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Abstract--The three-dimensional supersonic viscous flow over a blunted body flying horizontally through 
a cloud of hot gas (a thermal) is studied numerically. It is assumed that the cloud was formed as the result 
of a powerful explosion in the Earth's atmosphere. Consideration is given to the late stage of the explosion, 
corresponding to the vortex ring formation time. A complete problem is unstable. However, the air flow 
near the body at every point of the flight trajectory can be considered as a quasi-stationary flow, in view 
of the fact that the ratio of the characteristic time scale in the shock layer to the thermal characteristic 
time scale is 10 -5 . The aerodynamic and heat transfer characteristics of the flying body are studied. 

1. T H E  G O V E R N I N G  E Q U A T I O N S  

It is assumed that at the initial moment in time a cloud of hot gas is formed in a stratified Earth 
atmosphere. The initial thermal parameters are: RT = 1.2 km, the characteristic thermal lengthscale; 
and Tmax = 16,000 K, the temperature at the explosion center. The temperature distribution in the 
cloud is represented as 

T(z, r) = T,(z)  + (Tmax - Ta) • exp - , 

where T,(z)  is the undisturbed Earth atmosphere temperature distribution and l is the distance 
from the center of the thermal. The maximum temperature location corresponds to the altitude, 
H = 50 km, measured from the Earth's surface. 

The buoyant gas cloud rises, forming an air vortex ring under the action of Archimedes' force 
which is a maximum at the explosion center. The eddy ring formation is accompanied by intensive 
turbulent mixing of  the hot and cold air layers. To describe the buoyant thermal dynamics the full 
Navier-Stokes equations with fixed effective viscosity and heat transfer coefficients were used. This 
turbulence model has been widely used to simulate the buoyant motion of a thermal in a stratified 
atmosphere [cf. I-4]. The effective turbulence viscosity coefficient #err was chosen so that the 
Reynolds number [calculated from Pe~, RT, PT and VT; PT is the undisturbed atmosphere density 
at the center of the thermal and VT = (g " Rx) ~/2 is the characteristic thermal velocity] equals 100. 
The effective Prandtl number, Pre~, was taken to be 0.72. 

The full unsteady Navier-Stokes equations for the two-dimensional axisymmetric viscous gas 
flow in the cylindrical coordinate system {x i} = {z, r} can be written as 

0 ( rU)+ (rE ~) F (1) 
Ot Qx ~ 

with: 

[ 2  i . 
U = (p,  pu, pv, e)T; E ~= Ein~ -- R~"  E~is' 

1 
Eivis = ViP(U, Uxv ) + - .  Wi(U);  

r 
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where p is the mass density, u and v are the velocity vector components in the cylindrical coordinate 
system, e = 0.5p(u 2 + v 2) + P / ( 7  - 1) is the specific total energy, p is the pressure and 7 = hie [5]. 
Here and henceforth, f i g  i denotes the sum 

2 

f ' g ,  = E f k  . g ,  
I 

unless otherwise specified. The length variables are nondimensionalized by the characteristic 
thermal radius Rx. The nondimensionalizations used for the time variable t and for the vector 
components  f J  and f 2  are t * .  VT/RT and F*/(VZT/RT), respectively, Re = pvVTRT/#e~ is the 
Reynolds number calculated from the thermal parameters. 

The viscosity and thermal conductivity are changed by constant values for a flow turbulization 
influence simulation. 

The gas motion has been considered in the rectangle 0 ~ r <~ rl ( t ), z~ ( t ) <~ z <<. z2( t ). A boundary 
motion law has been chosen such that near any of the boundaries a gas is considered as close to 
an undisturbed gas. 

The following conditions have been chosen as boundary conditions: 

I f  r = 0  then ~ - - f = 0 ,  h e r e f = { p , p , u } ;  v = 0 ;  
0r 

r = rl(t): ~r  = 0, v p m_ Pa tm,  

z = z l ( / ) : ]  0V 
U = 0 ,  P = P a t m '  

z = zz(t): j Orr 

These conditions represent the flow symmetry conditions when r = 0. On the rest of  the 
boundaries the conditions of  an undisturbed atmosphere are assumed for the thermodynamic 
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functions and the normal velocity component. In addition, extrapolation conditions are used for 
the tangential velocity component. 

