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ON THE APPLICABILITY OF SOME APPROXIMATE SIMILITUDE
LAWS IN HYPERSONIC AERODYNAMICS

N. N. Pilyugin, R. F. Talipov, and S. V. Utyuzhnikov UDC 533.6.011.55

The range of applicability of some similitude laws for heat transfer, friction and drag coefficients is discussed on the basis of
numerical solutions of the complete viscous shock layer equations describing hypersonic flow past blunt bodies.

The method of matched asymptotic expansions [1] is used widely in the theory of hypersonic flow past bodies; this method
enables one to solve simplified gasdynamic equations in the first terms of the expansion of the unknown functions in asymptotic
series in terms of a small parameter [2—4]. Similitude relations for the shock wave stand-off distance, the drag and friction
coefficients, the convective and radiative heat transfer to impermeable bodies, which are of practical importance, have been
obtained in the last few years on the basis of these solutions [2—5]. In the case of the intense subsonic injection of a foreign gas
from the body surface, another small parameter appears, namely, the momentum ratio for the injected and oncoming gases [6,
71. In this case it is also possible to construct an asymptotic solution and to obtain, for example, the shape of the contact surface
separating two flows [7].

The results of asymptotic and numerical studies of supersonic viscous nonuniform wake-type flows past blunt bodies with
and without gas injection from the body surface were reviewed in [8].

Since the convergence of asymptotic solutions in the general case of nonlinear gasdynamic equations has not been proved
strictly from the mathematical standpoint, the problem of the accuracy and the applicability range of the approximate similitude
relations thus obtained arises. In order to arrive at an answer to this problem, it would be well to carry out a systematic
comparison with the results of either specifically designed aerodynamical experiments or numerical solutions of the more accurate
(non-simplified) gasdynamic equations.

In recent years a numerical method of solving the complete viscous layer equations has been developed [9]. This makes
it possible to calculate the distributions of all the gasdynamic parameters in the shock layer adjacent to a blunt cone with or
without gas injection from the body surface, in uniform and nonuniform oncoming streams [10—12]. Comparison of the
numerical solutions for flow past a sphere and a blunt cone obtained by this method with the experimental data and other
numerical and asymptotic solutions [10—12] shows that the method possesses high accuracy and requires less computation time
than time-dependent methods for the Navier-Stokes equations. On the basis of the approximate asymptotic solutions, a general
similarity law was derived in [13] for convective heat transfer to the side surface of a slender blunt body in laminar hypersonic
flow, as well as for other gasdynamic parameters. The similitude laws for inviscid flow past blunt slender bodies and viscous
flow past sharp slender bodies follow from this law as special cases.

1. PROBLEM FORMULATION AND NUMERICAL METHOD OF SOLUTION

Steady-state supersonic viscous perfect-gas flow past a smooth axisymmetric body at zero incidence is considered. The non-
dimensional free-stream parameters have the form [8]:
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Here, rR, is the distance from the axis of symmetry and R, is the scale-length; V,V;, 0,0, PP VL are the free-stream
dimensional velocity, density, and pressure; v is the specific heat ratio, and a, b, and ¢ are the nonuniformity parameters. The
subscript “ o " relates to the values of parameters as r>oo.
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In the orthogonal reference frame fitted to the body surface the viscous shock layer equations have the form {11]:
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Here, xR, and yR, are the coordinates along the body surface and normal to it, ¥V, and »V, are the velocity projections
on the x and y axes, pp o, PP V2, HH,,, and pup,, are the dimensional density, pressure, total enthalpy, and viscosity; Pr is
the Prandt! number, Re, is the Reynolds number, H, is the scale factor, and RR, is a radius of curvature of the body surface.
It is also necessary to add the state equation and the viscosity law to Egs. (1.2).

Equations (1.2) describe the outer inviscid flow in the shock layer together with the boundary layer flow up to second order
in the square root of the reciprocal of the characteristic Reynolds number. The system of equations (1.2) is not wholly parabolic
so that well-known marching methods may be used to solve it. However, the Cauchy problem for this system is not correct in
the subsonic region [9—11]; this leads to significant difficulties in using any step-by-step technique directly. Therefore, various
methods of regularization have sometimes been used (see [9, 10]). A numerical method for solving of the complete steady-state
viscous shock layer equations was proposed in [9—12]; this method uses the step-by-step procedure repeated many times,
together with refinement of the shock shape and the pressure field at every stage of the global iteration. It would considerably
reduce the required computation time and memory.

