
Struct Multidisc Optim (2018) 57:877–890
DOI 10.1007/s00158-017-1774-5

RESEARCH PAPER

A modified rotation strategy for directed search domain
algorithm in multiobjective engineering optimization

Kaiqiang Wang1,2 · Sergey V. Utyuzhnikov1,3

Received: 2 October 2016 / Revised: 28 June 2017 / Accepted: 20 July 2017 / Published online: 23 August 2017
© The Author(s) 2017. This article is an open access publication

Abstract In the real-life multiobjective optimization, it is
often required to generate a well-distributed Pareto set.
Only a few methods are capable of tackling such a prob-
lem in a quite general formulation. The Directed Search
Domain method (DSD) proved to be efficient and, therefore,
attracted much attention. In this paper, two modifications
to the rotation strategy of DSD algorithm are proposed.
The first modification is meant to improve its computa-
tional efficiency. The second modification is to enhance
the evenness of the Pareto set with a number of addi-
tional Pareto points. These points are obtained according
to some specific rotation angles calculated in a particu-
lar way. The modified approach is verified on several test
cases with three objectives, including an engineering case.
The proposed algorithm is compared with both the orig-
inal DSD and DSD-II algorithms. It is shown that the
new approach can maintain the distribution of the Pareto
set at a high level with a relatively low computational
cost.
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1 Introduction

Engineering design and optimization is an active research
filed. A real-life engineering design and optimization prob-
lem usually includes a variety of contradictory objectives
such as high performance, low cost, long life and manufac-
turability. These objectives should be taken into considera-
tion simultaneously in the optimization process. Generally
speaking, the solution to such a problem is usually not
unique. Instead, it represents a possible trade-off between
the different objectives and cannot be improved without
deterioration of at least one of the objectives and violation
of the constraints. This leads to the notion of a Pareto solu-
tion (Miettinen 1999). Each Pareto point in the objective
space represents a solution of the multiobjective optimiza-
tion (MOO), and forms a set called the Pareto set. In general,
a sufficient number of Pareto points are needed to represent
the entire Pareto frontier in the objective space. However, in
practice, the decision maker (DM) can only select a few pos-
sible Pareto points among the Pareto set according to addi-
tional requirements. In such a context, an even distribution
of Pareto points can provide the DMwith good visualization
of the Pareto frontier, and substantially simplify the work of
the DM. In particular, this can be exploited for local approx-
imation of the Pareto frontier (Utyuzhnikov et al. 2008) and
in ranking (Jaini and Utyuzhnikov 2017). Hence, it is of
paramount importance to generate a well-distributed Pareto
set to acquire maximum information on the Pareto surface
at a minimal computational cost (Utyuzhnikov et al. 2009).
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A variety of methods have been developed to solve multi-
objective optimization problems (Siddiqui et al. 2012; Yang
and Deb 2013; Yang 2013; Fogue et al. 2013; Ganesan
et al. 2013; Ghosh and Chakraborty 2014; Ansary and Panda
2014; Gobbi et al. 2015; Oke and Siddiqui 2015; Siddiqui
and Christensen 2016; Fou-ladgar and Lotfi 2016). In the
literature, there are mainly two categories of MOO methods
to search for Pareto solutions and generate a Pareto set to
approximate the Pareto frontier: evolutionary methods and
classical methods. The evolutionary methods consider all
objective functions simultaneously, and are usually based
on stochastic algorithms and random operators. Some popu-
lar evolutionary MOO algorithms include the Niched Pareto
Genetic Algorithm (NPGA) (Horn et al. 1994; Erickson
et al. 2001), the Nondominated Sorting Genetic Algorithm
(NSGA) (Srinivas and Deb 1994; Deb et al. 2002), the
Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler
and Thiele 1999; Zitzler et al. 2001), and some algo-
rithms using multiobjective particle swarm optimization
(MOPSO) (Coello and Lechuga 2002; Hettenhausen et al.
2013; Dehuri et al. 2015). Evolutionary methods have sev-
eral advantages. They are not sensitive to non-smoothness
of objective functions, and can sometimes be efficient in
finding a global extremum. However, in multiobjective opti-
mization, there is no guarantee for evolutionary methods to
capture an optimum solution. Meanwhile, a large number of
solutions should be taken into account to generate an even
set of optimal solutions. As a consequence, the evolutionary
approaches are time-consuming in multiobjective optimiza-
tion. Actually, in the real-life design, most of the solutions
are redundant (Erfani and Utyuzhnikov 2011).

