics Euler equa-

tions which are reduced to the Helmholtz equation in the case of

a harmonic sound. 

4.1.2. Helmholtz equation 

Next, consider the Helmholtz equation with the controls: 

�p + k 2 p = f + G 0 , 

where k is the wave number. 

Then, from Eq. (18) the control function is given by 

G 0 = 

∂ p 

∂ n 

δ(�) + 

∂ pδ(�) 

∂ n 

. (23)

The same control can be obtained from the wave equation (see,

e.g., [3] ). It is clear that in the case of u 0 = 0 , control (22) is re-

duced to control (23) . 

As can immediately be proven, the secondary source (16) gener-

ates the anti-noise field equal to −U 

−. It provides the entire noise

cancellation in the protected region, whilst retaining the desired

sound unchanged. This exact solution to the inverse source prob-

lem on the ASC is based on two essential assumptions which are

hardly realizable in practice. 

First, the control distribution is supposed to be continuous over

the whole boundary �. This assumption can be overcome via a

compromise with the accuracy. In other words, a continuous dis-

tribution of the control can be approximated by a discrete distri-

bution. Another assumption is more problematic to be resolved.

It presumes the total field from the primary sources is available

nearby the boundary � and can be immediately measured. This

assumption is quite natural for many systems of ASC in which the

existence of desired sound is not taken into consideration. As can

be shown, see e.g. [17] , with the secondary source (16) the desired

sound is doubled immediately outside the control, in D 

−. Thus, the

field from the primary sources becomes unavailable for immedi-

ate measurements. In other words, the ASC affects the input infor-

mation. The problem is significantly simplified if the total primary

field can be recorded in advance as it was realized in [21,22] . How-

ever, it is clear that this approach is practically very limited. 

4.2. Active sound control with the reverse effect. Frequency domain 

To take into account the reverse effect of the controls, in [5,7] a

two-stage procedure is proposed that can be successively realized.

First, the noise component is subtracted from the total field that

can contain a contribution from the secondary sources. Then, the

noise can be cancelled by the anti-noise that can be generated by

the source (16) with the input data obtained at the previous stage.

In this approach the total field from both the primary and sec-

ondary sources has a jump across the boundary � due to the con-

trol. It is supposed that the total field is measured on the external

side of the boundary �. 

Next, to formulate the control, introduce a trace operator 

Tr �−U D −
de f = lim 

ε→ 0 
Tr �ε

U D − , (24)
here 

r �−
ε
U D −

de f = U D − ( x ) , x ∈ �−
ε . 

ere, �−
ε are smooth manifolds parallel to �: �−

ε ⊂ D 

−, �−
ε →

if ε → 0 . 

Then 

 0 = A �ζ (P ��− Tr �−W ) , (25)

here W is the total field from both the primary and secondary

ources measured on the external side �− of the boundary �. 

It is important to note that in contrast to the control (16) , the

econdary source (25) is nonlocal because of the operator P D + � .

his means, the contribution of both the desired sources and con-

rol is integrated and automatically eliminated from the total field.

he realization of the control (25) is not obvious. 

First, for a practical realization the sensors cannot be situated

earby the controls. Therefore, it is better to separate surfaces �−

nd � from each other. Assume that the surface �− is smooth

nough and �− ⊂ D 

−. In addition, we assume that there is no noise

ources situated between � and �−. 

Second, the following requirement should be acoustically satis-

ed: 

 H (�, �−) � λmin , 

here d H (�, �−) is the Hausdorff distance between the surfaces

nd λmin is the minimal wave length to be attenuated. 

Then, the control (25) can be used to protect the domain D 

+ .
n this case, the input data can be taken from the boundary �−

hilst the controls are situated on �. 

For further consideration presume �− is the boundary of do-

ain D 

+ 
− : D 

+ ⊂ D 

+ 
−. If the field at the boundary �− is known from

ither the measurements or calculations, then the noise compo-

ent is given by 

p −( x ) = 

∫ 
�−

(
p 
∂G 

∂ n 

− ∂ p 

∂ n 

G 

)
dσ, x ∈ D 

+ 
−. (26)

Here, G is Green’s function. 

