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Abstract

The application of the theory of difference potentials to the problem of active shielding and noise control
is considered. Difference potential theory allows us to obtain the general solution of the problem in a finite-
difference formulation. The solution is valid for arbitrary space domains, medium and boundary conditions.
It only requires the information on the total sound (both “friendly” and “adverse”) at the perimeter of the
domain to be shielded. In contrast to the previous publications, in the current paper the mechanism of active
shielding solution based on the difference potential theory is analysed. The theory of difference potentials is
applied to the system of acoustic equations. The correspondence between the finite-difference solution and
the continuous solution based on Green’s function is shown for the case of a uniform medium. Different
possible representations of the active shielding source terms are analysed. A clear physical interpretation
of the optimal space step in the finite-difference solution is provided. The results can be important for both
understanding the solution of the active shielding problem and practical applications.
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1. Introduction

The problem of active noise control is a relatively new but extensively developed research
activity in acoustics. In this problem, it is assumed that either some internal or external area is to
be shielded via implementation of additional (secondary) sources, i.e. active shielding (AS). This
is a key distinguishing feature of the approach from “passive” shielding where noise reduction is
performed via mechanical means. Obviously, the mechanical route to shielding cannot be always
implemented. In fact, often active and passive controls should be combined. The latter control
may not be sufficient to filter low frequencies, while the former control is mostly appropriate for
such frequencies. The problem becomes much more complicated however, if some “friendly”
sound is assumed to be in the shielded area.

There are many publications devoted to the problem of AS and sound control. First theoretical
papers in this field by Jessel, Malyuzhinets and Fedoryuk appeared about 30 years ago [4,7,15],
while the first publications related to realistic practical applications appeared much later (see,
e.g., [1,3]). Some of the noise suppression techniques are based on sound control in selected
discrete [1–3,26] or directional [27] areas. Other techniques, in particular those developed by
Kincaid et al. [9,10], assume detailed information regarding the sources and nature of noise.
A number of publications are devoted to optimization of the strengths of spatially distributed
secondary sources to minimize a quadratic pressure cost function [17,19]. The JMC method [8,
16,25], based on Huygens’ principle, requires only the information on the undesirable field in the
perimeter of the shielded domain. Yet this method cannot be used if a desirable field, generated
in the shielded domain, has to be taken into account. The most comprehensive theoretical and
practical reviews of the AS problem and its technical implementation can be found in books [5,
18,23] and report [25].

As mentioned above, generally in the standard approaches to AS, it is necessary to know the
characteristics of “adverse” sources including their location. From a practical standpoint, this
information is not often available. A separate class of methods requires the information on total
sound (both “friendly” and “adverse”) only at the perimeter of the domain to be shielded. It is
very important to emphasize that the knowledge of both the “adverse” and “friendly” components
is not necessarily required. Generally, these approaches are based on accessibility of Green’s
function [15,24] where the exact solution of the AS problem is obtained for the Helmholtz equa-
tion with constant coefficients. An original approach based on the Difference Potential Theory
(DPT) [20,21] allows the ability to achieve the same end in a much more general formulation.
This solution is applicable to arbitrary geometric configurations, medium and boundary condi-
tions. There are only two principal requirements for its practical implementation. The problem
must be linear and possess a unique solution. In contrast to the other approaches described above,
the ultimate AS solution is achieved in a finite-difference form. From a practical standpoint this
may not necessarily be treated as a drawback because the implementation of the AS assumes
some discrete distribution of the AS sources. This approach has been analysed for application
to the Helmholtz equation and its analogue with variable coefficients in [11–14]. A comprehen-
sive analysis of continuous and finite-difference surface potentials mostly appropriate for the
Helmholtz-type equation is carried out by Tsynkov in [24]. In [22] the solution of the linear AS
problem is obtained in the continuous space for the acoustic equation with constant and variable
coefficients. Whereas optimization of AS sources is studied in detail in the papers cited above,
not much attention has been paid to the wave analysis of AS process itself.

It is to be noted that the general solution of the AS problem is generally applicable to 3D
problems. Yet some important properties of the solution remain hidden unclear behind the math-
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ematical formalism. In the current paper the details of the AS solution based on the DPT are
provided for the case of monochromatic wave propagation in a duct with a termination. The
technique [21] is subsequently applied to the system of acoustic equations. It is shown how
waves, that are formally identical, can be distinguished in the AS solution. It is proved that the
AS sources are uniquely defined under some general conditions; otherwise, the solution becomes
non-unique, and some optimal solution is obtained. The AS source term is derived in a one-layer
form, and its physical interpretation is given. The correspondence between the finite-difference
and continuous solutions is shown. It is demonstrated that the knowledge of the reflection coeffi-
cients of the duct sides is not required for the AS provided by the DPT. This property of the AS
solution may have a substantial impact on its potential applications because in practical problems
the values of reflection coefficients are usually not known.