In contrast, the classical methods generally utilize
deterministic algorithms. The weighted sum method and
constraint-based algorithms are among the most popular
approaches. However, these methods cannot guarantee the
quasi-even distribution of the Pareto set. In some cases,
they can only capture part of the Pareto frontier (Marler
and Arora 2004). The well-known classical MOO methods,
which are able to approximate the whole Pareto frontier,
include the Normal-Boundary Intersection (NBI) method
(Dad and Dennis 1997; 1998), the Normal constraint (NC)
method (Messac et al. 2003; Messac and Mattson 2004),
the Physical Programming method (Messac 1996; Messac
and Mattson 2002), and the Directed Search Domain (DSD)
method (Utyuzhnikov et al. 2009; Erfani and Utyuzhnikov
2011). All of these methods exploit the anchor points

which are the minima of each objective in the objective
space, as well as an aggregate objective function (AOF)
(preference function).

In the NBI method, the Pareto frontier is construct-ed
by the intersection of the normal to the utopia hyperplane
and boundary of the feasible objective domain. The Pareto
set is acquired after a single optimization problem has been

solved along each line. The evenness of the Pareto set is
determined by those of lines which are orthogonal to the
hyperplane. Nevertheless, the NBI method seems to be not
robust, because the feasible search domain is reduced to a
line and a corresponding equality constraint is established .
In order to solve this problem, NC method is proposed as
a modification of NBI. The single optimization in the NC
is based on inequality constraints, which makes the method
more flexible and stable.

In the PP method, the DM experience is taken into con-
sideration directly. The designer assigns each objective to
one of the four class functions, and the optimization is based
on minimization of an AOF determined by the class func-
tions. However, the approach includes several free parame-
ters and requires preliminary information on the location of
the Pareto frontier.

The DSD method (Utyuzhnikov et al. 2009; Erfani and
Utyuzhnikov 2011) can be considered as an alternative
approach. It introduces the affine transformation of objec-
tives to shrink a search domain to obtain a Pareto solution in
a selected area of the objective space. By evenly controlling
the search domains in the objective space, DSD is capable
of capturing the entire Pareto frontier and providing a well-
distributed Pareto set. Another advantage is that it does not
generate redundant non-Pareto solutions, thus the optimiza-
tion time can be saved. It has been shown that the DSD
method outperforms the NBI and NC methods on a number
of test cases with respect to the computational efficiency and
the distribution of Pareto set. After the original DSD algo-
rithm, a modified directed search domain algorithm called
DSD-II is put forward to improve the optimization effi-
ciency in Erfani et al. (2013). In DSD-II, the shrinking and
rotating strategies are modified.

However, in some cases, the search domains are not
distributed well enough in the objective space via the rota-
tion strategy of DSD method. Then the evenness of the
Pareto set is deteriorated. In addition, in DSD the rotation
angle varies following a passive search algorithm reducing
optimization efficiency. In DSD-II, the rotation strategy is
not implemented. Instead, redundant points on the utopia
hyperplane are generated in order to capture the whole
Pareto frontier. This may lead to many redundant solu-
tions and negatively affect the computational efficiency. In
the context of these problems, the objective of this paper
is to improve both the effect and efficiency of the origi-
nal DSD algorithm without generating redundant solutions.
The proposed approach can be considered as an alterna-
tive to DSD-II. Two modifications are proposed. One is to
enhance the efficiency of searching for the Pareto solutions
with the use of dichotomy in rotation strategy. The other
modification is to improve the evenness of the Pareto set
distribution based on some specifically calculated rotation
angles.
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The paper is structured as follows. In Section 2, basic
concepts and definitions about multiobjective optimiza-
tion problems are introduced. Section 3 provides the main
principles and procedures of the DSD algorithm includ-
ing DSD-II. The two new modifications to the original
DSD algorithm are described in Section 4. The modified
approach is evaluated in Section 5 on the basis of simulation
results of three numerical cases and one engineering case. In
Section 6, discussion as well as conclusions are presented.

2 Multiobjective optimization

A general multiobjective optimization (MOO) problem is
described as follows:

Min f (x) = (f1(x), f2(x), ..., fn(x)),

subject to x ∈ D∗. (1)

where fi (i = 1, 2, ..., n) are objective functions, which
form the objective space Y ⊆ R

n. The vector x represents
a design variable in the decision space D, and D∗ ⊆ D is a
feasible space which is the set of elements satisfying all the
constraints.

