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EFFECTS OF SECOND-APPROXIMATION OF BOUNDARY LAYER THEORY
IN THREE-DIMENSIONAL FLOW OVER BODIES WITH A LARGE
ASPECT RATIO AT SMALL ANGLES OF INCIDENCE

E. A. Lipchinskii, G. A. Tirskii, and S . V.. Utyuzhnikov
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The influence of the second-approximation effects of laminar boundary layer theory on the heat transfer in three-dimensional hypersonic
flow over blunt cones with a large aspect ratio is investigated numerically .

The influence of the second-approximation effects of boundary layer theory in the neighborhood of the stagnation
point was first investigated in detail in [1] . In that study the principal second-approximation effects caused by the terms
of order O(Re "2 ), which are not involved in the Prandtl equations, were identified . It was noted that the effects of
entropy layer absorption by the boundary layer predominate over all the other second-order effects . In [2] it was shown
that the contribution of the entropy layer absorption effect to the heat flux on the surface of an orbiter can reach 50% .
The entropy layer absorption manifests itself at large distances from the bluntness . Various approximate approaches
were developed for taking the entropy layer absorption into account within the framework of the classical Prandtl model
for bodies with a large aspect ratio . These approaches involve both analytical studies of the problem and various
engineering methods based on taking the vorticity on the outer edge of the boundary layer approximately into account
(see, for example, [3-7]) .

The system of equations of the complete viscous shock layer contains all the terms of the complete Navier-Stokes
equations which contribute to the second approximation of boundary layer theory and makes it possible to determine
with quantitative accuracy their total contribution . In study [8] the influence of the effects in question was determined
for hypersonic axisymmetric flow over blunt cones with a large aspect ratio . It was found that the entropy layer
absorption effect can lead to substantial changes in the heat transfer and friction coefficients (by up to 100%) in the
zone of intense absorption, as compared with the results for the first-approximation boundary layer (classical theory) .
It was noted that cooling the surface of the body leads to a decrease in the influence of the entropy layer absorption
effect . The applicability of approximate methods of taking the entropy layer absorption into account was studied in [3-7] .
In [9] the contribution of the second-approximation effects of boundary layer theory was investigated in the case of
axisymmetric air flow over blunt bodies assuming equilibrium dissociation and ionization reactions in the shock layer .

In the present paper the combined influence of the second-approximation effects in three-dimensional unseparated
flow over long blunt cones is investigated . In contrast to [8], here we shall investigate a three-dimensional flow . The
solution over the entire domain between the surface of the body and the surface of the shock wave, including subsonic
flow regions, is found in a unified manner using a numerical method based on global iterations [10] .

L FORMULATION OF THE PROBLEM AND METHOD OF SOLUTION

We will consider an unseparated flow over long blunt cones at small angles of incidence . In order to describe the
gas flow between the surface of the body and the surface of the shock wave we use the system of three-dimensional
viscous boundary layer equations, which contains all the terms of the complete system of Navier-Stokes equations up
to and including the terms of order O(Re'I2) . We write this system of equations in an orthogonal coordinate system
moving with the surface of the body in the usual way (x is the length of body contour generator, y is the distance to the
surface of the body along the normal, and p is the meridional angle reckoned from the spreading plane) [11] :
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Here, u, v, and w are the physical components of the velocity vector in the x, p, and y directions ; R(x, p) is the
radius of curvature of the body surface; Re_ is the Reynolds number -, x(x, p)=1/R(x, ~) is the curvature of the surface
of the body; a is the Prandtl number; H1 and H2 are the Lame coefficients ; a is the angle of inclination of the generator
of the body to the axis of symmetry; r is the distance from a point on the surface of the body to its axis .

In the system of equations (1.1) the quantities are nondimensionalized as follows: the velocity vector components
have been divided by the free-stream velocity V, the pressure P by p_V=, the total enthalpy H by H~ and the
quantities having the dimension of length by the bluntness radius R(0) .

In the case of a perfect gas the viscosity coefficient µ is assumed to be a known function of the absolute
temperature T. In the calculations we used Sutherland's formula .