2. Mathematical statement of the active shielding problem

Mathematical formulation of the AS problem is presented in the following form. Let us as-
sume that noise propagation is described by some linear boundary value problem in a domain D0:

Lw = S, (1)

w ∈ UD0, (2)

where UD0 is a linear subspace of functions defined on D0 such that the solution of problem (1),
(2) exists and is unique.

In particular, the domain D0 may be a free space, and the boundary condition (2) can be
represented by the Sommerfeld-type boundary conditions [11].

Let us consider now some domain D such that D ⊂ D0. The sources on the right-hand side
can be situated both in D and outside of D:

S = Sf + Sa,

suppSf ⊂ D,

suppSa ⊂ D0 \ D. (3)

Here, Sf is the source of “friendly” sound, while Sa is the source of “adverse” noise.
Assume that we know the distribution of function w∂D at the boundary of D. It is important

to emphasize that only this information is assumed to be available. In particular, the distribution
of the sources S on the right-hand side is not known. The AS problem is reduced to seeking
additional sources g in D0 \ D such that the solution of problem

Lw = S + g, (4)

w ∈ UD0, (5)

coincides with the solution of problem (1), (2) on subdomain D with S = Sf . Thus, the AS
problem mathematically belongs to the class of inverse source problems [6]. It is worth noting
here that an “obvious” solution g = −Sa is not appropriate because the distribution of Sa is not
known. Moreover, if the density Sa is known, the trivial solution g = −Sa does not appear to be
realistic for a practical implementation.
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3. Difference potential formalism and main theorem

Following the DPT [21], let us introduce some grid M0 in D0. We introduce subsets of grid
M0 as follows: M+ = M0 ∩ D, M− = M0\M+. Assume that Eq. (1) is approximated on some
stencil by equation

Lhw
(h)

∣∣
m

def=
∑
n

amnw
(h)
n = S

(h)
|m , m ∈ M0. (6)

Equation (6) is completed by the boundary condition approximating continuous boundary con-
dition (2):

w(h) ∈ U
(h)
D0

, (7)

where U
(h)
D0

is a linear discrete space that is a discrete counterpart of space UD0 .

The extensions of sets M0, M+, M− due to the stencil we denote as N0, N+, N−, respec-
tively. It is clear that the sets N+ and N− intersect each other. We interpret their intersection as
the grid boundary γ of the domain D: γ = N+ ∩ N−. In turn, the grid boundary γ is split into
two nonintersecting sub-boundaries: γ = γ + ∪ γ −, where γ + = γ ∩ M+ and γ − = γ ∩ M−.
Now we seek the finite-difference solution of AS problem (4), (5).

The AS problem is then formulated in a finite-difference form as follows. We consider prob-
lem (6), (7) where

S
(h)
|m = S

(h)
f |m + S

(h)
a|m,

suppS
(h)
f ⊂ M+,

suppS(h)
a ⊂ M−. (8)

It is required to find such an additional source term

g(h): suppg(h) ⊂ M− (9)

that the solution of the problem

Lhw
(h)
g

∣∣
m

= S
(h)
|m + g(h), m ∈ M0,

w(h)
g ∈ U

(h)
D0

, (10)

coincides on N+ ⊂ N0 with the solution of problem (6)–(8) if S
(h)
a ≡ 0:

Lhw
(h)
f

∣∣
m

= S
(h)
f |m, m ∈ M0,

w
(h)
f ∈ U

(h)
D0

. (11)

The only function required, wγ , is supposed to be known, say, from measurements.
The general solution of the AS problem in the discrete formulation is provided by the follow-

ing primary theorem [20].
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Theorem 1. The general solution of AS problem (6), (7), (10), (11) is given by

g(h) =
{−Lhv

(h)|M− , if m ∈ M−,

0, if m ∈ M+,
(12)

where v(h) is an arbitrary function such that

v(h) ∈ U
(h)
D0

, v(h)
γ = w(h)

γ . (13)

Thus, if the source term g(h) satisfies the conditions of the theorem, then w
(h)

g|N+ = w
(h)

f |N+ .
The proof of this theorem can be found in [21]. It is important to emphasize that solution (12)

is obtained for the general statement of the problem formulated in the previous section and not
based on the knowledge of the specific Green’s function.