In general, the solution of problem (1) is not unique.
Therefore, a set of solutions called the Pareto optimal
set is introduced on the basis of the following definition
(Miettinen 1999):

Definition 1 Pareto solution: Vector x∗ ∈ D∗ is called a
Pareto (optimal) solution to problem (1) if and only if there
does not exist x ∈ D∗ such that fi(x) ≤ fi(x∗) for all i =
1, ..., n and fj (x) < fj (x∗) for at least one j (1 ≤ j ≤ n).

Then, in the objective space the vector f (x∗) represents
a Pareto solution not dominated by any other feasible solu-
tion. The set of all Pareto points represents the Pareto
frontier, the best trade-off solutions to the multiobjective
optimization problem (1). If the above condition only holds
in a vicinity of x∗, then x∗ is called a local Pareto solution.

Definition 2 Anchor point: In the objective space Y, an
anchor point μi represents the minimum of an ith objective
function subject to all the constraints.

According to the above definition, a non-unique anchor
point is sometimes obtained. Then, a lexicographic-based
prioritization is introduced as follows Utyuzhnikov et al.
(2009).

Definition 3 Modified anchor point: In the feasible objec-
tive space Y∗ = {f (x) | x ∈ D∗}, the anchor point μi

of an ith objective function is determined in the circular
order: min fi , min fi+1, ..., min fn, min f1, min f2, ..., min
fi−1. Any successive minimization problem: min fi+m (1 ≤
i + m ≤ n,m �= 0) is only to be considered on the set
{Am−1}, which is the solution to the previous minimization
problem.

Definition 4 A hyperplane that contains all the anchor
points is called the utopia hyperplane.

The above definitions are illustrated in Fig. 1.

3 Review of directed search domain (DSD)
algorithm

DSD is a classical algorithm for generating a quasi-even
Pareto set in multiobjective optimization problems. In
Erfani et al. (2013), a modified directed search domain
algorithm called DSD-II is proposed to further improve the
optimization efficiency.

3.1 The original DSD algorithm

The main idea of the original DSD algorithm is to uti-
lize transformation technique to shrink the search domain
and seek the Pareto solution in the resulting shrunk area.
To address a multiobjective optimization problem contain-
ing n objective functions as explained in (1) by DSD, the
following steps are needed.

Step 1. The objective functions should be scaled if
necessary.

Step 2. Search for the anchor points or modified anchor
points.

f1

f2
Feasible objective

space

Pareto frontier

Utopia hyperplane

Anchor point

Anchor point

Fig. 1 Basic definitions of MOO in objective space
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Step 3. Form the interior of the utopia hyperplane P by

P =
n∑

i=1

αiμi,

n∑

i=1

αi = 1,

0 ≤ αi ≤ 1 (i = 1, ..., n), (2)

where αi are coefficients for generating reference points
denoted byM in the next step.

Step 4. Generate a set of evenly distributed reference
pointsM on the utopia hyperplane by varying αi in (2).

Step 5. Shrink the search domain. First, for each refer-
ence point M = (M1, ...,Mn) ∈ M, the following single
optimization problem is formulated similar to the physical
programming (Messac 1996; Messac and Mattson 2002):

Min
n∑

i=1

fi(x),

s.t. fi(x) ≤ Mi,

x ∈ D∗. (3)

In problem (3), the constraints fi(x) ≤ Mi are the search
domain formed on the basis of reference point M. There-
fore, different reference points result in different search
domains, and such different single objective optimization
problems are expected to have different solutions. However,
two nearby reference points may share a part of the other
search domains. Then, redundant solutions can be generated
and deteriorate the evenness of the Pareto set. To over-
come this problem in DSD algorithm, each search domain
is shrunk to be distinct. To achieve this, a new coordinate
system with the origin at a reference point M is introduced
to reduce the size of the search domain, and the axes of
the coordinate system form a given angle with respect to
a unit vector. Finally, the constraint to the single objective
optimization problem (3) is modified as

f̂i (x) ≤
n∑

j=1

MjBji (i = 1, ..., n), (4)

where A = B−1 is the transformation matrix from the
Cartesian coordinate system to the new local coordinate
system, and f̂i (x) = ∑n

j=1 fj (x)Bji is the ith objective
function based on the new local coordinate system. To cal-
culate the matrix B, the reader is referred to the original
paper (Utyuzhnikov et al. 2009).