Within 15 s of the beginning of the lift of the thermal, the spherically blunted cone (nose radius 
R. = 0.1 m, cone half angle 0c = 20 °, cone total length L = 2 m) flies horizontally into a hot air 
cloud with velocity V~ = 2000 m/s. By the time the body enters the buoyant thermal the gas cloud 
has the vortex ring form. Therefore, the free stream around the cone is nonhomogeneous and has 
a three-dimensional structure. It is suggested that the body does not influence the convective- 
diffusion processes in the thermal. As noted above, the air flow near the cone at every flight 
trajectory point is treated as a steady flow because the ratio of the characteristic time scale in the 
shock layer near the body to the thermal time scale is 10-L The estimates show that for a turbulent 
flow in the thermal region the value of Taylor's lengthscale is 10 3 times larger than the shock-layer 
thickness near the body. As a consequence, there is reason to believe that the flow in the shock 
layer is laminar. 

In flight, the free-stream Re (calculated with the cone nose radius R,) and the free-stream 
temperature vary from 10 3 t o  10 4 and from 200 to 800 K, respectively. Thus, the full viscous 
shock-layer equations (FVSL) governing the equilibrium chemically reacting flow [6] are used to 
simulate the flowfield around the body. The FVSL equations used in the present analysis can be 
obtained from the steady full Navier-Stokes equations by retaining terms up to second order in 
the square root of the Re in both the viscous and inviscid regions. The set of equations is valid 
for the region from the body surface to the shock, which is the outer boundary of the flowfield 
and is found in the course of the solution procedure. 

The three-dimensional set of FVSL equations in a body-oriented coordinate system (x--surface 
coordinate, y - -normal  coordinate, q~--transverse angle) is written as 

O--x [H2pu) + (H, pw) -.I- (H l H2pv ) = O, 

I w 2 OH z uw OH l uvOHll = 1 OP 
Z~u 1-11142 &S -~ I¢, I-12 &~ + H, Wy ] Z-I, Ox - - - - -  4 H~H2 Re~ Oy H~H2# 

WU ~n  2 u 2 ~H 1 wv a/42] = 1 0 P  

p Dw -~ H, H2 ax H, 1-12 a~ + H2 3y J H 2 aq~ - - -  - -  + H 1 H 2 R e ~  Oy -~y ' 

and 

1 OHlu2 1 3H2w2 l _  OP 
p Dv H~ &y 1-12 Oy _] 3y 

with 

1 (~ ~H2H21A[OH V2(o- l )O(u2.J f -w 2) ou2V2OHl ow2V2OH21~, 
pDH - H1 ~ dy [ a me~ fffy + 2H~ &y Ho~ HI Oy Ha H2 -~y J J  (2) 

u ~ w O O V~ (u 2+ w2 _ vPV~ D-t_t, ax+ G+VUy; +v2); h 

where u, w and v are the physical components of the velocity vector in the x, y and q~ 
directions, respectively, Re~ = p ~  V~R,/la~, tr(P,h) and ~(P,h) are the Prandtl number and 
viscosity coefficient, respectively, for equilibrium chemically-reacting air, H~ = 1 + y .  N and 
/-/2 = r,. + y • cos ~t are the metric coefficients of the body-oriented coordinate system (N is the local 
curvature of the body surface). R. is the cone nose radius and ~t is the body surface angle measured 
from the body axis. 

The quantities in equations (2) are nondimensionalized as follows: velocity vector components 
by u*/V~, w*/V~ and v*/Voo; pressure by P*/(Po~ 2 . V~), total enthalpy by H*/Ho~. The length 
quantities are nondimensionalized by the cone nose radius R,. 
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In addition to the FVSL equations (2), an equation of state must be specified. The equation of 
state governing the equilibrium chemically-reacting mixture is 

h - (,; - 1)pH<_,'  ~' = 7 ( e ,  h ). 

The set of equations (2) is complemented by the following boundary conditions. The Rankine- 
Hugoniot relations are used at the outer boundary to determine the flow properties immediately 
behind the shock, which is treated as a discontinuity. These conditions in the body-oriented 
coordinate system are given as 

vs = Us" tan fl~ + w," tan ?s + K~" V~ (3), 

1 V~ (3 ) (1  - K , )  
Ps YM2 l - l + t a n  2 f l ,+ tan  2Z, 

w, Ks .s (ou u 0 . , )  
u ~ = V o ~ ( l ) . c o s 2 f l s - ~ - . s i n Z f l ~ . t a n y s - ~  - .V~(3).sinzflS-t  Re~V~(3) Oyy H, O y / t  

OH,) us Ks V~ (3)" sin 27s -t #s c~w w 
ws = V~o (2)' cos 2 Ys - 2 '  sin 2~s" tan fls - ~-" Re<. V< (3) ffyy /~2 ~)'" s 

and 

H , = I - )  #s (OH) V~(a- l )O(u2+w 2) au2V~H, aw2VESH2] 
aReo~V~(3)k~y 2-H~ ~3), H,,H, t~), H~I-I, c),'<' 

with 

(3) 

1 ¢9y 1 ~),~ 1 
tan fls = H~, ~3~ ; tan 7s H2s &o Ks P~ 

The subscript "s" denotes that the quantity is taken immediately behind the shock, V~ (i), i = 1, 3, 
are the free-stream velocity components in the coordinate system (x, ¢p,y); fl~ and ~s are the 
angles between the bow shock wave and the body surface; Ys =ys(X, ~) is the shock standoff 
distance. 

