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Aktrae t - -For  solving the three-dimensional (3-D) full viscous shock-layer (FVSL) equations in a 
body-oriented coordinate system, an asymptotic method is used with the angle of attack as a small 
parameter. In using a small parameter method, the (3-D) FVSL system is separated into an axisymmctdc 
set and a linear 2-D set of equations. The method of global iterations was used to solve both the 
axisymmetric and iinearized sets of equations. Global iterations were carried out on the pressure gradient 
tangential component and on the shock wave angle. The method is used uniformly for both the blunted 
and conic parts of the body. The shock wave angle was found by using the Rankine-Hugoniot boundary 
condition for the normal component of the velocity. A computational grid adapted to the solution was 
used in solving both systems of equations. The comparison of this approach with 3-D implicit 
time-marching methods shows that the time necessary for the calculation in the 3-D case is about 100 
times less, while the accuracy of the calculations is essentially the same. Also, the small parameter method 
enables one to find a one-parameter family of solutions; the parameter in question is the angle of attack. 

N O M E N C L A T U R E  

u = Tangential velocity component, u'/V® 
v = Normal velocity component, v/Vo~ 
w = Transverse velocity component, w'/V~ 

Voo - Free-stream velocity 
h = Nondimensional specific enthalpy, h'/H® 

H = Nondimensional total enthalpy, H'/H~ 
H® = Free-stream total enthalpy 

T-- Nondimensional temperature, T'/To~ 
Too - Free-stream temperature 

P = Nondimonsional pressure, P'/Poo V~ 
p = Nondimensional density, p'/p~ 

poo -- Fr~-stream density 
# = Nondimensional viscosity, #'/#® 

#® -- Free-stream viscosity 
R~ = Nose radius 

Re~ = Free-stream Reynolds number, Poo V®R./#~o 
M® = Free-stream Mach number 

~, = Ratio of specific heats 
o = Prandtl number 
y, = Shock standoff distance, y:/R. 
y = Normal coordinate, y'/Rn 
x = Surface coordinate, x'/R~ 
¢p = Transverse coordinate 
z = Axial coordinate, z'/R. 

n = Transformed coordinate given by equation (6) 
= Transformed coordinate given by equation (6) 

v = Transformed coordinate given by equation (6) 
rw = Radius measured from the axis of symmetry to a 

point on the body surface, r~/R. 
~e = Local curvature, ~'/R~ 
a = Body surface angle measured from the body axis 
E = Angle of attack 

C x = Heat-transfer coefficient, (2p~/aRe®)(~h/Oy) 
C x = Drag coefficient 
Cy = Lift coefficient 
M z = Pitching moment coefficient 

Superscripts 
' = Dimensional quantities 

(k) = Coefficient number of the Fourier series expansion 

Subscripts 
0 -- Axisymmetric quantities 
w = Conditions at the body surface 
s = Conditions at the shock surface 
g = Quantities calculated on the previous global iter- 

ation 
c = Quantities calculated on the current global iteration 

I N T R O D U C T I O N  

T h e  p u r p o s e  o f  t h i s  p a p e r  is to  s t u d y  t h e  v i s c o u s  f low o v e r  s p h e r i c a l l y  b l u n t e d  b o d i e s  a t  s m a l l  a n g l e s  

o f  a t t a c k .  T h e  ful l  v i s c o u s  s h o c k - l a y e r  e q u a t i o n s  ( F V S L )  a r e  u s e d  to  d e s c r i b e  t h e  f low field. I n  t h e s e  

e q u a t i o n s ,  t e r m s  u p  t o  t h e  s e c o n d  o r d e r  in  t h e  i n v e r s e  s q u a r e  r o o t  o f  t h e  R e y n o l d s  n u m b e r  a r e  

r e t a i n e d  f r o m  b o t h  t h e  v i s c o u s  a n d  i nv i s c id  p o i n t s  o f  v iew.  T h e  s h o c k  w a v e  is t r e a t e d  as  a 

d i s c o n t i n u i t y ,  a c r o s s  w h i c h  t h e  R a n k i n e - H u g o n i o t  r e l a t i o n s  a r e  u s e d  t o  c o m p u t e  t h e  f low 

c o n d i t i o n s  b e h i n d  t h e  s h o c k .  
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For solving three-dimensional (3-D) FVSL equations in the body-oriented coordinate system an 
asymptotic method is used, with the angle of attack as a small parameter. The basic idea of the 
method is to represent a 3-D solution as the sum of an axisymmetric solution and a linear 
disturbance, the latter being represented as a Fourier series expansion. In using a small parameter 
method, the 3-D FVSL equations are separated into an axisymmetric set of equations and a linear 
2-D set of equations. The practical importance of this simplification is obvious. The application 
of a numerical method for the solution of 3-D FVSL equations needs a lot of computer time and 
may also lead to a loss of accuracy in the numerical results in the case of small angles of attack. 
A simple analysis shows that a small disturbance in the surface pressure distribution may lead to 
significant errors in the aerodynamic lift force. 