Step 6. Solve the new single objective optimization based
on the shrunk search domain for each reference point M =
(M1, ...,Mn) ∈ M:

Min
n∑

i=1

fi(x),

s.t. f̂i (x) ≤
n∑

j=1

MjBji,

x ∈ D∗. (5)

Sometimes there may not be any feasible solution found
in the search domain, when the boundary of the feasible
objective space is non-convex. In such a context, the search
domain should be flipped to the opposite side of the utopia
hyperplane in order to search the points on the Pareto fron-
tier by reversing the inequalities in optimization problem (5)
as

f̂i (x) ≥
n∑

j=1

MjBji (i = 1, ..., n). (6)

Step 7. Rotate the search domain if necessary. In some
high-dimensional cases, it may happen that the orthogonal
projection of the utopia hyperplane does not fully cover the
entire Pareto surface. In order to capture uncovered region,
the search domain should be rotated if the reference point
M is located on the edge of the hyperplane. Here, defini-
tions of an edge reference point and edge Pareto point are
introduced.

Definition 5 Edge reference point: In the objective space
Y, the reference point located on the edge of the utopia
hyperplane is defined as an edge reference point.

Definition 6 Edge Pareto point: In the objective space Y,
the Pareto point located on the edge of the Pareto surface is
called an edge Pareto point.

Generally speaking, for each edge reference point, an
edge Pareto point can be found with the rotation strategy.
To realize this, a vector s is introduced as the outer normal
to the edge of the polygon on the utopia hyperplane (Fig. 2)
first.

si = bi−1 + βibi

|bi−1 + βibi | , βi = − (bi−1, bi )

(bi , bi )
, (7)

where bi = μi − μi−1 are the boundaries of the polygon.
Thus, a new vector l is defined by

l = − cos θnh + sin θsi , 0 < θ < π/2, (8)

where nh is the normal vector to the utopia hyperplane. By
changing θ from 0 to π/2, the rotation of the search domain



A modified rotation strategy for directed search domain algorithm in multiobjective 881

Fig. 2 Rotation of vector l

is from the normal direction of the hyperplane to the direc-
tion lying on the outer part of the polygon (Utyuzhnikov
et al. 2009). The rotation continues until no new solution is
captured.

It can be shown (Utyuzhnikov et al. 2009) that

A0 = sin γc

sin γ0
I + sin(γ0 − γc)

sin γ0
E (9)

where γc is the angle used to shrink the search domain,
cos γ0 = 1/

√
n, I is the unit matrix, and all elements of the

matrix E are unities.
In the rotation strategy, a rotation matrix R is needed to

map the unit vector l0 = (l0, l0, ..., l0)
T onto l:

Rl0 = l (10)

The matrix R is calculated by

R = DT DT, (11)

where D is an orthogonal matrix obtained by the Gram-
Schmidt orthogonalization procedure

D = Gram − Schmidt (l0, l, e3, ..., en). (12)

In (12), ek = (δ1k, δ2k, ..., δnk) where δij = 1 if i = j

and δij = 0 if i �= j (i, j = 1, ..., n). In (11), matrix T

describes an elementary rotation in the hyperplane created
by the vectors l0 and l:

T =

⎛

⎜⎜⎜⎜⎜⎜⎝

(l0, l) −√
1 − (l0, l)2 0 · · · 0√

1 − (l0, l)2 (l0, l) 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 0 0 ... 1

⎞

⎟⎟⎟⎟⎟⎟⎠
(13)

Thus, the matrix A on Step 5 above should be updated to
matrix Ar :

Ar = A0R
T. (14)

Meanwhile, the matrix B in the single-objective optimiza-
tion problem on Step 4 and 5 should be updated to matrix
Br :

Br = A−1
r . (15)

Step 8. Eliminate local Pareto solutions by a filtering
procedure.

For details of steps and strategies in DSD algorithm, the
reader is referred to the original paper (Utyuzhnikov et al.
2009; Erfani and Utyuzhnikov 2011).

3.2 DSD-II

As a modified DSD algorithm, DSD-II mainly improves the
shrinking procedure by a vector-based shrinking strategy. A
new vector v is defined as

v = Mc − M, (16)

whereMc = f (x) with x to be searched in the shrunk search
domain. Thereafter, the new shrinking inequality is given as

γ = arccos

∣∣∣∣
v · nh

‖v‖‖nh‖
∣∣∣∣ ≤ δ. (17)

By setting the value of δ, the search domain based on each
reference point is shrunk. Thus, two advantages are brought
for improvement of computational efficiency. On the one
hand, the shrinking calculation process is simplified so that
the complex coordinate system transformation is avoided.
On the other hand, the flipping procedure is eliminated since
the new shrunk search domain already covers both sides of
the utopia hyperplane.