For the equilibrium chemically-reacting FVSL equations, the boundary conditions at the wall 
consist of four independent relations representing the nature of the gas mixture and the physical 
conditions at the wall. These conditions are no slip and no mass transfer conditions: 

u I~ -- w ]w = v tw = 0. (4) 

where the subscript "w" denotes the wall value. The wall temperature T~ is determined as either 
a fixed value Tw = 500 K or from the following relation: 

qw = ¢" " O"13" T4,~, (5 )  

where qw is the heat transfer, E' is the body surface blackness coefficient and aB is the 
Stefan-Boltzmann constant. 

The FVSL equations are solved in the region between the body surface and the bow shock 
wave: 0 ~< x ~< Xr, 0 <~ ~0 ~< Dr, 0 ~< y ~< y.,. The following conditions are imposed at the surface 
X -----Xf: 

f w = O .  

2. A N U M E R I C A L  SOLUTION METHOD 

As mentioned above, to simulate the dynamics of a buoyant thermal the two-dimensional full 
Navier-Stokes equations are solved numerically. 
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After a change of  variables, {xi}~{¢J}, i = 1, 2; j = 1, 2; the calculation region is a square 
[0, ~] x [0, 1]: 

4 ' -  r ¢2_ z - z l ( t )  (6) 
rl(t)' z2(t) - Zl(t)" 

The governing equations system has been written in the divergency form 

with 

~ ( u ) + ~ ( E 0  = L  

r 

= J \ O t  U + ~ x ~ E ) '  p =  F, 

where J - -  det II ~ /0~  II, the transformation Jacobian. 
Below, the following relations are used (without summaton by j): 

V~P(U, U~)  ,. ~k = ~xkSm(U , U¢ra) 

and 

(7) 

(8) 

. OE~nv) I~ . f r (~ JOg ik 10W ~) 
_ _  _ _ _  J J _ _ _  

QJ:  ~J,I+~x, Ou ~ R e ~ X ~ x k j ~ r  OU +r -~ f f~  

(without summation by j )  and where 

R H S -  1 +02 ~(I + 0 ~ A " ) P - - ~ [ 0 ( 1  + 01A")~ + Emv(1 + 0~A')~J~,] 

1 ~ VtOgi~ r . 

gJ: l  .~2 ~ik 2 1 i k  1 ] t  02 An_l~f. • ~x, , ,~o2 + ~ z , ~ S ,  ) +  W'(l + 0, A ' ) U ) ~ , ~  + 1 +02 

Where n corresponds to a time level number and 01 and 02 are parameters, 

0 A" ~ _ f , + l  _ f , .  0 - ~ p  [ ' ] U =- ~-~ ([ " ]AnU), A " f -  

In equation (10) the truncation error by time is O((01 - 1/2 - 02) x z) + O(v2). 
At the right part F was approximated by A'f ~ A" Jf in a calculation of  the unknown function 

A'f; in so doing the discretization accuracy was preserved. 
In equation (10) all functions are lagged from the nth level other than those existing under the 

operator A'. 
The equations system (lO) is solved with a splitting method in to physics processes and space 

variables. A one-dimensional boundary problem is solved at each fractional step. 
An equation system of the type 

I + 1 + 0 2  0 pQp A"U=F 

with 

& 
~{, ~{k S)*( U, U~) = ~Jx, ~k ~-~ gi,(U). (9) 

In equation (7) the derivatives by t are approximated according to Ref. [7]. The equation system 
may be written in delta-form: 

I+1+020~  JQs A ' g = R H S ,  (10) 
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(without summation by p) is approximated by Tolstykh's scheme [8] which has a truncation error 
O ( h  3) (h is the grid step): 

(B ~0~ CeQe)A"U= e+ ~ BeF. 

Where Be and Cp are the finite-difference operators functioned to the ~e direction: 

and 

Be = A0 - 1/4AoM 

Ce = 1/(2h)(Ao - A (T,/2M)A+). 