A new numerical method based on global iterations was developed for the solution of both the 
axisymmetric and linearized sets of equations. Global iterations were carried out with respect to 
the pressure gradient tangential component and the shock wave angle. The method is used in the 
same way for both the blunted and conic parts of the body. The shock wave angle was found using 
the Rankine-Hugoniot boundary condition for the normal component of the velocity. 

For the solution of the axisymmetric set of equations a finite-difference method of second order 
in the tangential coordinate and of fourth order in the normal coordinate is applied. For the 
linearized set of equations a finite-difference method of the first order in the tangential coordinate 
and of fourth order in the normal coordinate is used. A computational grid adapted to the solution 
is used in solving both sets of equations. 

The comparison of this approach with 3-D implicit time-marching methods shows that the time 
necessary for the calculation in the 3-D case is about 100 times less; the accuracy of the calculations 
is the same. Also, the small parameter method enables one to find a one-parameter family of 
solutions; the parameter in question is the angle of attack. 

The numerical results obtained for quantities such as the shock standoff distance, surface 
pressure distribution and heating rates compare well with the available experimental results. The 
calculation time does not change appreciably over a wide range of Mach numbers (M~ > 3) and 
Reynolds numbers (102 ~< Reo~ ~< 107). 

GOVERNING EQUATIONS 

The basic equations used in the present analysis can be obtained from the steady full 
Navier-Stokes equations by retaining terms up to the second order in the inverse square root of 
the Reynolds number in both the viscous and inviseid regions [1]. For a steady flow without 
body forces and external heat sources, these equations can be written in a body-oriented coordinate 
system as: 

p [Dw -~ 

f---~(H2pu)+ o~ (H, pw)+ f---f (HIH2pv)=O, 

pDH = ~ - -  

where 

w 2 01-12 uw OHi uv all1 ] 10P 
...2 ax + = ..Ox 

wu 01-12 u2 OHi wv aH 21 1 OP 
H, H2 ax H, H 2 a--~ + -~2 0y J= H2 0(o 

1 OH I U2 
p Dv H1 ay 

1 a :H, H2#FOH V ~ ( o - l )  O(u2+w 2) 
H, H, ay ( TffgC L + 2H. " ay 

+ H2H2Re~ Oy -~y ' 

l O [H, H3#. 0 (_~2)] 
+ I-I, 1-15 Redo ay ~y ' 

1 OH: ] OP 
H2 ay w2 ay' 

 u2Vt az, 
H=H, Oy H~H2 " Oy ] j '  (1) 

u 0 w 0 0 

= z - T  o9  + v 

2 
, V ~  . 2 w 2 H =h t '~ -~ tu  + +v2). 
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For  the body-oriented coordinate system, the metric coefficients are given by 

//i  = 1 + y  .~e(x); /-/2 = r w ( x ) + y  .cos0t(x). 

In addition to the abovementioned FVSL equations, an equation of  state and viscosity law must 
be specified. For  a perfect gas, the equation of  state can be written as 

h = YPVL (2) 
(~ - 1)pn~ 

and in the present analysis either Sutherland's equation or the power law is used for the viscosity: 

T3/2 

T +  110.4' 

# ,,, T p, where 0.5 <~p ~< 1. (3) 

B O U N D A R Y  C O N D I T I O N S  

On the body surface the following conditions are imposed: 

u(x,O,~)=v(x,O,~o)=w(x,O,~)=O; n(x ,  0, ~,) = n°~. (4) 