As to the rotation strategy, DSD-II proposes modified
utopia hyperplane to remove the rotating procedure for fur-
ther enhancing the efficiency. However, this is achieved by
some increasing the computational time in comparison with
the original DSD algorithm. The reader is referred to the
paper (Erfani et al. 2013) for details of modified utopia
hyperplane generation.

4 A modified rotation strategy: DSD-III

On the basis of the original DSD algorithm, two modifica-
tions are proposed to strengthen the efficiency as well as to
generate a better distributed Pareto set:

1. With the use of dichotomy, the efficiency of searching
for the edge Pareto points is enhanced.

2. Based on some specific rotation angles, the evenness of
the Pareto set is improved.

The proposed approach, which is based on the original
DSD algorithm with the modified rotation strategy, is called
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DSD-III. This method is efficient in case the rotation strat-
egy is needed. It is more effective since the dichotomous
method is used rather than a passive search. The evenness
might be better because more Pareto points are added if
there are some gaps, which the original DSD method is not
able to fill out well enough. It is worth noting that DSD-III
can straightforwardly implement the non-flipping approach
from DSD-II.

4.1 Searching for the edge Pareto points

The major steps of searching for the edge Pareto points with
the use of dichotomy are illustrated as Fig. 3.

Step 1. Set the original search interval of the rotation
angle θ to [0 π/2].

Step 2. Calculate the midpoint of the current search
interval of θ :

θmid = θl + θu

2
, (18)

where θl and θu are the lower and upper bounds of the search
interval, respectively.

Fig. 3 Major steps of searching for the edg e Pareto points

Utopia Hyperplane

Pareto surface

Pso

edge Pareto point Pse

a nearby Pareto point

of Pso

Pareto point to be added

Fig. 4 Orthogonal projection of the hyperplane and Pareto surface

Step 3. Calculate the matrix Br based on θmid according
to (7)–(15). Then, solve the single-objective optimization
problem (5) or (6) if the search domain needs to be flipped.

Step 4. Update the search interval of θ . If no feasible
solution is found, then the upper bound of the search interval
should be updated as θu = θmid . Otherwise, the lower bound
should be updated as θl = θmid .

Step 5.Calculate the length of the updated search interval
�θ = θu − θl .

Step 6. Analyze the convergence. If the interval length
�θ is smaller than expected, then the process of the edge
Pareto points searching is completed, and the edge rota-
tion angle is θe = θl . Next, the edge Pareto point based on
the current reference point can be found according to the
rotation angle θe. Otherwise, another iteration is required.

4.2 Improve the evenness of the Pareto set

Based on an edge reference point, a Pareto point can be
acquired without rotation first, denoted as Pso (Fig. 4).
Then, with the use of rotation strategy, an edge Pareto point
Pse can be obtained. Thus, another definition is introduced.

Fig. 5 Geometrical relationship among the reference point and some
Pareto points
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Fig. 6 Pareto points of Case 1
by DSD (�αi = 0.05)

Fig. 7 Pareto points of Case 1
by DSD-II (�αi = 0.05)

Fig. 8 Pareto points of Case 1
by DSD-III (�αi = 0.05)

Table 1 Comparison on optimization performance in Case 1

�αi
DSD DSD-II DSD-III

η2 η3 η3,2

E t(s) np E t(s) np E t(s) np

0.1 1.47 34.2 87 2.44 7.31 84 1.47 4.62 87 21.4% 13.5% 63.2%

0.05 3.05 76.4 282 2.70 17.1 314 1.75 11.8 315 22.4% 15.4% 69.0%

0.025 6.77 160.2 972 2.19 57.1 1280 2.21 33.4 1206 35.6% 20.8% 58.5%

0.02 8.96 204.8 1467 2.92 84.3 1970 2.16 48.9 1863 41.2% 23.9% 58.0%

0.01 25.3 458.3 5443 2.59 345.3 7902 3.28 157.9 7335 75.3% 34.5% 45.7%
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Fig. 9 Pareto points of Case 2
by DSD (�αi = 0.05)

Fig. 10 Pareto points of Case 2
by DSD-II (�αi = 0.05)

Fig. 11 Pareto points of Case 2
by DSD-III (�αi = 0.05)