The operators Ao, Ao, A ,  A+ and Tl/2 are running in the following way: 

A0fj= 1/6(£ , +4 f ;+£+ , ) ,  

a0fj =f,+, -£_,. 
A_Uj=£-£_,. a+fj=£+,-f;. 

M = SDS-~ ,  where D = sign A and A = diag{2;} matrices, where 2; are the latent roots of Q. and 
S is the matrix of the Q latent vectors. 

As is known, the Tolstykh scheme has large short wave disturbance numerical dissipation, 
resulting in attenuation of occurring wear oscillations. Nevertheless, because there are large-ampli- 
tude oscillations, doing a calculation is impossible when large graduate flows and flows with strong 
shock waves are simulated. The following Tolstykh scheme modification has been suggested for 
overcoming the above-mentioned difficulties. The calculation of each step is carried out by a 
"predictor-corrector" scheme. The first stage "predictor" corresponds to the basic scheme; in the 
"corrector" stage the solution 0 is corrected in the following way [9]: 

U7 +' = Uh + Q(6cbi+ ,/2 - 64;_ ,/2) (11) 

with 

'6 Oj+ if (6pj_ ,/26P;+ 1,2 < 0) or (@i+ ,.'26pj+ 3.2 < 0) I/2, 
64,j+ 1/2 = (0, in any other case. 

Here 6fj+ ,/z =~+,  -fs" 
It takes about 2 h on an IBM PC AT 386/387 to calculate the rise of the thermal. The grid has 

30 x 50 nodes. 
The equilibrium chemically-reacting air flow in the shock layer near the body is simulated using 

the three-dimensional FVSL equations. For calculating the required transport coefficients, the 
tables composed by I. A. Sokolova, S. A. Vasilievskii and A. V. Andriatis are used. The angles 
of attack during the body flight are small because the thermal velocity is much less than that of 
the cone. Thus, there is a small parameter in the problem, namely, the angle of attack E. In the 
flight through the buoyant thermal, the angle of attack undergoes a change at every point of the 
flight trajectory. The asymptotic method of a small parameter is used to solve the three-dimensional 
FVSL equations, with the angle of attack as a small parameter. The method has been used 
previously to solve the three-dimensional Euler and FVSL equations, formerly solved by other 
authors using the method of time relaxation [10, 11]. The basic idea of this method is to represent 
a three-dimensional solution as an asymptotic series expansion with the angle of attack as the 
expansion parameter. In the present study only the linear terms O(E) of the series expansion are 
retained, the higher-order terms are O(E 2) [11] and may be neglected. The small-parameter method 
reduces the three-dimensional FVSL equations to two sets of equations: a nonlinear axisymmetric 
set of equations; and a linear two-dimensional set of equations which is used to determine the first 
terms of the asymptotic series expansion. The governing system is solved by global iterations with 
respect to the pressure and the angle of the shock wave. The numerical method for solving the 
formulated problem is described in detail in Ref. [12]. It takes about 30 min on an IBM PC 386/387 
to calculate one point of the trajectory on the adaptive grid i~ith 80 x 40 nodes. 
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A simple analysis shows that a small disturbance in the surface pressure distribution may result 
in significant errors in the pitching moment coefficient in the case of small angles of attack, e - ,0.  
Consequently, the calculation of  the pitching moment coefficient in the present analysis is based 
on the small-parameter method [10] because the angle of attack is small. 

3. RESULTS AND DISCUSSION 

Figure 1 shows the velocity vector distribution and the isotherms for the buoyant thermal at the 
instant the cone enters the thermal. The dashed line corresponds to the body flight trajectory. The 
time it takes for the cone to fly through the hot gas cloud is about 5 s. 

It is easy to show that the time taken to cross a thermal can be approximated by 
RT/Vv" [l + O(~RT)], where RT is the characteristic size of  the thermal, ~ = p*SC*/M, p* is the 
characteristic density, C* is the characteristic drag coefficient, S is the cross-section of  the body 
and M is its mass. The parameter ~ is small: for instance, for a body with a length of  2 m, a nose 
radius of 0.1 m and a mass of 1000 kg, ~ ~ l0 6-10-7 m -1. In the case considered, the flight altitude 
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Fig. 1. The velocity field and the temperature isolines in the thermal at time t o = 15 s. 
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of the body drops by 100 m at most in a flight time of 5 s. This is 1-2% of the characteristic size 
RT. Therefore, the trajectory of the body inside the thermal can be assumed, for simplicity, to be 
a straight line. Determining more accurately how a thermal influences the flight dynamics requires 
additional investigations, which are now being carried out. 