Then, the control function can be obtained immediately 

 0 = 

∂ p −

∂ n 

δ(�) + 

∂ p −δ(�) 

∂ n 

(27)

ince D 

+ ⊂ D 

+ 
− and the field generated by G 0 in D 

+ is 

p c ( x ) = 

∫ 
�

(
∂ p −

∂ n 

G ( x | �) − p −
∂G 

∂ n 

( x | �) 

)
dσ, x ∈ D 

+ . 

On the other hand, the distribution of p − in D 

+ is given by 

p −( x ) = 

∫ 
�

(
p −

∂G 

∂ n 

( x | �) − ∂ p −

∂ n 

G ( x | �) 

)
dσ, x ∈ D 

+ . 

Thus, in D 

+ we have the noise cancellation p c ( x ) = −p −( x )

hile the desired field retains. 

.3. Active sound control with the reverse effect. Time domain 

One can apply the same approach to first-order equations such

s (19) in time domain. Then, from the projection property 

 

−( x , t) = 

∫ 
�−,τ

̂ G ( x , t| �−, τ ) A n U(�−, τ ) d σd τ x ∈ �. (28)

ere, ̂ G is Green’s matrix function, the convolution takes into ac-

ount the retarded time. 

Then, the control on � is given by 

 0 (�, t) = A n U 

−( x , t) δ(�) . (29)
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As can be seen from (28) , such a control is nonlocal not only

n space but also in time. In the protected region it generates the

eld 

 c ( x , t) = 

∫ 
�,τ

̂ G ( x , t| �, τ ) A n Ud σd τ x ∈ D 

+ . 

In the continuous case, the entire noise attenuation is realized:

 c ( x , t) = −U 

−( x , t) , x ∈ D 

+ [7] . 

It is clear that the continuous distribution of controls (27) and

29) is practically impossible. To realize these controls, a discrete

pproximation of the surface potentials is needed. 

Consider first a discrete approximation of the surface controls

n the frequency domain. For this purpose in the next section the

elmholtz equation is addressed. 

. Discrete distribution of sensors on �− and controls on �. 

requency domain 

.1. Discrete distribution of sensors 

First consider a discrete distribution of the sensors on �−. 

Next, let us approximate the first integral in (26) : 

 

�−

∂ p 

∂ n | �−
G ( x | �−) dσ ≈

N −∑ 

i =1 

∂ p 

∂ n 

( x i ) G ( x | x i )�σ−
i 

+ 

N −∑ 

i =1 

∫ 
σ−

i 

[ 
∂ p 

∂ n | �−
G ( x | �−) dσ

− ∂ p 

∂ n 

( x i ) G ( x | x i )]�σ−
i 

, (30) 

here �σ−
i 

(i = 1 , . . . , N 

−) are nonintersecting elementary areas
−
i 

which cover the entire surface �−, n is the outward normal to
−. 

Next, assume that l i = 

√ 

�σ−
i 

� r i = | x − x i | (i = 1 , . . . , N 

−) .

hen, on an i th segment �σ−
i 

of boundary �− we have 

 ( x | �−
i 
) ≈ G ( x | x i ) 

ince for the free-space Green’s function 

 ( x | �−
i 
) − G ( x | x i ) ≈

1 

| x − y i | −
1 

r i 
≈ x · y i 

r 3 
i 

, 

here y i ∈ �σ−
i 

. 

Thus, the discrete approximation error is given by 

 = | 
∫ 
�

∂ p 

∂ n | �−
G ( x | �−) dσ −

N −∑ 

i =1 

∂ p 

∂ n 

( x i ) G ( x | x i )�σ−
i 
| 

≈ | 
N −∑ 

i =1 

∫ 
σ−

i 

[
∂ p 

∂ n | �−
( x ) − ∂ p 

∂ n 

( x i ) 

]
G ( x | �−) dσ | . (31) 

Thus, the approximation error corresponds to the difference

etween the radiation from entire elementary surfaces with dis-

ributed and fixed strengths. 

On the other hand, 

∂ p 

∂ n | �−
− ∂ p 

∂ n 

( x i ) ∼
∂ 

∂s 

∂ p 

∂ n 

( x i ) l i , i = 1 , . . . , N 

−. 

Here, ∂ 
∂s 

is the derivative along the surface, l i ∈ σ−
i 

. It is propor-

ional to 1 
λ
, where λ is the wave length. 

A similar estimate occurs for the second integral in (26) as well.