The Rankine-Hugoniot  relations are used at the outer boundary to determine the flow 
properties immediately behind the shock [2]. These relations in the body-oriented coordinate 
system are given as: 

v~ = u~ tan fl, + w~ tan ~, + K~ V~o (3), 

1 V 2 ( 3 ) ( 1  - Ks)  

P s=  ~ - ~  "~ 1 + t a n 2 f l s + t a n ~  ' 

ws Ks #s [cgu u OH, I , 
us= V~(1)cos2fl,-~sin2fl, • tanys--~-V~(3)sin2/~,4 Re~oVoo(3) ~yy Ht ~y ls 

2 us Ks its [c3w w aH2q 
ws -- V® (2)cos y, - ~ sin 2y,. tan//, - -~- Vo~ (3)sin 2y, -i Re~ V~ (3) L~Y /-/2 ~y J, 

_#L r OH V2~(tr--l)O(u2+w2) tru2I/~OHt uw2V2 a__H_H2q 
Hs = 1 + ~r Re~ V~ (3) Lay  + 2H~ ay Hoo H, t3y H~/-/2 dy _]' 

V.(1)  = cos ~t • cos E + sin ~t • cos tp • s in ,  + tan fls sin ~t • cos E + sin E • cos q~ • cos ~, 

V~ (2) = - sin q~ • sin E + tan ~s' ( -  sin ct • co s ,  + sin E • cos ct • cos q~), 

cos ~ • sin fl sin E ' cos q~ • cos fl 
Vo~ (3 )  = ~ ~- tan ~s" sin E • s in  <p. 

cos/L cos/~, 

l O y ,  l ~ y ,  1 
tan/~'=Ht---~0-~' tan~sfH2---~0-~' / ~ = P s  ~ffifls+°t" (5) 

Where V~ (i), i = l, 2, 3, are the components of  the free-stream velocity vector in the body-oriented 
coordinate system. 

THE SMALL P A R A M E T E R  M E T H O D  

The 3-D FVSL equations are solved by using a small parameter method. In order to use this 
method, the independent variable transformation is applied to the governing equations and the 
boundary conditions. This transformation maps the computational domain into a rectangular 
region in which both the shock and the body become the boundary mesh lines. The purpose of  
this transformation is to reduce the computational domain in the 3-D and axisymmetric cases to 
an identical form. This transformation is given by 

~ = x ;  n=y/ys;  v- - tp ;  y ,=y, (x ,  tp). (6) 
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For solving the 3-D FVSL equations the asymptotic small parameter method is used; the small 
parameter is the angle of attack [3,4]. The main idea of this method is to represent a 3-D solution 
as the sum of an axisymmetric solution and a linear disturbance, the latter being represented as 
a Fourier series expansion. Hence the 3-D solution can be written as [cf. 41: 

F(& n, v) == F,(& n) + tF”‘(& n) . cos v + EZ . [Ff’(& n) + F$2’(<, n) . cos 2v] + O(c2), 

w(& n, v) = 6 * w”‘(l, v) . sin v + 6’ 1 w(*)(& q). sin 2v + O(E~), (7) 

F= {ys, u, u, P, K P>, 

where F. is the axisymmetric solution and F(I), F&*), Ff), WC’) and WC’) are the coefficients of the 
Fourier series expansion. 

In the present analysis only the first terms F(l) and w(l) of the Fourier series expansion are 
retained, since the higher order terms of this set are O(c*) [4]. 

Substituting equations (7) in equations (l)-(5) and separating the terms O(1) and O(c), the 3-D 
FVSL equations are split into an axisymmetric set and a linear 2-D set of equations, which are 
used to determine the first terms of the Fourier series expansion (this set of equations is given in 
the Appendix). 

The practical importance of this simplification is obvious. The numerical solution of the 3-D 
FVSL equations is very expensive in terms of computer time and may lead to a loss of accuracy 
in the case of a small angle of attack. A simple analysis shows that a small disturbance in the surface 
pressure distribution may result in significant errors in the aerodynamic lift coefficient. The lift 
coefficient in the body-oriented coordinate system may be written as 

2R Xf 

c,, - ss P,,,(x, y, cp) * cos a(x). cos q - rw(x) dx drp, 
0 0 

where the viscous effects have been neglected. Substituting equations (7) in expression (8), C,, can 
be represented as 

cv-c * 
s 

” P$(x, y) * cos a . r,(x) dx. 
0 

From this it follows that the absolute error in determining the lift coefficient C,, is of the order of 
the relative error in the Fourier coefficient P$ (rather than of the order of the relative error in P,). 
We have 

Equation (9) explains the fact that, in using a 3-D code to determine the flow field around a blunt 
body of revolution in the case of small angles of attack, the relative accuracy in determining the 
lift coefficient is much less than the relative accuracy in determining the drag coefficient. 