Table 2 Comparison on optimization performance in Case 2

�αi
DSD DSD-II DSD-III

η2 η3 η3,2

E t(s) np E t(s) np E t(s) np

0.1 1.49 45.2 87 2.44 13.7 84 1.49 18.6 87 30.3% 41.2% 136%

0.05 2.73 104.8 282 2.77 42.6 312 1.55 47.6 315 40.6% 45.4% 112%

0.025 5.46 253.0 972 2.12 151.4 1272 1.77 137.9 1191 59.8% 54.5% 91.1%

0.02 6.83 328.1 1465 2.22 219.5 1986 1.83 198.7 1851 66.9% 60.6% 90.5%

0.01 19.18 923.4 5440 2.34 711.9 7929 2.42 662.3 7267 77.1% 71.7% 93.0%
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Fig. 12 Pareto points of Case 3
by DSD (�αi = 0.1)

Definition 7 Edge point distance: For an edge Pareto point
Pse, the distance between Pse and the Pareto point Pso

obtained based on the same edge reference point without
rotation is called the edge point distance de, mathematically
defined as

de = |PsePso| = ‖Pse − Pso‖. (19)

In some cases, the edge point distance of an edge Pareto
point is so large that the Pareto set is not quasi-distributed.
In this case, more Pareto points based on the same refer-
ence point are required according to some specific rotation
angles.

First of all, the number of the Pareto points to be added,
denoted as na , should be determined as follows.

na =
[

de

dnpηd

]
, (20)

where dnp is the distance between two nearby Pareto points
already obtained before rotating the search domain, assume
Ps1 and Ps2 are a pair of nearby Pareto points, then dnp is
calculated by

dnp = ‖Ps1 − Ps2‖, (21)

and ηd is a parameter. By varying the value of ηd , the num-
ber of the Pareto points to be added is adjusted to guarantee

the even distribution of the Pareto set. The suggested value
of ηd is from 0.75 to 0.9. It is also worth noting that na

should be rounded to an integer.
Consider the geometrical relationship among the refer-

ence point M and some Pareto points, depicted in Fig. 5.
Then, the specific rotation angles θa can be determined as

θa = (θa1, θa2, ...θa(na−1)),

θai = arcsin(
|PsaiPso|
|PsaiM| sinβso) (i = 1, ..., na − 1), (22)

where |PsaiPso| is defined as

|PsaiPso| = i

na

|PsePso| = i

na

de, (23)

βso is given as

βso = arccos(
|PsoM|2 + |PsePso|2 − |PseM|2

2 |PsoM| |PsePso| ), (24)

and |PsaiM| is calculated as

|PsaiM| = (|PsoM|2 + |PsaiPso|2
−2cosβso |PsoM| |PsaiPso|)0.5. (25)

Finally, by rotating the search domain according to θa ,
the corresponding Pareto points can be acquired. With their
addition it becomes possible to strengthen the evenness of
the Pareto set.

Fig. 13 Pareto points of Case 3
by DSD-III approach
(�αi = 0.1)



886 K. Wang, S. V. Utyuzhnikov

Table 3 Comparison on optimization performance in Case 3

�αi
DSD DSD-III approach

ηt

E t (s) np E t(s) np

0.1 8.78 390.1 66 3.40 52.6 87 13.5%

0.05 21.86 786.9 225 6.87 101.0 317 12.8%

0.025 61.08 1634.3 781 8.47 236.3 1187 14.5%

0.02 104.81 2069.0 1181 8.22 292.8 1805 14.2%

5 Test cases

The DSD-III method is validated on four test cases, includ-
ing three numerical cases and one engineering case. The
results obtained by our approach are compared against the
original DSD algorithm with regards to the time required for
the whole optimization process and the distribution of the
Pareto set.

In order to mathematically describe the evenness of the
Pareto set, a coefficient of evenness needs to be defined
(Utyuzhnikov et al. 2009). For an ith Pareto point Pi

s (except
the anchor points) in the Pareto set, the distance vector
between it and other Pareto points is given by

di = (‖Pi
s − P1

s‖, ..., ‖Pi
s − Pi−1

s ‖,
‖Pi

s − Pi+1
s ‖, ..., ‖Pi

s − P
np
s ‖), (26)

where np is the number of Pareto points (including n anchor
points) contained in the Pareto set. Then, the effective
distance vector di

eff for Pi
s is defined as

di
eff = (min(di ), 2nd min(di ), ..., nth min(di )), (27)

where nth min(di ) is the nth smallest value of di .
Then, the coefficient of evenness E is determined as

E = max(d1eff , d2eff , ..., d
np−n

eff )

min(d1eff , d2eff , ..., d
np−n

eff )
. (28)

If E = 1, then the Pareto set is completely even. If E

increases, then the evenness of the Pareto set deteriorates.
In the whole multiobjective optimization process, MAT-

LAB R2015a is utilized for simulation. The fmincon opti-
mization function is used as a basis optimizer, in which the
active-set algorithm is chosen as the optimization algorithm.

