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Axisyrmnetdc turbulent hypersonic perfect-gas flow past slightly blunted cones is considered. The influence of the 
absorption of the entropy layer, developing on an elongated body, on friction and heat transfer to the body surface is studied 
using the viscous shock layer model. Correlations are established for the heat flux and the friction coefficient along the cone 
surface at large distances from the forward stagnation point. The results are presented together with their correlations in the 
framework of the viscous shock layer model and an approximate model of the boundary layer type, taking into account the 
entropy layer absorption. A generalization of the Reynolds analogy is obtained. 

There are many paper.s dealing with the calculation of the friction and heat transfer in flow past blunt bodies within the 
framework of the classical theory of the turbulent boundary layer (see [1]). The absorption of the entropy layer by the boundary 
layer may be regarded as the principal second-order effect in boundary layer theory. Approximate methods have been developed 
to take this effect into account (see [2--6]). It should be noted that the entropy layer is absorbed more rapidly by a turbulent 
than by a laminar boundary layer, due to the greater boundary layer thickness; in this case the absorption length is 5--50 
bluntness radii. In [2--4] the effect of the absorption of the entropy layer by the boundary layer was taken into account by means 
of additional calculations for the flow parameters at the outer edge of the boundary layer, using the mass flow rate global 
balance method. The authors of [5] and [6] have proposed a technique based on the mass-average method. All these approaches 
enable the entropy layer absorption to be taken into account without solving a set of equations more intricate than that of 
boundary layer theory. All these approaches need theoretical or experimental verification. 

The similitude criteria for turbulent boundary layers on blunt-nosed cones were analyzed in [4, 6]. In [4] the similitude 
parameters determining the heat transfer to the cone surface were established for the entropy layer absorption regime over the 
following ranges of the governing parameters: cone half-angle 0k= 10 deg, Reynolds number Re~ =1.0-105--3.1-105, Mach 
number Mo. =6--8, temperature factor tw=0.40--0.52 (here, tw=Tw/To, T w being the wall temperature and T O -- the stagnation 
temperature). The similitude criteria governing hypersonic flow past slender blunt bodies in the turbulent boundary layer regime 
were determined in [6]. 

Our aim is to study numerically the problem of hypersonic turbulent flow past blunt-nosed cones using the viscous shock 
layer model; to estimate the errors of the various approximate theories; and to establish the similitude criteria for the heat 
transfer at large distances from the bluntness and for the friction at both large and intermediate distances. 

1. PROBLEM FORMULATION AND METHOD OF SOLUTION 

The set of viscous shock layer equations, described in [7, 8], is used as the gasdynamic flow model. All the terms of the 
Euler equations are present in the equations of this set, together with all the second-order terms of asymptotic boundary layer 
theory. The two-layer Cebeci-Smith model [1] is used to describe the flow turbulence. The gas flow between the bow shock 
and the body surface is governed by the viscous shock layer equations for a perfect gas [7, 8]: 
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The set of equations (1.1) is written down in the curvilinear orthogonal reference frame (x, y) fitted to the body. All the 

variables have been nondimensionalized; p - k  #ooV2; the linear ones have been divided by the blunmess radius; and all the 
rest by their values in the free stream. Here, u and v are the nondimensional velocity components in the x- and y-directions; 
p, #, and H are pressure, density, and total enthalpy, respectively;/z is the effective viscosity coefficient,/x t is the Sutherland 
laminar viscosity coefficient, and #t is the turbulent viscosity coefficient, which is determined according to the model proposed 
in [1]; X, )'l, and k t are the effective, laminar, and turbulent thermal conductivity coefficients, respectively; Pr=lZCp/k is the 
effective Prandtl number; R w is the bluntness radius, H 1 = 1 +y/R(x) is the scale factor, R(x) being the body curvature radius 
and r the distance of any point from the axis of symmetry; x =Cp/C v is the specific heat ratio. A subscript "co" is used to denote 
free-stream conditions. 

The bow shock is assumed to be thin. The impermeability and no-slip conditions are imposed on the body surface, together 
with that of constant wall temperature. The generalized Rankine--Hugoniot relations are assumed to be satisfied at the shock 
wav e: 

p| _ •  1 
Ks - ps ((M=) 2 (sin [3)2 

2 

us = cos [3 cos ~s + Ks sin [3 sin [3s 
~ts 1 Ou u 1 

( Oy R (x) H, )s ,  Ps = (I - Ks) (sin ~)2 + ~-0~--~ (1.2) sin Re= 

. s i n  [3 I ~ts OH Pr - 1 V2| 0 (u2 )  V2| Pr u 2 
Vs=utg[~s-KS-Cos-~s '  H s = l - ~ - ' e ' - ~  ('~-y + 2 O.  Oy H|  H, )s  

Here, the subscript "s" denotes values behind the bow shock, #s is the angle between the tangent to the shock and axis 
of symmetry, # is the angle between the tangents to the shock and to the body for a given x. 