The use of the small parameter method imposes two restrictions on the 3-D solution: 

(1) a 3-D solution is continuously differentiable with respect to L in the neighborhood 
of L = 0; and 

(2) singularities of the 3-D solution (shock waves, contact discontinuities etc.) must 
correspond to the singularities of the corresponding axisymmetric solution: 

and the following restriction on the angle of attack, 

If the above conditions are satisfied, the small parameter method enables one to find a 
one-parameter family of solutions, this parameter being the angle of attack. 
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The small parameter method may be used for simulation of the reverse flows in the ~-direction, 
but neither the method of global iterations described in the present paper nor the FVSL equations 
can be used for modeling reverse flows. As a consequence, only unseparated flows are considered 
in this study. 

NUMERICAL METHOD OF SOLUTION 

A new numerical method based on global iterations was developed to solve both the 
axisymmetric and linearized sets of equations. It is known that the FVSL equations are elliptic in 
the regions where u < a (a--sonic speed). These regions always exist near the body, since no-slip 
conditions are imposed on the body surface. 

To take into account the elliptic effects of the Oy,/O~ and OP/a~ terms, the method of global 
iterations [5] is used. The global iterations approach was originaUy developed by R. T. Davis [1]. 
In the method proposed by Davis the FVSL equations are solved iteratively. The global iterations 
were carded out with respect ot the shock standoff distance y, and the normal component of the 
velocity vector v in the n-momentum equation. The shock location was found from the previous 
global iteration by using the integral mass balance relation in the shock layer. This global iterations 
method led to good predictions in the case of a thin shock layer. 

In the present work the global iterations are carried out in another way [5]. The term ~P/O~ in 
the ~-momentum at each global iteration is represented as 

aP a~ a~ 
c~-= ~- = ~--~- + ( I -  =c)--~" • (11) 

The FVSL equations are parabolic and the Cauchy problem for the coordinate ~ is correct at each 
global iteration, if 

u 2 
O~<~c~<~, u~>O. 

To account for the disturbance propagation in the upstream direction, forward differences are 
used for calculating the terms (p~l))[ and ,#,~,,o)v,¢ in the case of the linearized set of equations and 
central differences are applied for evaluating the terms (P0g)~ and (Y0,)~ in the case of the 
axisymmetric equations. 

The method of global iterations with respect to the tangential component of the pressure gradient 
was first developed and employed in Ref. [6] in the treatment of flows with thin subsonic regions. 
Organized in this way the global iterations are efficient because they enable one to simulate more 
accurately the upstream propagation of disturbances. 

The calculation of the current global iteration in the present method is carried out using the 
quantifies/)8 and r, obtained from the previous global iteration. For the next global iteration the 
pressure distribution and the shock wave angle are found from 

e(m+ l ) =  %p~=) + (1 - "cp)e(g m) g 

$ (12) 

where//I and p~m) represent the shock wave angle and pressure distribution, respectively, and are 
obtained from the m th global iteration; Tp and z, are the relaxation parameters. From the stability 
condition of the iteration process for both the pressure and the shock wave angle, the following 
conditions on % and ~, are derived: 0 < % < 2; 0 < z, < A~/y,. 

In calculating the flow field in the nose region, the shock wave angle was found by using the 
Rankine-Hugoniot boundary condition (5) for a normal component of the velocity vector v,. The 
boundary condition for v, is not used in calculating the current global iteration and can therefore 
be used for the determination of the shock location for the next global iteration. We note in passing 
that it is not clear how to calculate the shock location using the integral mass balance relation in 
the 3-D case. 
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To avoid the adverse effects of the discontinuity in the body curvature ~e at the sphere-cone 
tangent point xc, the following procedure (capable of accounting exactly for this discontinuity) was 
used: 

[ 1  0~  I OH, Of ! OH, ~ ] = 0 ,  
i'I~ ax 2 k H, H~" &p " O---~ + n--~ dy 

[ f  (x, 40, y)] =f(Xc + O, 40, y )  - f (xc  - O, 40, y).  

The present method of global iterations was used uniformly both for the blunted and conic parts 
of the body. 