Let us go over to the new independent variables ¢ and 5 and to the stream function f in Egs. (1.1), (1.2)
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Here, r, R, is the distance from the body contour to the axis of symmetry, y R, is the stand-off shock wave distance, and
« is the angle between the tangent to the body generator and the axis of symmetry. The system of equations (1.2) in the variables
¢ and 7 is given in {11, 12].

The slip and temperature jump conditions are assumed at the body surface [11]; in the variables £, 5 these conditions are
as follows (for n=0):
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Here, 4V, cos @ and vV, are the velocity vector projections on the x and y axes. Generalized Rankine—Hugoniot relations
with slip taken into account were assumed at the shock. These relations for the case of a nonuniform oncoming stream can be
derived in the same way as in [11]. We will give the final formulas, without derivation, in the variables ¢, 7 (for n=1):
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Here, 3 is the angle between the tangent to the shock surface and the axis of symmetry. The subscript “s” relates to the
shock parameters.

In the new variables the shock stand-off distance A can be determined from the mass balance equation and expressed as
follows:
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We shall also use the geometric relation
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The formulas from [12] were used as the initial approximation to the shock shape
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The calculations were carried out over the following range of the free-stream parameters: y=1.4, w=0.5—1, M_ =6,
10<Re,, <10°% 0.01 <T, <1, f,,=0, w being the exponent in the viscosity law p ~T<. For the most part, the nonuniformity
parameters b and C had fixed values: b=7.2, C=3.0. The parameter g varied over the range 0<a<a,, a,(b. C, M, Re,,,
T,,) being the critical value characterizing the transition to separation flow on the body nose.

The calculations were performed using nonuniform grids. Thirty grid points were prescribed across the shock layer and
approximately one half of these lay within the boundary layer. The calculations along the body were carried out by the block-
marching technique. The blocks, which contained from 20 to 25 grid points in the longitudinal coordinate, were calculated
sequentially up to convergence. A high order-of-accuracy scheme similar to that of {11) was used in the numerical solution.

The difference equations having been solved, the distributions of the heat flux g,, and the friction coefficient C; were
calculated using the following formulas:

__pu oH _2ppcosadu o _
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Here, the heat flux has been divided by po, V.H,, and the friction force by pg, V2,/2.

The main parameters governing the flow in the injection layer [6, 7] are the relative mass flow rate G, (o}, v;,) and the
momentum density ratio & of the injected and oncoming gases, where p,,, and va are the characteristic density and velocity in
the injected gas

PV p2el’ v
Go=gvo 0= <p,Vi)

The values of these parameters are presented below.
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2. RESULTS OF CALCULATIONS IN THE NEIGHBORHOOD
OF THE STAGNATION LINE

Let us consider some results of comparing the numerical solution of this paper and the asymptotic solutions for uniform
supersonic flow with parameters M, =10, Re, =10%, y=1.4 past a spherical bluntness. The temperature factor T,,/T,=0.571
and the Prandtl number Pr=0.72. The viscosity coefficient was determined using a power law with exponent w=0.75.

Figure 1 presents plots of the shock wave stand-off distance on the axis of symmetry y, and the thickness of the injection
layer y  against the parameter 4.

The continuous curves relate to the present work. The results of calculating the Euler equations by the time-dependent
method [15] and the Navier—Stokes equations [14] are shown by curves 1 and the symbols 2, respectively. The experimental
data obtained in [16] are numbered 3 in Fig. 1. The shock stand-off distance y, and the position of the separating streamline
¥ determined using the Euler equations lie somewhat lower than the experimental points [16] and the calculated results with
viscosity taken into account. The results of the numerical solutions of the Navier—Stokes equations and of the complete viscous
layer equations almost coincide with the experimental data. Curve 4 represents the thicknoess of the injection layer calculated in
accordance with the formulas of [7]. The analytical solution of [7] has good accuracy for 0 <6<0.1, but with increase in the
injection strength (for 6>0.1) it overestimates y — by approximately by 6% as compared with the experimental data and the
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calculated results with viscosity taken into account, and by 15—~18% as compared with the solution of the Euler equations.

3. VERIFICATION OF THE SIMILITUDE RELATIONS FOR NONUNIFORM FLOW

As shown in [8, 17, 18], when the thin (hypersonic) viscous shock layer model is used, the effect of the wake-like
nonuniformity in the oncoming stream manifests itself in the neighborhood of the stagnation streamline through the parameter
A=2ab(1+C)/(1—a), which enters into the expansion of the pressure gradient dp/dx in the powers of x. However, the
calculations using Eqs. (1.2) show that the parameter A cannot be used as the similitude criterion in the nonuniform far-wake-like
flow past blunt bodies. Figure 2 presents as an example the dependence of the heat flux ¢;, on the parameter A\ for M =20,
Re,=10% T,/T,=0.1. Here, the heat flux is nondimensionalized by the density and velocity on the axis of symmetry in the
nonuniform oncoming stream [18]