From the representation of the difference between the full con-

inuous and discrete control (31) , it follows that the error is O ( kl )

here l is a typical l i (i = 1 , . . . , N 

−) . However, if the sensor is

ituated at the center of mass, then, since the local error e ≈
i 
 

�σ−
i 

l i dσ, the total error is at least O ( k 2 l 2 ). Thus, the entire sur-

ace can be split into cells and the location of the sensor in each

ell should be at the center of mass of an appropriate cell. 

In addition, the error caused by a discrete distribution of the

ontrols and sensors can be maximally reduced via the placement

f the sensors and controls at the zero points of the Chebyshev

olynomials [30] . 

It is to be noted that the knowledge of Green’s function is not

ecessarily needed. To avoid it, it is sufficient to make preliminary

easurements of the field from unit monopoles and dipoles be-

ween the sensors and controls. In other words, the set of Green’s

unctions can be measured in advance. Alternatively, elementary

urface potentials can be calculated in advance with either real or

pproximate boundary conditions. 

.2. Explicit formula for the controls 

The control function (27) on � can be approximated via a set

f monopoles and dipoles: 

 0 = 

∂ p −

∂ n 

δ(�) + 

∂ p −δ(�) 

∂ n 

≈
N ∑ 

i =1 

[
∂ p −

∂ n 

( x i ) δ( x − x i ) + p −( x i ) 
∂δ

∂ n 

( x − x i ) 

]
�σi , (32) 

here x i ∈ �σi (i = 1 , . . . , N) , n is the outward normal to �. 

On the other hand 

p −( x i ) = 

N −∑ 

j=1 

�σ−
j 

(
∂ p 

∂ n 

( x j ) G ( x i | x j ) − p( x j ) 
∂G 

∂ n 

( x i | x j ) 

)
, 

here x i ∈ �σi (i = 1 , . . . , N) , x j ∈ �σ−
j 

( j = 1 , . . . , N 

−) . 

Thus, we arrive at an explicit formula for the controls: 

 0 = 

N ∑ 

i =1 

�σi 

N −∑ 

j=1 

[ (
A i j 

∂ p 

∂ n 

+ B i j p 

)
| x j 

δ( x − x i ) 

+ 

(
C i j 

∂ p 

∂ n 

+ D i j p 

)
| x j 

∂δ

∂ n 

( x − x i ) 

] 

. 

Here, matrices A, B, C and D , which have dimensions [ N × N 

−] ,

epend only on the Green’s function and coordinates of the sen-

ors and speakers. Thus, they represent the response matrices that

an be measured (or calculated if possible) in advance. It is clear

hat the operation of the controls is nonlocal since each control

epends on the data from all N 

− sensors. 

.3. Surface potentials 

A more efficient approach can be based on surface potentials.

he main idea is as follows. First, a set of basis functions is intro-

uced on the surface �−. Then, a set of potentials (responses) in

hich the basis functions are used as their densities are calculated.

hese basis potentials can be obtained in advance and used for a

uick approximation of the potentials with arbitrary densities. The

pproximation is based on the linearity property of the potentials.

 similar algorithm is used in the method of Difference Potentials

1] for finite difference potentials. 

Next, consider a set of basis functions φk �− (k = 1 , . . . , N b ) . It

s worth noting that in the general case P �−�−φk �− � = φk �− . 

Then, we can calculate (or measure) in advance the response to

ignal φ�− on �: v k � = P ��−φk �− ( k = 1 , . . . , N b ). This can be pre-

ented via a response from a set of monopoles and dipoles with

trengths φk, i and 

∂φk 
∂ n | i (i = 1 , . . . , N 

−) , respectively, which are sit-
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uated on �−: 

v k (φk ) = 

N −∑ 

i =1 

(
φk,i 

∂G 

∂ n | i 
− ∂φk 

∂ n | i 
G | i 

)
�σ−

i 
(k = 1 , . . . , N b ) . (33)

Next, for any density ξ�− ∈ R 

N − measured on �− via both the

sound pressure and particle velocity we calculate an approximation

of ξ�− by means of the basis functions φk �− ∈ R 

N − (k = 1 , . . . , N b ) :

min 

αk 

‖ ξ�− −
N b ∑ 

k =1 

αk φk �−‖ 2 , �− , (34)

subject to αk ≥ 0 (k = 1 , . . . , N b ) , 
∑ N b 

k =1 
αk = 1 . 