To obtain the solution of the linearized set of equations, the initial conditions in the plane ~ = 0 
are needed. The solution begins on the spherically blunted nose by obtaining an axisymmetric 
solution in the wind-fixed coordinate system, where ¢' = 0 at the stagnation point. The axisymmet- 
fie solution is rotated into a body-fixed coordinate system, where ~ = 0 at the nosetip of the cone. 
Following this, the small parameter method is applied to the resulting 3-D solution. The initial 
conditions for the linearized set of equations are obtained after splitting the 3-D solution into an 
axisymmetric solution and a linear disturbance, the latter being represented as a Fourier series 
expansion (7). These conditions are: 

° _dUoo  - du° +:o = ~=o; uml+=o= ; Fml+=o=0; 

F m = {vO), y~,), p0), H0)}. 

For the calculation of large-Reynolds-number flows, the adaptive grid approach to the solution 
in the normal direction is used. The grid step size at each point is chosen in accordance with the 
values of Ou/On and 02N/On 2 [7]. This allows one to calculate the flow field over a wide Reynolds 
number range (102 ~< Re~ ~< 107). 

FINITE-DIFFERENCE METHOD 

To solve the differential set of equations at each global iteration the following finite-difference 
method is used. 

The non-finear set of equations is solved by using the Newton-Raphson method. At each 
Newton-Raphson iteration the Gauss-Seidel algorithm is applied. At each point the equations are 
solved in the following order: (1) l-momentum; (2) v-momentum; (3) energy; (4) the coupled 
continuity and normal momentum equations. 

We employ the same finite-difference scheme to solve the ~-momentum, v-momentum and energy 
equations. These equations are represented in the standard parabolic form 

Of Of d ( d ( f ) . ~ l + e ( f ) . f + e ( f )  ' 
a ( f  ) . -~  + b ( f  ) . On = O--n (13) 

where the coefficients a, b, c, d and e are taken from the previous Newton-Raphson iteration. 
The O/0~ derivatives are evaluated using a three-step implicit finite-difference Richardson scheme 

[8]. The first step is defined by 

a "+ '(7)" A----T-- p + '  - p  + 6"+ ' ( f )  + ' 

The second step is defined by 

{ osy+ 
a.+ J/2(f) A~/2 + b"+ l a ( f )  0 

a.+ , (?  ) .~/~+ , _ f . +  ,a 
A~/2 

/ 0f'X" + 1 63 td(f) g ) "4-cn+i(j~),ff+l _f" en+l(p). (14) 

d ( f )  c" + l/2(f)f- , + V2 + e" + l l2( f )  (15) 
\ / +  

+ bn + i(?) (0~"y'+ d d ( ? )  + + l / 2 ( f ) f ~ + i + e " + ' ( ? ) .  (16) 
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In the third step, the resulting solution in the (n + l)th ~-section is calculated from 

f"+'  = 2:"+' - f  "+'. (17) 

The normal derivatives are approximated by the fourth-order finite-difference method [9]. 
The coupled continuity and normal momentum equations are solved using a finite-difference 

method which generalizes the Petukhov approximation [9] for sets of hyperbolic equations. The 
tangential derivatives in the continuity and normal momentum equations are approximated by 
using the same method as in the case of the parabolic equations (~, v-momentum and energy). 
Therefore, at a section ~ = const, the coupled continuity and normal momentum equations are 
written in the form of the ordinary differential equations 

(A • U + R~)~ = B .  U + R2), 

with boundary conditions of the form 

(E~, U) = 0, 

(E,, tO =0, at n = l , E , = ( O 1 ) .  

(18) 

(19) 

at+l/2U;+ b;+,/2Ut = rt+l/2 ( i  = 1, M) (22) 

and 

(Ew, U~) = 0; (E,, U~,) = 0, 

where the matrixes at+ 1/2 and bt+ m/2 are 

An; An~ 
a;+ ,/2 = A, + T (Bt + 2. Bt+ ,/2A f-2 l/2at) "Jr" "-3"-" Bt+ 1/2 A ,+',/2B, 

An; An~ 
I/2A ;+ I/2A;+ I ) + T B;+ t/2 A t+ I/2B;+ 1" bt+l/2.= At+l +_~__(Bt+l_ 2. B; + -i . -, 

Equations (22) and (23) are solved as follows. At each grid point equations (22) and (23) are 
represented as 

]./,mUm = G m . (24) 

Multiplying both sides of equation (24) by #m at point i = m. equation (24) may Ix written as 