. q.
WEO-ali+CclU-(0-a]

(3.1)

Curves 1—6 correspond to the values of the parameter b=1.7, 3.05, 5.4, 7.2, 9.6, and 12.8, for C=3.0. The continuous curves
represent the solution of equations (1.2), while the broken ones represent the solution of the thin viscous-layer equations. With
decrease in the parameter b (b <3.0) the heat flux plots begin to diverge. At the same time, the plots g,(a) represented by the
curves 1'—6’ in Fig. 2, which correspond to the solution of equations (1.2) for the same values of the parameter b, diverge only
slightly. In both cases the plots g,,(a) are monotonic decreasing. As for the dissimilarity of the dependence g, (\), it is due,
firstly, to a faster decrease in g}, with increase in nonuniformity (i.e., the parameter a) for the case of a thin viscous shock layer,
which is connected with the assumption of an equidistant shock and body; and, secondly, to the non-dimemnsionalizing, in
accordance with (3.1), by the product B(1—a), which varies with a.

Thus, using the nonuniformity parameter a gives some advantages as compared to the parameter A. That is why in what
follows the parameter a is assumed to be the main parameter of nonuniformity.

In [18] it was proposed that the criterion of transition to the separation flow regime in the form A =X\ (Re,,, M, T,,) be
used instead of the criterion a,=a (b, C, Re,,, M, T,,) considered in [17]. Figure 3 presents the plots of A, against the
parameter b averaged over some values of the parameter C (from the range C=3—35) for various Reynolds numbers. Curves
1 and 4 correspond to Re =10?, curves 2 and 5 to Re =10, and curves 3 and 6 to Re_, =10°. The continuous and chain
curves relate to the calculations for the complete viscous shock layer and for the thin viscous shock layer according to [8]. It
can be seen from Fig. 3 that the parameter C influences the value of A, only slightly. The values of A obtained in accordance
with the viscous shock layer model (chain lines) are almost independent of b and C at fixed Reynolds numbers. As Re, =,
the asymptotic value of A, =4/3 obiained in [18] becomes quite accurate. The calculations made using the complete viscous shock
layer model lead to a linear dependence of A, on the parameter  at a fixed Reynolds number Re,. The exact model, taking
the disturbance transfer upstream into account, shows that the criterion A =const [18] leads to erroneous results for separation
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in the nonuniform flow.

4. ON THE SIMILITUDE RELATIONS FOR SLENDER BLUNT CONES

The hypersonic inviscid gas flow theory for slender blunt bodies (wedges and cones) gives asymptotic similitude laws [2,
3] consisting in the fact that for affinely similar bodies, independently of the bluntness shape, the relative pressure on the body
p*, the shock slope x, and the drag coefficient CE, depend on three non-dimensional variables: v, k=M, tan a,, ¢

pr=le Py 1B e o=V — 1o

tg? o, 1g a, sin? o,

Here, Cp, is the drag coefficient of the body bluntness.
In accordance with [13], in the case of hypersonic laminar flow past slender blunt bodies, if the following similirude criteria

are equal
hH, M /2
rhE 2T R Y G

(here, H, and V,, are the dimensional total enthalpy and velocny Lo s the viscosity coefficient at the stagnation point), then the
functions p*, x, Cp and g;, are constant, where

q. 1 1
\th"a (5+ (r- 1)Mi>
In this case the equality of v, k, and ¢ ensures the similarity of the inviscid flows, while the equality of 4, H,/V?2, and Q ensures
the similarity of the boundary layers.

Figures 4, 5, and 6 present plots of p*, Cp,, and g;, against the similitude parameter ¢ for the fixed values y=1.4. k=3.5,
and A, H,/V: =0.0525. The continuous curves relate 1o the parameter {1=6.51-10"*, and the broken curve to 2=5.9-1072.
Viscosity was determined in accordance with a power law p~ T¥ with exponent w=0.5. Curves 1—4 correspond to the cone
half-angles «.=10, 15, 20, and 30°. The chain curve in Fig. 4, taken from [19], relates to inviscid gas flow past a cone with
spherical bluntness and half-angle «.=10°, for M,—> and y=1.4. The p=p(¢) curves for a,<20° are similar regardless of
the similitude parameter Q. For o,=30° the values of p* are essentially lower, since the assumption of a slender body is too
rough in this case. The relative values of C}‘) as functions of ¢ are similar even at o,=30° (Fig. 5). In the case of low values
of the parameter {} with growing ¢ the plots of CB tend to the limiting value, which was obtained numerically using the plane
cross-sections law [2] (this value is indicated by the chain line in Fig. 5). The plots of the relative heat flux g,, processed using
the parameter {) are close to each other at @, <20° (Fig. 6), though the initial values of g,, for various @ differ by more than
two orders of magnitude. For small cone angles (. <10°) the plots of q:. have maxima at ¢ = 1.5 due to the effect of entropy

256



layer absorption. A well-defined maximum can be observed in the pressure distribution at ¢=2.0 (Fig. 4).