5.1 Numerical test cases

First, we consider three numerical multiobjective optimiza-
tion cases.

5.1.1 Case 1

Case 1 is a relatively simple three-dimensional test case with
a concave Pareto frontier.

Min f (x) = (x1, x2, x3),

s.t. g1(x) = (x1 − 1)2 + (x2 − 1)2 + (x3 − 1)2 ≤ 1,

0 ≤ xi ≤ 1 (i = 1, 2, 3). (29)

The Pareto sets acquired with DSD, DSD-II, and DSD-
III are depicted in Figs. 6, 7, and 8, respectively, where �αi

is the step for changing αi in (2). Comparison among the
three algorithms on the evenness coefficient E, as well as
the required computational time t , is presented in Table 1.
Here, np is the number of Pareto points obtained. η2 and
η3 are the ratios of the DSD-II and DSD-III computational
times to that of DSD, respectively. To compare DSD-III with
DSD-II, the parameter η3,2 is set, which is the ratio of the
DSD-III computational time to that of DSD-II.

Compared with the DSD algorithm, the DSD-III
approach drastically reduces the computing time by about
65% − 85%. Meanwhile, it also improves the coefficient
of evenness E from 6 − 25 to only 1.5 − 3. Thus, a more
even Pareto set is obtained by DSD-III. In DSD-III, as
the step �αi decreases, more reference points are gener-
ated. Hence, more Pareto points are needed to provide a
quasi-even distribution of the Pareto set.

Compared with DSD-II, the DSD-III approach cuts down
the computational time by nearly 30%−55%. The efficiency

Fig. 14 4-bar truss structure
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of DSD-III increases as the step �αi decreases. This is
because more redundant solutions are generated by DSD-II.
It is worth noting that the coefficient of evenness E retains
on approximately the same level of about 1.5 − 3 for both
DSD-II and DSD-III.

5.1.2 Case 2

Case 2 is the three-dimensional test caseDT LZ2 (Abraham
and Jain 2005) on a concave Pareto frontier, which is a little
more complex than Case 1.

Min f (x) = (f1(x), f2(x), f3(x)),

s.t. 0 ≤ xi ≤ 1 (i = 1, 2, 3),

where

f1(x) = (1 + g(x3)) cos(x1π/2) cos(x2π/2),

f2(x) = (1 + g(x3)) cos(x1π/2) sin(x2π/2),

f3(x) = (1 + g(x3)) sin(x1π/2),

g3(x) = (x3 − 0.5)2. (30)

The Pareto sets generated with DSD, DSD-II, and DSD-
III are shown in Figs. 9, 10 and 11, respectively. Comparison
among the three methods on the optimization performance
is presented in Table 2.

In Case 2, DSD-III decreases the optimization time by
about 30%− 60% compared with DSD, whilst reducing the
coefficient of evenness E from 5− 19 to less than 2.5. Sim-
ilar to Case 1, the smaller �αi is, the better evenness of the
generated Pareto set is achieved.

In this test case, when �αi is equal or larger than 0.05,
DSD-II performs better with respect to the computational
time. This is mainly because not so many redundant solu-
tions are generated under this circumstance. However, as
�αi drops below 0.05, DSD-III works faster. As to the coef-
ficient of evenness, DSD-III slightly outperforms DSD-II. It
improves E by about 0.4 − 1 while both methods maintain
it at a high level, from about 1.5 to 2.5.

5.1.3 Case 3

Case 3 is a three-dimensional test case with a number of
constraints. The objective functions are more complex.

Min f (x) = (f1(x), f2(x), f3(x)),

s.t. 0 ≤ xi ≤ 2 (i = 1, 2, 3),

0 ≤ f1 ≤ 2, 0 ≤ f2 ≤ 2,

where

f1(x) = [1 + (x3 − 0.5)2] cos(x1π/2) cos(x2π/2),

f2(x) = [1 + (x3 − 0.5)2] cos(x1π/2) sin(x2π/2),

f3(x) = (5 − x3) − 3 sin(f1) + 2 cos(f2). (31)

In Case 3, DSD-II turned out to be too sensitive to the
initial values of the design variables. Therefore, only the
Pareto sets obtained with DSD and DSD-III are shown
in Figs. 12 and 13, respectively. Comparison between
these two approaches on the optimization performance is
presented in Table 3.