- t (25) #,.+tU.,+t = G,.+I. Ix,,,+, =p,,,lz,,,b,,,+,/2a,,,+,/2, 

-I Gm+ l = Pm(l~mbm+ i/2rm+ 1/2 - Gin) (26) 

(23) 

and 

To solve the boundary problem (18, 19), the coupled continuity and normal momentum 
equations are integrated from n; to n;+, (i = 1, N - 1) by using Simpson's method: 

f ' ,  + ~ An; U dn = -~-. 0U, + 4. U;+ ,/2 -~ Ui+ i) ~- O(An~),  (20) 
i 

where Ant is the half step size of the computational non-uniform grid. The value Ut+ ,/2 is eliminated 
from equation (20) using 

Ut+ Ut+, Ant , 
U,+,/2 = 2 4 " ((U")t+ ~ - (U~,),) + O(An4). (21) 

where the derivatives [IJ~)t+, and (U'.)t are calculated from equations (18). 
The set of finite-difference equations complemented with the boundary conditions may Ix 

written as 
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and 

P,~J = li/~mb~2+ I/2am+ 1:2 ]l' (27) 

The set of equations (25) at point i = M is completed by adding the boundary conditions. The 
extended set of  equations is solved for UM. The values U~ (i = 2, M - 1) are found from 

U,_ ,=P ,_~U,+Q,_~  ( i = 2 ,  M), (28) 

where 

P i -  1 = - (Tz bi_ m/2 + T2 lai- t ) -  I Tj a~_ i/2, 

a~_ 1 = (Ti  b~_ 1/2 + T2/~_ i ) - l ( T i  r~_ 1/2 + T2G~_ i), 

The described algorithm for the solution of equations of the type (22, 23) with a bidiagonal matrix 
was originally developed by V. V. Rusanov [10]. Algorithm (28) is stable in the case of coupled 
and normal momentum equations. The present approach is advantageous in that it is of the fourth 
order in the normal coordinate and provides a simple way to specify the appropriate boundary 
conditions (in particular, no artificial conditions, such as P',lw = 0, are needed). 

Thus, the finite-difference method we propose is of the second order in the tangential coordinate 
and of  the fourth order in the normal coordinate. 

The same finite-difference approximation scheme for normal derivatives, combined with an 
ordinary first-order implicit scheme for the tangential coordinate, are used for the solution of the 
linearized set of  equations (the use of a first-order implicit scheme is justified by the fact that the 
approximation error is multiplied by the small parameter E). 

RESULTS AND DISCUSSION 

The present method was used to compute the perfect gas flow past cones and past a biconic body 
at various angles of  attack. The cone half-angles are varied from 5 ° to 45 ° and the angles of attack 
from 2 ° to 10 °. The values of F and the Prandtl number are taken as 1.4 and 0.72, respectively. 

Figure 1 shows the comparison of  the shock standoff distance, for a 25 ° half-angle cone at a 
10 ° angle of attack, with the experimental results [11]. For a blunt body at angle of attack, the 
leeward shock standoff distance is expected to be larger than that on the windward side. This is 
seen clearly in Fig. 1 for a 25 ° half-angle cone. The experimental results exhibit the same behavior. 
In this case, the free-stream conditions are: Moo = 5.9, Tw = 0.7 K, Too = 53.7 K, Reoo = 3.95 × l&, 
E = I O  ° ,0  c=25  ° . 

Ys 0.6 

1.2 1.5 

I t • Windward 1.2 o Leeward 
0.9 • Windward 

o L e e w a r ~  0.9 ~ k  
- Pw 

0.6 • "n ' - - i ln  

0.3 -- ~ S i / n / I / I - i - i - • -  

~ ~ l ~ i  i / 0.3 

0 I I I L I 0 I I I I 1 
0,5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 

x x 

Fig. I. Shock standoff distance comparison. Fig. 2. Surface pressure distribution comparison. 
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Fig. 4. Comparison of  drag, lift and pitching moment  
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Figure 2 compares the surface pressure distribution computed by the present method with the 
experimental data [12]. The free-stream flow conditions are: M® = 5.8, Tw = 300 K, To ffi 428 K, 
Re® ffi 3.95 x 104, E -- 8 °, 0c = 40% 

In Fig. 3 the present heating-rate results for a 45 ° half-angle cone at a 5 ° angle of  attack are 
compared with the experimental data [13]. The free-stream conditions are: M ® =  10.33, 
Tw = 0.701 K, Too -- 46.82 K, Reoo = 1.13 x 10 s, 0c -- 45 °, e = 5 °. 