The heat transfer distributions along the cone surface in the case of boundary condition (5) at 
the time moments to = 15.159 s and t 3 = 17.802 s are shown in Fig. 2. Here, the solid line is the heat 
flux onto the cone at time to, when the body flies out of  the thermal. The marked line corresponds 
to the heat transfer distribution at the time moment 13 in that case when the flow around the cone 
is axisymmetric. It appears that the unexpected drop in the heat transfer in the high-temperature 
portion of  the flight trajectory is due to the fact that the pressure distribution at the same altitude 
is unchanged in both the thermal and undisturbed atmosphere. Therefore, the cone flies into a 
rarefied gas cloud, which results in both a drop in the heat transfer and a decrease in the cone 
surface temperature. The heat flux onto the windward side at time t 3 ( -  . . . . .  ) is greater than that 
at time to because the angle of attack at the trajectory point is not zero and equals ~ = 6.83"'. The 
- - . - -  line corresponds to the heat transfer on the leeward side of the cone. 

In Figs 3-6 the results obtained for six cone flight trajectory points for T~ = 500 K are given. 
The free-stream conditions, angle of  attack and line marker at the corresponding flight trajectory 
point are specified in Table 1. The free-stream conditions at the entry point into the thermal 
completely coincide with the free-stream conditions at the instant the cone leaves the thermal. 
Therefore, the line markers corresponding to these flight trajectory points are not distinguished in 
Figs 3-6. 

Figures 3 and 4 show the heat transfer coefficients along the cone surface for the windward and 
leeward sides, respectively. The leeward side heat transfer distribution at every trajectory point is 
less than the heat transfer at the initial trajectory point, where the flow around the cone is 

Table 1 

Time (s) T~ (K) Re~" 10 ~ M s P~" 1 0 2 ( ~  ) , (deg) Line/symbol 

t o = 15.159 232.2 13.4 6.55 0.101 0 . . . . .  
t~ = 16.591 592.8 9.72 4.83 0.0544 1.17 • 
t 2 = 16.832 808.8 5.95 4.31 0.0436 2.65 
l 3 = 17.802 794.6 6.28 3.69 0.0329 6.83 • 
t 4 = 18.299 703.6 7.59 3.99 0.0376 4.54 
t s = 19.044 536.9 11.6 5.45 0.0689 0.26 
t 6 = 20.159 219.2 55.0 6.55 0.101 0 . . . . . .  
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axisymmetric. The heat transfer time-dependence during the cone flight through the thermal 
changes nonmonotonically along the flight trajectory. This is explained by the variation in the angle 
of attack. The variation in the windward side heat transfer during the flight is governed by two 
factors: the first is the increase in the angle of attack; and the second is the decrease in the 
free-stream air density. The two factors act in opposite directions. As a result, the change in the 
windward side heat transfer distribution is less than that on the leeward side. 

The pitching moment coefficient distributions for six flight trajectory points are shown in Fig. 5. 
The pitching moment coefficient is given by 

M~(z) = 2 .I~ poog~s~ " r x P, ds. 

Here P, is the stress vector, Z is the cone surface and S(z) is the cross-section area in z = const. 
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Figure  6 shows the shock s tandof f  dis tance in bo th  the windward  and  leeward cone sides for 
six flight t ra jec tory  points .  In  Fig. 6 the x coord ina t e  increases in the leeward side d i rec t ion  and 
the po in t  x = 0 co r re sponds  to the cone nose tip. 

4. C O N C L U S I O N  

The p rob l em o f  the flight o f  a b lunted  body  across  a large-scale thermal  in a stratif ied a tmosphe re  
is formula ted .  A numer ica l  a lgor i thm is cons t ruc ted  to solve the p rob lem.  The  N a v i e r - S t o k e s  
equa t ions  o f  the gas m o t i o n  in a thermal  are in tegra ted  using a c ompa c t  finite-difference scheme. 
The  p rob l em o f  the flow pas t  the body  is solved using the a sympto t i c  me thod  o f  a small  pa rame te r  
and  the m e t h o d  o f  g lobal  i terat ions.  Dis t r ibu t ions  o f  the hea t  flux on the body  in space and  time, 
the s tandof f  d is tance  o f  the shock wave and  the p i tching m o m e n t  are  calculated.  The  heat  flux on 
the b o d y  is shown to be, in general ,  smal ler  in a thermal .  The  heat  flux on the w indward  surface 
o f  the body  is not  a m o n o t o n i c  funct ion o f  time. 
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