In Case 3, the DSD-III approach drastically cuts down
the optimization time by about 85%, and generates a Pareto

Fig. 15 Pareto points of the 4-bar problem by DSD (�αi = 0.05)
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Fig. 16 Pareto points of the 4-bar problem by DSD-II (�αi = 0.05)

Fig. 17 Pareto points of the 4-bar problem by DSD-III (�αi = 0.05)

Table 4 Comparison on optimization performance in the 4-bar problem

�αi
DSD DSD-II DSD-III

η2 η3 η3,2

E t(s) np E t(s) np E t(s) np

0.1 5.96 19.8 75 3.58 10.2 119 3.13 4.31 105 51.5% 21.8% 42.3%

0.05 12.57 43.7 249 3.67 31.2 436 4.13 13.9 391 71.4% 31.8% 44.6%

0.025 14.57 101.2 873 4.29 130.3 1667 4.17 47.2 1500 129% 46.6% 36.2%

0.02 14.86 141.0 1336 4.46 226.5 2567 4.68 69.1 2329 161% 49.0% 30.5%
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set with better evenness than the original DSD algorithm at
the same time.

5.2 Engineering design problem

In this case, the four-bar truss multiobjective optimization
problem is analyzed (Koski 1988). The truss scheme is
depicted in Fig. 14. The magnitude of the suspended load F

is 10kN.

Min f (x) = (f1(x), f2(x), f3(x)),

s.t. 0 ≤ Ai ≤ 5cm2 (i = 1, 2, 3, 4),

|σi | ≤ 10kN/cm2 (i = 1, 2, 3, 4),

where

x = (A1, A2, A3, A4),

f1(x) = |σ1| ,
f2(x) = |σ4| ,
f3(x) = V. (32)

In the above problem, Ai(i = 1, 2, 3, 4) is the size of Bar i,
σi(i = 1, 2, 3, 4) is the stress in Bar i, and V is the volume
of the structure. The objective is to design a four-bar truss
with optimal stress in Bar 1 and 4, and optimal volume of
the structure.

The Pareto sets obtained with DSD, DSD-II, and DSD-
III are shown in Figs. 15, 16, and 17, respectively. The three
approaches are compared with each other in Table 4.

In this engineering design problem, DSD-III reduces the
computational time by nearly 50% − 80% compared with
DSD. Furthermore, the evenness coefficient E is also sig-
nificantly improved from about 6 − 15 to 3 − 4.5 in the
meantime.

Compared with DSD-II, DSD-III largely cuts down the
computational time by nearly 55%− 70%. Both algorithms
maintain the evenness coefficient E at the same level, from
about 3 to 4.5.

It is worth noting that when �αi is equal to or smaller
than 0.025, the computational efficiency of DSD-II is worse
than that of DSD. This is due to that a fairly large number
of redundant solutions are generated in this case.

6 Conclusion

A modified rotation strategy for DSD algorithm, DSD-III
method, has been proposed. One of the two modifications
is to search for the Pareto points located on the edge of
Pareto frontier with the use of dichotomy method. Instead
of changing the rotation angle step by step, the DSD-III
approach can directly find out the edge Pareto point accord-
ing to the rotation angle acquired by dichotomy. Thus, the
whole optimization time is saved. The other modification is

to insert a number of Pareto points to improve the evenness
of the Pareto set. These Pareto points are obtained accord-
ing to some specific rotation angles calculated in a particular
way.

The new technique has been tested on different cases,
including three numerical cases and one engineering case.
Its performance has been compared with that of the orig-
inal DSD and DSD-II algorithms. Compared with DSD,
DSD-III always performs better with respect to both the
computational time and the evenness of the Pareto set. As
the density of the Pareto set increases, the effect of DSD-III
in enhancing the evenness is heightened. In comparison with
DSD, both DSD-II and DSD-III approaches can equally
improve the evenness of the Pareto. As to the computational
efficiency, DSD-III performs better than DSD-II in general.
In particular, the DSD-III algorithm can be recommended
for the problems in which the orthogonal projection of the
Pareto surface onto the utopia hyperplane far exceeds the
utopia polygon.
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