It is clear that the function v(h) in (12) is not unique. A partial case of this function corresponds
to v(h)|M0\γ = 0. In this case the AS source term is only placed on a minimal possible area,
specifically at γ −. In [11], it is formulated as a proposition that such sources are to be minimal
in L1.

4. Discrete solution of 1D acoustic equations with termination

Currently, in the literature solution (12) has been only applied to the Helmholtz equation [11–
14,24]. We implement this technique to the acoustic equations. It allows us to obtain some
additional properties of the solution. In order to understand better the nature and characteris-
tics of the solution, it is investigated in a 1D case with application to a duct flow. The primary
sources are assumed to be in the interval of 0 < x � L, while the secondary source is placed
at x = 0 to shield the area x < 0. It is to be noted that the locations of the primary sources are
unknown. The duct is assumed to be closed at x = L. For the sake of simplicity, temporarily, we
assume that the duct is closed at x = −L by an absolutely absorbing wall.

Considering the 1D system of acoustic equations for isentropic flow:

pt + ρc2ux = fp,

ut + px/ρ = fu. (14)

Here, p is the sound pressure, ρ is the density of air, u is the particle velocity and c is the sound
speed, fp and fu are acoustic sources.

Assume that the acoustic sources are time-harmonic:

fp = ρc2f̂peiωt ,

fu = cf̂ue
iωt . (15)

Hence, the dependent variables can be rewritten in the following form:

p = ρcp̂eiωt ,

u = ûeiωt . (16)
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The equations for the Fourier spectrum are as follows:

ikp̂ + ûx = f̂p,

ikû + p̂x = f̂u. (17)

The system for the Fourier components can easily be written in the following characteristic form:

L̂+R̂+ = f̂ +,

L̂−R̂− = f̂ −, (18)

where L̂+ def= ik + ∂
∂x

, L̂− def= ik − ∂
∂x

, R̂+ def= p̂ + û, R̂− def= p̂ − û, f̂ + = f̂p + f̂u, f̂ − = f̂p − f̂u.
The functions R̂+ and R̂− are the Fourier counterparts of the Riemann invariants of system (14)
propagating along the characteristics dx

dt
= c and dx

dt
= −c, respectively.

In order to consider a finite-difference formulation of the problem, let us introduce a uni-
form grid with a constant step h = L/M . Assume that the grid M0 is represented by nodes
i = −M, . . . ,M , then the set M+ corresponds to nodes i = −M, . . . ,−1.

It is natural to approximate these equations on account of the hyperbolic properties of the
original equations written in characteristics. It can be done if we use the “upwind” approxima-
tion: (

ik + 1

h
∇

)
R̂+

m = f̂ +
m , (19)(

ik − 1

h
�

)
R̂−

m = f̂ −
m , m ∈ M0, (20)

where

∇si
def= si − si−1, �si

def= si+1 − si .

Then, in the case of Eq. (19) for R̂+ the boundary γ ≡ γ + = M+ ∩ N− is one-layer and corre-
sponds to m = −1, while γ − = ∅. In turn, in the case of Eq. (20) the boundary γ ≡ γ − is also
one-layer and coincides with the point m = 0.

System (19), (20) is completed by the following boundary conditions:

R̂+
−M = 0, R̂−

M = rlR̂
+
M. (21)

Here, rl is the reflection coefficient of the wall on the right-hand side. The reflection coefficient
rl = 0 corresponds to a fully absorbing wall while rl = 1 represents the case of an absolutely
reflecting wall.

The solution of problem (19)–(21) is given by the following two propositions.

Proposition 1. The solution of Eq. (19) with boundary condition (21) is as follows:

R̂+
m =

∑
p�m

hf̂ +
p

(1 + ikh)m−p+1
. (22)
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Proof. The proof can be easily done via mathematical induction. First, the statement of the
proposition is valid if m = −M + 1:

R̂+
−M+1 = hf̂ +

−M+1

1 + ikh
.

Having assumed that the proposition statement is valid for some m > −M + 1, let us prove that
it is valid for m + 1. From Eq. (19) we have

R̂+
m+1 = hf̂ +

(m+1)−p+1

1 + ikh
=

∑
p�m+1

hf̂ +
p

(1 + ikh)(m+1)−p+1
. �

Proposition 2. The solution of boundary value problem (20), (21) is given by

R̂−
m = rlR̂

+
M

(1 + ikh)M−m
+

∑
p�m

hf̂ −
p

(1 + ikh)1−m+p
. (23)

Here, the first term follows from (19) and integrating the homogeneous equation (20). The
second term can be proved similarly to Proposition 1.