For  all the examples above, the deviation from the experimental results is about  5%. 
In Fig. 4, the drag, lift and pitching moment coefficients at the point z = 6.98 are compared with 

the experimental results of  Ref. [14] for a 5 ° half-angle cone at angles of  attack varying from 0 ° 
to 20 °. The free-stream conditions are: Re® = 4.1 x 103, Moo = 13, Hw = 0.27, p --- 0.75 (the power 
in the viscosity law). From the theoretical results (10), it follows that the small parameter method 
is valid in this case only for E < 5 °. Nevertheless, as is seen from Fig. 4, the present results compare 
well with the experiental data up to angles of  attack of  about 10 °. Hence, as far as the integrated 
characteristics of  the flow are concerned, the small parameter method is valid for a broader range 
of  angles of  attack than is predicted from the theoretical considerations. 
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Fig. 5. Surface pressure comparison. 
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Figure 5 compares the windward and leeward surface pressure distributions on a blunt biconic 
computed by the present method with the experimental results [15]. For calculation of the flow 
field around a long blunt biconic at an angle of attack the block-marching method is used. The 
entire computational domain is divided into a number of intersecting blocks. For the calcu- 
lation of each of these blocks, the method of global iterations is used. Block intersection is 
used for the propagation of the disturbances in the upstream direction in the subsonic flow 
regions. To calculate the viscous shock layer near the cone-cone junction, where the body- 
oriented coordinate system has a singularity, a smoothing of the body surface angle ct is 
applied, The smoothing covers only about 4-5 points of the computational grid in the ~- 
direction. To calculate the cone-cone junction region more accurately, the grid is adapted in both 
the n- and l-directions. The free-stream conditions in this case are: ReD = 3.5 x 10 4, Moo = 10.1, 
T~ = 159.8 K, H,~ = 0.705, 0cj = 9.33, 0c2 = 5 °, E = 2 °. The calculated results compare well with 
the experimental data [15]. 

C O N C L U D I N G  R E M A R K S  

To obtain the solutions for both the axisymmetric and linearized sets of equations, only about 
10 global iterations on the nose part and about 3 global iterations on the conic part of the body 
were needed. 

Comparison of this approach with the implicit time-marching method has shown that, with no 
loss of accuracy, the time necessary for the calculation in the 3-D case is about 100 times less. In 
addition, the small parameter method makes it possible to find a one-parameter family of solutions. 
The angle of attack is the parameter. 

The numerical results of the present analysis for quantities such as the shock standoff distance, 
surface pressure distribution and heating rates compare well with the theoretical and experimental 
results available in the literature. The calculation time remains virtually unchanged for a wide range 
of Mach numbers (M~o > 3) and Reynolds numbers (102 ~< Re~ < 107). 

The numerical results were obtained on a PC/AT-386. The computing time was about 30 min 
for the 3-D cases and about 15 min for axisymmetric cases. Although we only considered 
spherically blunted cones and biconics in this study, the analysis can be applied to other 
axisymmetric spherically blunted bodies at angles of attack without any modifications. 
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APPENDIX 

The linearized set of equations is: 

~[Ho2Pou(l ) I n Oyo, 0 rH . uO )+  + ao~p(t)Uo + H~l)poUo] + l'lolpoW( ' - - -~  "~ ~n t Ho, p")Uo +/-/~'%uo] O2/"0 

n'FOy~" Oyo, y~"lo l O 
yo, k-~ a-~ ~ J ~n (Ho:p°u°I +-~'~n [H°'Ho2pov°) + HoIHo:p°)v° 

v ( I )  0 
+ Ho , H~l)povo + H~ll)Ho:povo] -- ~ ~ [H m Ho~poVo] = O, 

UoVoPo OH~I) UoVoPo 0HoI(H~I} y[I)) 
l OHm (u°v°)P° + umv°P°+ u°v°P°)) + yo~Hoi On ~n ~ + poD*# + pO)D*u ~ yo~Ho~ a~ yo, Ho~ 

1 pP'" . ay~ av,', . 0.:~')aPo .y~" ay~ O,.o 1 H~"FoPo_2_.Oyo, OPo 1 
. . . . . . . . . . .  + 2 ' - - "  + - - '  ~ , L O ~ - ~  o~ o. y~ o~ on y~ o~ -~] Ho~,LO~ Yo~ 0~ On.] 