Then, from the linearity of the potentials we obtain the value

of the potential on �: 

P ��−ξ�− ≈
N b ∑ 

k =1 

αk v k �. 

In this way a transfer function from �− to � can be determined.

For practical implementation it is important to be able to

quickly calculate the potentials in (18) . The number of basis func-

tions can be significantly reduced: N b � N 

− if they are selected

well enough. The calculation of the potentials can be realized via

the method of Difference Potentials [1] . In a practical realization,

the use of the Boundary Element Methods (see, e.g., [32] ) may be

efficient. 

To calculate the surface potentials, we should know the bound-

ary conditions on the external boundary of D 

−. However, in real

applications they can be unavailable. Then, there are two principal

ways: 

1) experimental identification of the response functions v k � (k =
1 , . . . , N b ) . In this case the measurements of these functions can

be obtained in advance. 

2) the surface potentials and, hence, response functions v k � (k =
1 , . . . , N b ) can be calculated with some prescribed bound-

ary conditions. Physically, this means we attenuate noise that

would be with different boundary conditions and, hence, a dif-

ferent reflection from the boundary. 

In more detail, let us present the total sound pressure at the

boundary �− as 

p | �− = p | �− + δp | �− . 

Here, p is the sound pressure that would be with the same

sources of sound and prescribed boundary conditions. Then, 

P D + −�− p �− = −p 
−
, 

where p − means the noise that would be with the prescribed

boundary conditions. 

Hence, the fraction δp is out of control but practically it might

be not essential. 

5.4. Discrete distribution of the controls 

A discrete distribution of the controls on � is an essential issue

even if f + = 0 . Indeed, in this case the sound generated by the

continuous control makes no effect outside D 

+ : 

p c ( x ) = 

∫ 
�

(
p −

∂G 

∂ n 

− ∂ p −

∂ n 

G 

)
dσ = 0 , x ∈ D 

−. 

Thus, the control does not affect the measurements on �−.

However, this is the case only with a continuous control on �. 

In the general case of a discrete distribution of the controls 

p c ( x ) = 

N ∑ 

i =1 

(
p −| i 

∂G 

∂ n | i 
− ∂ p −

∂ n | i 
G | i 

)
�σi � = 0 , x ∈ �−. 
s  
In more detail 

p c ( x ) = 

∫ 
�

(
p −

∂G 

∂ n 

− ∂ p −

∂ n 

G 

)
dσ

+ 

( 

N ∑ 

i =1 

p −| i 
∂G 

∂ n | i 
�σi −

∫ 
�

p −
∂G 

∂ n 

dσ

) 

−
( 

N ∑ 

i =1 

∂ p −

∂ n | i 
G | i �σi −

∫ 
�

∂ p −

∂ n 

Gdσ

) 

� = 0 , x ∈ �−. 

As can be seen, the second and third terms represent the error

f approximation of surface integrals that is not necessarily equal

o zero. 

Thus, it is important to have a good enough approximation of

he surface integrals on �. Otherwise, the input data can be af-

ected by the controls even without a desired sound. 

In region D 

+ the field generated by the controls is equal to 

p c ( x ) = 

N ∑ 

i =1 

(
p −| i 

∂G 

∂ n | i 
− ∂ p −

∂ n | i 
G | i 

)
�σi = 

∫ 
�

(
p −

∂G 

∂ n 

− ∂ p −

∂ n 

G 

)
dσ

+ 

( 

N ∑ 

i =1 

p −| i 
∂G 

∂ n | i 
�σi −

∫ 
�

p −
∂G 

∂ n 

dσ

) 

−
( 

N ∑ 

i =1 

∂ p −

∂ n | i 
G | i �σi −

∫ 
�

∂ p −

∂ n 

Gdσ

) 

= −p − + δp ′ , x ∈ D 

+ . 

Thus, a discrete set of controls does not provide the entire noise

ancellation. A fraction of noise equal to δp ′ retains and reaches

he sensors on �−. To cancel this field, the projection P ��−δp �
hould be calculated before transferring the data to the controls. 

. Discrete distribution of sensors on �− and controls on �. 

ime domain 

Consider now the effect of a finite number of sensors and con-

rols in the time domain. The key difference is related to the re-

arded time. As shown further, its effect can be taken into account

utomatically. The main requirement to the control system is that

ll computations should be fast enough. More precisely, the com-

utational time t c required for the control should be much less

han the typical acoustic time t a : 

 c � t a = λmin /a, 

here a is the speed of sound, t c is the period of updating the

ontrol. 