5. Discrete solution of AS problem with termination

Let us now consider a discrete solution of the AS problem. Using Theorem 1 we are able to
find the AS source acting only at the boundary γ . It is to be noted that if we apply the theorem
to Eq. (19), the operator Lh corresponds to the operator ik + 1

h
∇ . In turn, if the result of the

theorem is applied to Eq. (20), the operator Lh coincides with the operator ik − 1
h
�. Consider

now a partial case of the function v(h) in (12) such that for Eq. (19)

vh =
{ ̂̃R+

−1, if m = −1,

0, else,
(24)

while for Eq. (20)

vh =
{ ̂̃R−

0 , if m = 0,

0, else.
(25)

Here, the values of ̂̃R+
−1 and ̂̃R−

0 are to be taken from the measurements.
Then, the appropriate system of equations including the AS source terms becomes:(

ik + 1

h
∇

)
R̂+

m = f̂ +
m + ĝ+

0 δm,0, (26)(
ik − 1

h
�

)
R̂−

m = f̂ −
m + ĝ−

0 δm,0, m ∈ M0. (27)



Author's personal copy

V.S. Ryaben’kii et al. / Advances in Applied Mathematics 40 (2008) 194–211 201

Here, δm,0 = 1 if m = 0, otherwise δm,0 = 0. The AS source terms are given by

ĝ+
0 =

̂̃R+
−1

h
,

ĝ−
0 = −

(
ik + 1

h

)̂̃R−
0 . (28)

In our case, in order to substitute the measurement values, we are able to obtain them from exact
solution (22), (23):

̂̃R−
0 = rlR̂

+
M

(1 + ikh)M
+

∑
p�0

hf̂ −
p

(1 + ikh)1+p
, (29)

̂̃R+
−1 =

∑
p�−1

hf̂ +
p

(1 + ikh)−p
. (30)

To demonstrate how the AS solution (28) performs, let us consider the two extreme cases of
absolutely reflecting (rl = 1) and absorbing (rl = 0) walls on the right-hand side, respectively.
Assume that in both cases the AS solutions coincide each other. In the case of the absorbing wall,
this can be achieved if we include the following additional source term on the right-hand side of
Eq. (20) to compensate for the absorption of the wave R̂+:

f̂ −
M = (1 − rl)

R̂+
M

h
. (31)

Then, in both cases we have the same ̂̃R+
−1 and ̂̃R−

0 in the measurements, hence we obtain the
same AS source terms. According to the main theorem, sources (28) completely provide the
AS. Meanwhile, we can see, on one hand the AS filters the wave generated by f̂ −

M (if rl = 0)
as the wave is related to the external source. On the other hand, formally the same AS remains
the wave related to the reflection (if rl = 1) and having the characteristics coinciding with the
previous wave. Such a paradoxical situation, at first glance, can be explained via the analysis of
Green’s function.

The solution of problem (19)–(21) can be represented via Green’s matrix function. For this
purpose, the following two auxiliary problems are to be solved:(

ik + 1

h
∇

)
Ĝ

(1)
1,i|0 = δi,0,(

ik − 1

h
�

)
Ĝ

(1)
2,i|0 = 0, m ∈ M0, (32)

with the following boundary conditions:

Ĝ
(1)
1,−M|0 = 0, Ĝ

(1)
2,M|0 = rlĜ

(1)
1,M|0 (33)

and



Author's personal copy

202 V.S. Ryaben’kii et al. / Advances in Applied Mathematics 40 (2008) 194–211(
ik + 1

h
∇

)
Ĝ

(2)
1,i|0 = 0,(

ik − 1

h
�

)
Ĝ

(2)
2,i|0 = δi,0, m ∈ M0, (34)

subject to the same kind of boundary conditions:

Ĝ
(2)
1,−M|0 = 0, Ĝ

(2)
2,M|0 = rlĜ

(2)
1,M|0. (35)

The solutions of these problems are as follows:

Ĝ
(1)
1,m|0 = θ(m)α−m−1

h , Ĝ
(1)
2,m|0 = rlα

−2M−1+m
h (36)

and

Ĝ
(2)
1,m|0 = 0, Ĝ

(2)
2,m|0 = θ(−m)αm−1

h . (37)

Here, m ∈ M0 and αh = 1 + ikh,

θ(m) =
{

0 if m < 0,

1 if m � 0.