,, HO)\ 1 fO F 3 O---(u(l' ~o~ ) + ( 3 H ° ' H '  H ° 2 # ° + H ° ' H ~  
~ 01 ~02 ~ o o Y ~  Lu '*  k 

+ z y ,  . 

2UoUmPo OHm 
poD~-v + pmD* v 

yo~Hol On 

1 ~pm Y ~  ~Po 

Yo~ On y~ ~n ' 

pou~ OH~ 'J 
yc, Ho, an 

:'=~ O-o, po=o ~ O-o,(H~')+y~"~ 
yo~Hol On ~ y~Zo, ~. \~o, ~/ 

.o~o:'(O-o~ . o~. O-oQ .o:~o (.,,, .~')O.o,~+vo~ow,', O-o~ 
P°D*W+ H~lHo2\ ~ - - ~ ' ~ "  ~-n ]+ZolZo~--~ ' Yo~ ~n / I  yo~Zo: " On 

1 F -'r ny~ t) aPol I a F 3 a [w")\l 
- -  - 1 - - P ~ J +  " - - l q  

-o L o. j ' 

PoD~H +p°'D~ H =  2 2 ~n -~m*-~o2 + L°+ O---n- Hm Ho2 Re®yo~ 

V2 Ou(I) l Ouo'l ou~ OH~ u 2ouou O) OHm.  "o I 
. u ( } . - - I  - - -  

+ ~ (o - I ) . . o  ~ + ~., J Zo, O,, Ho, O. - Z~o, O. ) ) J  

/ M ( I )  I . / ( I )  9 v ( I ) \  r3 F H^, l l  

kilo, Ho2 Yo,) ~n 

and 

Where D~, H~ I) and H~ I) are given as follows: 

uo OF m (Vo uon OYo~ OF{I) OFo [uO) H~ I)~ 
D*F . . . . . . .  + - -  ~ - , , o - ~ .  .o, ~ + , ~  ..o,~ o~ ) o. ~: t o, o,7 

OF o ~v <'> voy~ ') n [ Oy~ I) OyosY~ ') 
• - -  U o - -  0~ Yo, + N  ~yo, y~. Zo,yo.~, a~ -=o 

&,  z , ' , + . . , . ~ ) }  
_ .o_~_.~o ' ; r={ . .v .z} .  

D*w Hol 0~ \Yo~ 

and 
H~ I) = n 'y,m. a'; H(2 u = n"  y~')' COS 0t. 
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The Rankine-Hugoniot conditions are: 

v~ '=  ?~ fl~U+u~J)tanfl~+Ko~'V~)(3)+K~ ~)'Vo~(3), 
COS flOs 

u~ I) = V°)(1) cos2 flo~ -- fl~l)(Vooo ( I ) '  sin 2flo ~ + Ko~' Vo~ (3)cos 2flo~) -- ~ - "  V~)(3) . sin 2flo ~ - V°~ 2 (3) 

... ( ~ : '  .o ~-',') u., ~.o, uoUr.~noQ 
+ ReooVo~(3)y,\-~n -Ho-~t" an Ho, (On + H2o, an ], 

/~  (#(0 y~') V~)(3)~.[dUo ~.o, l 

w[°=VO)(2)-(umtanflm + K~V°°°(3))Y~° + Re=Vo=(3)yo,\ On Ho2 an ] , '  

and 

V2 ( [- ~gu(,, u(,)CaUol 
o'Re,~ Vo~(3)y ~ (-~--n ~¢ (a - 

...o . . , ,  . .ou, ,  
H m an Hot " a n  + n o 2 ~  + 

Where 

Ho2 , p ~  ' 

sin a 
V~)(1) = sin ~ + tan rio,' cos COS2 ~Os 

~7 ), 

and 

The body surface conditions are: 

a n d  

v~ l ) (2 )  = - s i n  v - ~,~o. s in  

• COS O~ O) 
V ~ ) ( 3 )  = c o s  a - tan flo~' sm ~ - ~ p ,  . 

U(1) _ w(1)_ t)(1) = 0 w -- --w --  ~w 

H~) = 0. 

• sin 2flc~' K~ L) 

v~(3)  Y~'-f) • L~} 
voo,(3) yo,: ,  
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