Thus, a comparison of the approximate similitude relations and the numerical solutions makes it possible to clarify the range
of applicability of these relations, while the similitude parameters proposed in {2, 6, 13] turn out to be useful in the processing
of the results of numerical calculations.

REFERENCES

M. D. Van Dyke, Perturbation Methods in Fluid Mechanics, New York (1964).

G. G. Chernyi, Gas Flows at High Supersonic Velocities [in Russian], Fizmatgiz, Moscow (1959).

V. V. Luniov, Hypersonic Aerodvnamics [in Russian}, Mashinostroenie, Moscow (1975).

W. D. Hayes and R. F. Probstein, Hypersonic Flow Theory, Academic Press, New York (1966).

N. N. Pilyugin and G. A. Tirskit, Dynamics of Ionized Radiating Gases [in Russian], Moscow University Press, Moscow (1989).

E. A. Gershbein, “Hypersonic viscous shock layer theory at high Reynolds numbers and the intense injection of foreign gases,”

Prikl. Mat. Mekh., 38, 1015 (1974).

7. N.N. Pilyugin and R. F. Talipov, “Asymptotic solution of the Euler equations in the shock layer on a blunt body in nonuniform
flow with gas injection from the body surface,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 126 (1989).

8. I G. Eremettsev, N. N. Pilyugin, V. S. Khlebnikov, and S. A. Yunitskii, Study of Aerodynamic Characteristics and Heat Transfer
for Bodies in Nonuniform Supersonic Gas Flows [in Russian], Moscow University Press, Moscow (1988).

9. S. A. Vasilyevskii, G. A. Tirskii, and S. V. Utiuzhnikov, “Numerical method of solving the viscous shock layer equations,” ZA.
Vychisl. Mat. Mat. Fiz, 27, 741 (1987).

10. G. A. Tirskii and S. V. Utiuzhnikov, “Comparison of the thin and complete viscous shock layer models in the problem of
supersonic viscous gas flows past blunt cones,” Prikl. Mat. Mekh., 53, 963 (1989).

11.  N. N. Pilyugin and R. F. Talipov, “Numerical study of nonuniform flow past a sphere within the framework of the viscous shock
layer model,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 62 (1991).

12.  S. A. Vasilyevskii and G. A. Tirskii, “Numerical method of solving the viscous shock layer equations,” in: Studies on Hypersonic
Aerodynamics and Heat Transfer with NonEquilibrium Chemical Reactions [in Russian}, Moscow University Press, Moscow
(1987), p. 5.

13. V. V. Luniov, “The similarity law for hypersonic viscous gas flows past slender blunt bodies,” Prikl. Mat. Mekh., 25, 1050
(1961).

14. Z. M. Emelyanova and B. M. Pavlov, “Calculation of injection from blunt body surfaces in supersonic flow using the complete
Navier—Stokes equations,” in: Numerical Methods in the Aerodynamics, No. 2 [in Russian], Moscow University Press, Moscow
(1979), p. 69.

15. M. M. Gilinskii and M. G. Lebedev, “Calculation of intense blowing on a blunt body and an airfoil,” Izv. Akad. Nauk SSSR,
Mekh. Zhidk Gaza, No. 1, 117 (1977).

16. E. D. Karzen and G. E. Kaattari, “Inviscid hypersonic flow around blunt bodies,” AI4A4 J.. 3, 1230 (1965).

17. 1. G. Eremeitsev and N. N. Pilyugin, “Heat transfer and drag of a body in a far supersonic wake,” [zv. Akad. Nauk SSSR, Mekh.
Zhidk Gaza, No. 2, 60 (1986).

18. S. V. Peigin and S. V. Timchenko, “Hypersonic three-dimensional viscous shock layer in a nonuniform gas flow in the
neighborhood of the stagnation point,” fzv. Akad. Nauk SSSR, Mekh. Zhidk Gaza, No. 6, 136 (1987).

19. M. M. Gilinskii, M. G. Lebedev, and I. R. Yakubov, Sirmulation of Gas Flows with Shock Waves [in Russian], Mashinostroenie,

Moscow (1984).

AN ol ol o

257



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7