Thus, the appropriate Green’s functions are given by

Ĝ
(1)
m|0 = α−m−1

h

(
θ(m)

rlα
2(m−M)
h

)
, Ĝ

(2)
m|0 = αm−1

h

(
0

θ(−m)

)
. (38)

Having introduced the following vectors

Ŵi = (
R̂+

i , R̂−
i

)T
, (39)

F̂i = (
f̂ +

i , f̂ −
i

)T + δi,0
(
ĝ+

0 , ĝ−
0

)T ≡ (
F̂+, F̂−)T

, (40)

system (19), (20) can be written in the following form:

L̂hŴh = F̂h, (41)

where L̂h is the appropriate finite-difference operator of the system.
The solution of problem (19)–(21) can be represented via the following convolution operation:

Ŵ = Ĝ ∗ F̂ , (42)

where

Ĝm|0 =
(

θ(m)α
−(m+1)
h 0

rlα
−2M+m−1
h θ(−m)αm−1

h

)
. (43)
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On the definition, this expression means as follows:

Ŵm =
M∑

−M

Ĝm−p|pF̂ph. (44)

In order to prove (42), the expression can be rewritten in the following equivalent form:

Ŵ = F̂+ ∗ Ĝ(1) + F̂− ∗ Ĝ(2). (45)

Then,

LhŴh = F̂+
h ∗ LhĜ

(1)
h + F̂−

h ∗ LhĜ
(2)
h

= F̂+
h ∗ (δ,0)T + F̂−

h ∗ (0, δ)T = F̂h. (46)

Thus, the solution of problem (19)–(21) is given by

R̂+ = Ĝ
(1)
1 ∗ (

f̂ + + ĝ+
0 δ0

) + Ĝ
(2)
1 ∗ (

f̂ − + ĝ−
0 δ0

)
,

R̂− = Ĝ
(1)
2 ∗ (

f̂ + + ĝ+
0 δ0

) + Ĝ
(2)
2 ∗ (

f̂ − + ĝ−
0 δ0

)
. (47)

From (33) it immediately follows that the boundary conditions (21) are also satisfied.
If m < 0, for R̂+ we have the following solution:

R̂+
m =

∑
θ(m − p)hf̂ +

p α
−m+p−1
h =

∑
p�m

hf̂ +
p α

−m+p−1
h . (48)

Thus, if m < 0, the additional term ĝ+
0 δ0 in (26) provides the field coinciding with the solution

without the effect of external noise (22). It is important to note that the result does not depend on
the value of ĝ+

0 . Thus, it can be set as ĝ+
0 = 0. This means that no AS is required for the func-

tion R̂+. This conclusion also follows from the property of equation (19) and the R+-Riemann
invariant. Nevertheless, under some conditions the contribution of ĝ+

0 can be substantial for the
AS of R̂−. These conditions are discussed below.

If m < 0, the solution of problem (20), (21) is given by

R̂−
m =

∑
p

rlhf̂ +
p α

−2M−1+m+p
h +

∑
p�m

hf̂ −
p α

−1+m−p
h + hĝ−

0 αm−1
h + rlhĝ+

0 α−2M−1+m
h

= rlR̂
+
Mαm−M

h + rlhĝ+
0 α−2M−1+m

h +
∑
p�m

hf̂ −
p α

m−1−p
h + hĝ−

0 αm−1
h . (49)

From the exact solution (23) we have

̂̃R−
0 = rlR̂

+
Mα−M

h +
∑
p�0

hf̂ −
p α

−1−p
h . (50)
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Hence, if m < 0, from (28) it follows that

R̂−
m = rl

̂̃R+
−1α

−2M−1+m
h +

∑
m�p<0

hf̂ −
p α

m−1−p
h . (51)

Thus, solution (51) coincides with the solution of (19)–(21) without the “adverse” noise, i.e.
f̂ +

p = 0, f̂ −
p = 0 for p � 0. The first term in (51) is responsible for the “echo” of the “friendly”

sound. Thus, the function of the additional sources in the AS solution provided by the primary
theorem is not limited by noise elimination but can also include the restoration of the echo of the
“friendly” sound. It is important to note for further discussion that in (51) only the echo of the
“friendly” sound explicitly includes the reflection coefficient rl .

Thus, even if a wave arising from the right-hand side of the shielded domain is the same and
the AS source is the same, the filtering procedure might be different due to the influence of the
boundary condition on Green’s function. It is important to underline here again that in the solu-
tion provided by the DPT the knowledge of Green’s function is not required. The current analysis
only helps us to reveal how this solution performs. It is worth noting that the AS source terms
remain the same if sonic waves are spread in a nonuniform medium, where Green’s function
solution obtained above is not valid.