The viscous shock layer equations were integrated by a numerical method based on global iterations. This approach, very 
economical as regards computer resources, enables the computer time to be reduced by a factor of approximately 10, as 
compared with time-dependent methods. For calculating the flow past elongated bodies the whole flow region was split into 
blocks, and a step-by-step approach was used to integrate the flow equation in each block [8]. The difference scheme was of 
second order of approximation in the derivatives with respect to x and of fourth order in those with respect to y. The grid points 
were distributed nonuniformly in the normal direction, the magnitude of the mesh step at each grid point depending on the 
behavior of the required functions in the vicinity of that point. The distribution of the grid points in the x-direction was chosen 
so as to make one of these points coincide with the junction of the spherical nose and the conical afterbody, where the body 
contour has a curvature discontinuity. In order to calculate the flow parameters at the point of discontinuity with second order 
of approximation the exact relations for the discontinuities in the first and second derivatives of the required functions were used. 

2 .  D I S C U S S I O N  O F  R E S U L T S  

The hypersonic turbulent flow past cones with half-angles Ok= 10, 20, and 30 ~ and surface temperatures tw=0.05 , 0.2, 
0.6 was calculated for Reoo = 106, 107, 108 and Moo =6,  8, 10. The flow equations were integrated from the forward stagnation 
point over a distance x=2OOR w. 

Figure 1 shows the calculated plots of the Stanton number St (curve 1) and the friction coefficient Cf (curve 2) against the 
distance s measured in blunmess radii from the stagnation point along the cone surface: 

St = ql[p|174 To (1 - t~) ], Cz = 2x/(p| s = x/R~ 

where q=X aT/ay, r=# au/ay (here all the variables are dimensional). 

Figure 1 shows that the Stanton number reaches a maximum not exactly at the stagnation point, as in laminar flow, but 
rather in its vicinity. Then St diminishes due to the increase in flow velocity and rises again because of the absorption of the 
entropy layer by the boundary layer. The subsequent decrease in St is due to the growth in boundary layer thickness. The 
location of the second maximum depends on the cone half-angle and the Reynolds number, while its magnitude also depends 
on M,= and t w. 

The plot of Cf against the distance along the body contour is also characterized by two maxima. The first of these is located 
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within the nose region, while the second is situated in the region where the entropy layer is being swallowed up by the boundary 
layer ( 1 5 _ s _  60). 

The location and the magnitude of the second maximum depend on the same factors as in the case of the Stanton number. 
The results of the calculations made in [4] were presented in that paper as St*(s*), where St* is the modified Stanton 

number and s* is the modified distance from the stagnation point, measured in fractions of the distance between the stagnation 
point and the entropy layer absorption point. In this modification the Reynolds number and the cone half-angle appear explicitly, 
while the Mach number and the temperature factor enter implicitly, by way of the velocity and density values at the outer edge 
of the boundary layer. 

Attempts to use the dependent and independent similitude criteria at distances greater than the absorption length and over 
a wider range of flow parameters have proved fruitless. The introduction of an explicit dependence of the boundary layer 
thickness on t w and M= has likewise not led to the desired results. We therefore obtained correlations for the Stanton number 
and the friction coefficient derived empirically in processing our results and those of [2]: 
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Figure 2 shows the St'(s') plots over the range s '=15--125 and the Cj,(s') plots for s '=2--125.  The continuous curve 
relates to the viscous shock layer model, and the chain curve to the boundary layer model, with account for entropy layer 
absorption [2]. The spread of the numerical data is represented by vertical bars. 

The following approximate formulas are proposed for St'(s') and Cj,(s') within the framework of the viscous shock layer 

model: 

where 

St' = 0,197 (s') -~ Cs' = CI, (1 - a) + C/za 

Cn = 0.0500 + 0,0130 s', Czz = 0.2985 (s') -~ a = exp [ -  ( 9 / S ' )  3 ] 

The points in Fig. 2 represent the experimental results of [3]. The experiments were carried out on a blunt-nosed cone 
with 0k=10 ~ at tw=0.4, M ~ = 8 ,  and Re==105.  

As Re= increases from 106 to 108, the maxima of the Cfand  St distributions shift downstream, diminishing in magnitude. 

The situation is the same when the cone half-angle O k is reduced from 30 to 10 ~ A change in M~ and t w affects the magnitude 
of the second maximum but has no significant effect on its location. Thus, an increase in Mach number from 6 to 10 leads to 
a rise in the maximum values of St and Cf, while an increase in t w from 0.05 to 0.6 leads to a fall. 

The spread of the correlated numerical data (see Fig. 2) does not exceed 3% in the far zone and 10% in the region of the 
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second maximum for the heat flux and 4% and 14%, respectively, for the friction coefficient. The experimental data lie within 
this range, thus confirming our conclusions. 

The results presented demonstrate that the magnitudes of  the Stanton number calculated according to the viscous shock 

layer model exceed by 5--8% those calculated by the approximate method of  [2]; the corresponding figures for Clare 2--20%. 
Figure 3 shows the generalization of  the Reynolds analogy illustrating the relations (2. i) for St' and C~. The ratio of  

nondimensional heat flux to nondimensional friction not only depends on the parameters tw, M ~ ,  Re,~, and 0 k but also varies 

along the body contour. At s '  > 50 the ratio CySt '  is constant, does not depend on the method of  calculation and is equal to 3/2, 

with a probable error of  approximately 1%. The calculated results show that at distances 10 <s'  < 50 from the stagnation point 
the dependence of  the heat flux-to-friction ratio is nonmonatonic. 

In conclusion, we note that the calculation of  fully turbulent flow past elongated bodies starting from the stagnation point 
is permissible, since the heat flux values in the region where the laminar-turbulent transition is complete coincide with those 
corresponding to earlier transition [3, 9, 10]. 
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