.1. Explicit formula for the controls 

The input data for the controls are related to the data measured

y the sensors on �−: 

 

−( x i , t) = 

N −∑ 

j=1 

�σ−
j 

∫ 
τ

̂ G ( x i , t| x j , τ ) A n U( x j , τ ) dτ, (35)

here x i ∈ �σi (i = 1 , . . . , N) , x j ∈ �σ−
j 

( j = 1 , . . . , N 

−) . 

Then, the control (29) is approximated by 

 0 ( x , t) = 

N ∑ 

i =1 

A n U 

−( x i , t)�σi δ( x − x i , t) , x i ∈ �σi . (36)

In the unsteady case, the problem can be solved in either the

requency domain or the time domain with the usage of the im-

ulse response function. The impulse response function is the re-

ponse to a unit impulse applied to an infinitesimally short period
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f time. It can be represented by Green’s function. With the use of

he impulse response function the retarded time can be taken into

ccount automatically. 

Consider the use of the surface potentials. In the unsteady case

he procedure is similar to that described in the previous section

ut the coefficients αj depend on t . Thus, they should be steadily

pdated via the solution of a variation problem. 

Next, introduce the surface basis functions φk �− (k =
 , . . . , N b ) . Then, the impulse response function is given by 

 k ( x i , t) = 

{ ∑ N −
j=1 ̂

 G ( x i , t| x j , 0) A n φk ( x j )�σ−
j 
, min 

j 
τi j ≤t ≤ max 

j 
τi j 

0 , else , 

 i ∈ �σi (i = 1 , . . . , N) , x j ∈ �σ−
j 

( j = 1 , . . . , N 

−) , 

here τi j = 

| x i −x j | 
a is a retarded time. 

Then, for any density ξ�− (t) measured on �− at time moment

 = t p (p = 0 , 1 , . . . ) we calculate the approximation of ξ�− (t p ) via

k �− (k = 1 , . . . , N b ) : 

min 

k (t p ) 
‖ ξ�− (t p ) −

N b ∑ 

k =1 

αk (t p ) φk �−‖ 2 , �− , (37)

ubject to αk ≥ 0 (k = 1 , . . . , N b ) , 
∑ N b 

k =1 
αk = 1 . 

Thus, for time interval [ t p t p+1 ] until updating ξ�− (t) we have

n approximation of the potential 

 ��−ξ�− (t) ≈
N b ∑ 

k =1 

p ∑ 

l=0 

αk (t l ) v k �(t − t l )(t l+1 − t l ) . (38)

The knowledge of the response functions is a key factor if the

ontrol system must operate in the real-time regime. In this case,

n addition, the quadratic optimization problem (37) should be

olved as fast as possible. It is to be noted that algorithm (38) is

he basic. It can be improved with respect to the time resolution. 

Thus, there are the following basic steps in the algorithm. 

1. Preliminary tuning. The surface potentials with the densities

qual to the basis functions φk �− , (k = 1 , . . . , N b ) are measured

or calculated) in advance. As the output, the set of response func-

ions v k � (k = 1 , . . . , N b ) is obtained. 

2. The input data (density ξ�− (t p ) ) is measured at time step t p .

3. Variation problem (37) is solved. As the output, the set of

oefficients αk (k = 1 , . . . , N b ) is obtained. 

4. The potential (38) is calculated. It provides the noise field

 

− ∈ R 

N to be attenuated with the use of control (36) . 

. Conclusion 

A practical algorithm has been proposed for the active noise

ancellation with preservation of desired sound in the real-time

egime. It is based on surface potentials and their projection prop-

rty. The approach does not presume an explicit knowledge of

reen’s function. Instead, a preliminary tuning can be used. It is

ased on preliminary measurements and/ or calculation of either

he transfer function in the frequency domain or response function

n the time domain. Without preliminary tuning the operation of

he ASC is also possible although its efficiency may be reduced. The

ontrol system can potentially operate in a real-time regime since

t only requires a consequent solution to a quadratic optimization
roblem. In the future work the proposed algorithm will be real-

zed both numerically and experimentally. 
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