It is important to note that the AS solution requires neither the knowledge of the reflection co-
efficient r nor the knowledge of a noise source location. All the required information is included

in the values ̂̃R+
−1 and ̂̃R−

0 obtained from an experiment. This information can include the total
contribution of both internal and external sources. Since the Riemann invariants do not carry a
physical meaning, some physical values, e.g. the pressure and velocity, are to be measured. Tak-
ing into account the grid resolution requirement of kh 
 1 all the measurements can be done at
only one point.

It is worth noting that if rl > 0 and ĝ+
0 is neglected, then the first term in (51) is absent and

the AS filters the reflection of the “friendly” sound from the right-hand side as well. Thus, the
AS source acts in the anti-phase to the wave incoming only if the echo of the “friendly” noise is
not taken into account.

From the analysis of solution (49), the following important conclusions can be stated. If the
sound echo is substantial and the AS is implemented by a point source, then it is uniquely de-
termined. If the reflection of “friendly” sound is not important, the optimal AS corresponds to
ĝ+

0 = 0. In this case, if the source ĝ+
0 exists, it operates in vain. From (30), it follows that if

“friendly” sources are absent, ĝ+
0 automatically equals zero. In contrast to ĝ+

0 , the other source
ĝ−

0 is uniquely determined.

6. Continuous case

It is useful to compare the finite-difference solution against the continuous solution. In the
continuous space, the Green’s matrix is as follows:

Ĝ(x,0) =
(

e−ikxθ(x) 0

rle
−ikxe−i2k(L−x) eikxθ(−x)

)
. (52)

It is possible to see that this continuous matrix corresponds to the limit of matrix (43) if h → 0.
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The vector of the AS point source term is represented by

q̂0(x) = δ(x)
(̂̃R+

0 ,−̂̃R−
0

)T

where δ(x) is the delta-function. Then, the exact solution of the continuous problem represented
by Ĝ ∗ F̂ is as follows.

If x � 0, the R̂+-Riemann invariant is given by

R̂+(x) = e−ikx

x∫
−L

eikξ f̂ +(ξ) dξ. (53)

Hence,

̂̃R+(0) =
0∫

−L

eikξ f̂ +(ξ) dξ. (54)

If x � 0, R̂−-Riemann invariant is the following:

R̂−(x) = rle
ik(x−2L)

L∫
−L

eikξ f̂ +(ξ) dξ + eikx

L∫
x

e−ikξ f̂ −(ξ) dξ + rle
ik(x−2L) ̂̃R+

0 − eikx̂̃R−
0

= rle
ik(x−L)R̂+

L + eikx

L∫
x

e−ikξ f̂ −(ξ) dξ + rle
ik(x−2L) ̂̃R+

0 − eikx ̂̃R−
0 . (55)

Taking into account

̂̃R−
0 = rle

−ikL ̂̃R+
L +

L∫
0

e−ikξ f̂ −(ξ) dξ, (56)

we have

R̂−(x) = rle
ik(x−2L) ̂̃R+

0 + eikx

L∫
x

e−ikξ f̂ −(ξ) dξ. (57)

Let us introduce the transition matrix A from the Riemann invariants to the original variables
such that (

R̂+, R̂−)T = A(p̂, û)T .
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Then,

A =
(

1 1
1 −1

)
and Green’s function in the original variables is given by

Ĝ = A−1ĜA. (58)

Ultimately, Green’s function is as follows:

Ĝ(x,0) = 1

2

(
Θ+ + Ψ Θ− + Ψ

Θ− − Ψ Θ+ − Ψ

)
, (59)

where Θ±(x) = e−ikxθ(x) ± eikxθ(−x), Ψ (x,L) = rle
ik(x−2L).

The source term in the original variables is given by

q̂0(x) = A−1ĝ0(x) = δ(x)(û0, p̂0)
T , (60)

while under the requirement of approximation kh 
 1, the finite-difference AS source term is as
follows:

q̂
(h)
0 = A−1ĝ

(h)
0 = 1

h
(û0, p̂0)

T . (61)

It is worth representing the source term (61) via the Riemann invariants R̂+ = p̂
ρc

+ û and R̂− =
p̂
ρc

− û:

q̂
(h)
0 = A−1ĝ

(h)
0 = 1

2h

(
R̂+

0 − R̂−
0 , R̂+

0 + R̂−
0

)T
. (62)

If the reflection is not important, the AS source term (60) is not minimal in L2. In order to
show this, the energetic norm of the source can be represented via the Riemann invariants:

∥∥q̂
(h)
0

∥∥2
2 = 1

4h2

(∣∣R̂+
0 + R̂−

0

∣∣2 + ∣∣R̂+
0 − R̂−

0

∣∣2) � 1

2h2

∣∣R̂−
0

∣∣2
. (63)

It is easy to see that the energetically optimal solution corresponds to R̂+
0 = 0. This solution also

has the minimal norm in L1. This immediately follows from the next simple inequality:

1

2

∣∣R̂− + R̂+∣∣ + 1

2

∣∣R̂− − R̂+∣∣ �
∣∣R̂−∣∣. (64)

Thus, the minimum is reached at R̂+ = 0 in both L1 and L2. In contrast to [12–14], we consider
the optimization having assumed a priori that the AS source term is situated only at boundary γ −.

If x < 0, the contribution to the solution in the original variables made by the AS is given by

Ŵc = eikx

2

(
R̂−

0 − rle
−i2kLR̂+

0

)
(−1,1)T . (65)
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This field provides the AS if we have the delta-function source (60). In reality we are not able
to implement such a source. Instead, we consider the finite-difference solution (61) and assume
that the source has a physical extent of �:

q̂(x) = 1

h
θ(x + �/2)

[
1 − θ(x − �/2)

]
(û0, p̂0)

T . (66)

This source term generates the following field:

Ŵh = G ∗ q̂ = 2Ŵc

kh
sin

k�

2
. (67)

In order to generate the same field Ŵc, the parameter h is taken to be approximately equal to the
thickness of the source �:

h = 2

k
sin

k�

2
≈ �, (68)

and the thickness of the source must be small enough to satisfy the requirement k� 
 1. Relation
(68) seems to be natural, since h should be as small as possible on one hand and not less than the
source thickness on the other hand. The latter requirement follows from the assumption of the
point AS source.

In the original variables, the governing equations for the Fourier spectrum including the AS
are as follows:

ikp̂ + ûx = f̂p + û0δ(x),

ikû + p̂x = f̂u + p̂0δ(x). (69)

For the original physical time-dependent variables we have

pt + ρc2ux = ρc2qvol + fp,

ut + px

ρ
= bvol

ρ
+ fu, (70)

where qvol(x) = u0δ(x), bvol(x) = p0δ(x), u0 = û0e
iωt , p0 = ρcp̂0e

iωt .
Here, qvol and bvol are the volumetric monopole and dipole sources, respectively. They appro-

priately alter the acoustic balance of mass and momentum in the system [12].
The wave generated by the AS in x < 0 is as follows:

Wc = (
(ρcqvol − bvol) + rle

−i2kL(ρcqvol + bvol)
)eikx

2

(
1,−1/(ρc)

)T
. (71)

If the reflection of “friendly” sound is not substantial, the AS solution minimal in L1 and L2 is
represented by the following sources:
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qvol|opt = −(p0 − ρcu0)
δ(x)

2ρc
, (72)

bvol|opt = (p0 − ρcu0)
δ(x)

2
. (73)

This immediately follows from (62). In this case only the combination ρcqvol −bvol of the sources
qvol and bvol is substantial. Therefore, some simplified interpretations are also available, for in-
stance, the following source terms:

qvol|opt = −(p0 − ρcu0)
δ(x)

ρc
, bvol|opt = 0. (74)

If both the “friendly” sound and reflection on the left-hand side are absent, then the measurement
of either the pressure or the velocity can be omitted. In the latter case, the source terms can be
represented in the following form:

qvol|opt = −2p0

ρc
δ(x), bvol|opt = 0. (75)

Considering the solution generated by the AS (71), it is easy to see that the solutions for p and
u can be distinguished from each other only by the sign. Thus, if we are able to generate the
AS solution for the pressure, then we are able to obtain it for the velocity. In other words, the
capability to suppress the adverse solution for one of the dependent variables is enough to resolve
the total AS task.

7. Duct with both-side termination

Let us now consider the more general formulation of the problem including a left-hand duct
termination. As will be shown later, altering the boundary condition (21) on the left-hand side
m = −M does not change the principal conclusions given above, if the solution remains unique.

In the general case, we have the following boundary conditions:

R̂+
−M = r−l R̂

−
−M, R̂−

M = rlR̂
+
M, (76)

where r−l is the reflection coefficient on the left-hand side.
It leads to the following boundary conditions for Green’s function:

Ĝ
(1)
1,−M|0 = r−lĜ

(1)
2,−M|0, Ĝ

(1)
2,M|0 = rlĜ

(1)
1,M|0, (77)

Ĝ
(2)
1,−M|0 = r−lĜ

(2)
2,−M|0, Ĝ

(2)
2,M|0 = rlĜ

(2)
1,M|0, (78)

instead of (33) and (35), respectively.
Then, it is possible to show that Green’s matrix function is given by

Ĝm|0 =
(

(A+ + θ(m))α−m−1
h B+

Mα−m−1
h

A−
−Mαm−1

h (B− + θ(−m))αm−1
h

)
, (79)

where
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A+ = rlr−l

�h

, A−
−M = rlα

2M

�h

, B+
M = r−lα

2M
h

�h

,

B− = rlr−l

�h

, �h = α4M
h − rlr−l .

From (79), it follows that if �h = 0, the solution does not exist. This case corresponds to a
resonance.

In the continuous case the Green’s matrix function is as follows:

Ĝ(x,0) =
(

(A+ + θ(x))e−ikx B+(L)e−ikx

A−(−L)eikx (B− + θ(−x))eikx

)
, (80)

where

A+ = rlr−l

�
, A−(−L) = rle

i2kL

�
, B+(L) = r−le

i2kL

�
,

B− = rlr−l

�
, � = ei4kL − rlr−l .

In the continuous case the resonance condition then corresponds to rlr−l = ei4kL. From the dis-
cussion given above, it follows that the implementation of the AS is based on the finite-difference
solution, rather than on the continuous solution and the condition �h = 0 can be avoided by al-
tering the parameter h.

In the general case the measurement data at x = 0 corresponds to

̂̃R+(0) =
0∫

−L

eikξ f̂ +(ξ) dξ + rlr−l

�

L∫
−L

eikξ f̂ +(ξ) dξ

+ r−l

�
ei2kL

L∫
−L

e−ikξ f̂ −(ξ) dξ. (81)

Here, whereas the first term obviously represents the immediate influence of “friendly” sources
and it coincides with (54), there appear two additional terms describing the waves generated
by total sources in the duct. The second term in (81) represents the waves reflected from the
right-hand boundary and then the left-hand boundary; the third term is responsible for the waves
reflected from the left-hand side.

Thus, in this case, even if there are no sources of “friendly” sound, the Riemann invariant̂̃R+(0) is not zero. It requires both sources qvol and bvol.
Green’s function is represented by the following matrix-function:

Ĝ(x,0) = r−lrl

�

(
coskx −i sin kx

−i sin kx coskx

)
+ 1

2

(
Θ+ Θ−
Θ− Θ+

)
+ eik2L

2�

[
r−le

−ikx

(
1 −1
1 −1

)
+ rle

ikx

(
1 1

−1 −1

)]
. (82)
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Then, in the general case the wave generated by the AS in x < 0 is represented as follows:

Wc =
(

(ρcqvol − bvol) + rl

�
ei2kL(ρcqvol + bvol)

)
eikx

2

(
1,−1/(ρc)

)T

+ r−l

�
ei2kL(ρcqvol − bvol)

eikx

2

(
1,1/(ρc)

)T

+ r−lrl

�

(
ρcqvol coskx − ibvol sin kx

−iqvol sin kx + bvol/(ρc) coskx

)
. (83)

It is easy to see that if rl = 0, then the AS solution is non-unique and the optimal solutions (72),
(74) are applicable.

8. Conclusion

Now we are able to arrive at the following conclusions. The mechanism of the general formal
solution of the AS problem has been detailed for the case of monochromatic wave propagation in
a duct with an end termination. The one-layer AS solution has been obtained; the solution only
requires the measurement results for the total acoustic field (both “friendly” and “adverse”) at the
boundary of the shielded area. It requires neither the knowledge of the medium where the acoustic
field is propagated nor the boundary reflection coefficient values. The correspondence between
the finite-difference solution and continuous solution is shown for the case of a uniform medium.
In practice, the AS source can be implemented via an extended uniform source corresponding to
a discrete solution containing a parameter h. It is shown that the optimal value of h corresponds
to the thickness of the source which is required to be much less than the wave length. For a point
AS source, if either the external area is not acoustically terminated or the reflection of “friendly”
sound is not substantial, the AS is not unique and hence there is room for optimization. The
optimal solution has been found. These conclusions are generally anticipated to be important for
future application of the technique to spatial problems.
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