The system of equations (U) is closed using the following boundary conditions . On the shock wave, considered
as a surface of a strong discontinuity, the generalized Rankine-Hugoniot conditions are imposed [12] . In the coordinate
system (x, p, y) these conditions have the form :
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Here, the subscript s denotes the quantities behind the surface of the shock wave ; V_(i), i =1, 2, 3, are the free-
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stream velocity vector components in the coordinate system (x, p, y); p, and y s are the angles of inclination between
the surface of the body and the surface of the shock wave; ys =y,(x, c) is the shock wave standoff distance. As boundary
conditions, on the surface of the body the no-slip, no-flow, and cooled wall conditions are imposed:

u(x, gyp, 0) =w(x, gyp, 0) =v(x, p, 0)=O,

	

H(x, q, 0)=Hw

	

(1.3)

Here, the subscript w denotes the quantities on the body surface .
The problem is solved in the domain between the surfaces of the body and the detached shock wave : 0 s x s xk ,

0 s p < 2, , 0 s y s ys . On the surface x=xk "soft" boundary conditions are imposed .
For solving the system (L1)-(L3) we used the method of asymptotic expansion in terms of a small parameter,

namely, the angle of incidence . The system of equations for the expansion coefficients is solved by the global iteration
method [10] . This numerical method, which was described in detail in [11], makes it possible to reduce the computer
time by a factor of approximately 100 as compared with the stabilization methods used in the complete
three-dimensional formulation . The accuracy of the method was confirmed in [11] by comparison with experimental and
calculated data . In order to integrate the system of governing equations numerically we used a difference scheme of
second-order approximation with respect to the longitudinal and fourth-order approximation with respect to the
transverse coordinate . In the direction normal to the body we used a variable step distribution of the difference grid,
the steps being chosen at each point in accordance with the variation of the function in its neighborhood. The
computational grid consisted of 50 nodes in the direction transverse to the body.

2 . RESULTS

In order to investigate the second-approximation effects of boundary layer theory we calculated numerically the
flow over spherically blunt cones with a length equal to 150 bluntness radii over a broad range of free-stream Reynolds
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numbers Re_ for various Mach numbers M~ temperature factors t,,,, and cone half-angles a0 . The influence of the
second-order effects was determined using the heat flux distribution

aT
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Here, A is the thermal conductivity, and To is the stagnation temperature of the flow. As Re_ q,,' reaches
a limiting value which does not depend on Re_ and corresponds to the solution of the equations of the classical
boundary layer. In the case of a fairly large finite value of Re_ the corresponding difference between the distribution
q,,'(x) and the limiting one makes it possible to determine the total contribution of the second-approximation effects
of boundary layer theory. The results of calculations made for the values Re =10 3, 10°, 105 , and 10 6 are presented. When
Re =103 the shock layer is completely viscous and there is no boundary layer as such . At the same time, the curves
for Re_=105 and 10 6 differ only slightly, which corresponds to the establishment of the boundary layer asymptotics ; when
Re= 10' the graph of q,,' is not visually distinguishable from the graph for Re= 10 6.

In Fig. 1 we have plotted the heat flux distribution on the windward surface of a 15°-cone for M =20, t, .,=0.5, and
angle of incidence 0=5° in the spreading plane (here, z is the coordinate along the axis of the cone) . Here and in what
follows, the broken, dotted, chain, and continuous curves correspond to Re_=103, 10° , 105, and 106 , respectively. As can
be seen from the figure, the main "stratification" of the curves corresponds to the values of z=1-6 . In the neighborhood
of 10 radii there is a small zone in which q,,,' practically does not depend on Re : Then there is an inversion in the
distribution of qµ,' as a function of Re_ with higher values of the heat flux qW ' corresponding to higher values of Re .
At distances of more than 100 bluntness radii for Re a 1000 the high-entropy layer is almost completely absorbed by
the boundary layer and the corresponding values of q,,,' differ only slightly. When there is no angle of incidence,
inversion of the heat flux is not observed (Fig. 2). The inversion effect appears to be attributable to the influence of
secondary flows caused by the three-dimensional nature of the flow.

The distribution of q,,,' over the Reynolds numbers also remains monotonic on the leeward side of the cone,
although in this zone the applicability of the small parameter method is conjectural . In order to eliminate the influence
of errors associated with the approximation of the method used, we considered the analogous family of curves for the
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angle of incidence 0=2° . In this case the conclusions were qualitatively the same, but the point of intersection of the
curves (on the windward side) was displaced upstream by approximately 10 radii. In the case of a cold wall (t W=0.05)
the entropy layer absorption is more wealdy expressed, the inversion of the heat flux being observed later (Fig . 3) . In
Fig. 3a the cone and free-stream parameters are the same as in Fig . 1, except for t .

In Fig. 3b we have shown the distribution of q,,,' for windward-side flow over a 35°-cone with M_= 20, t =0.5,

and 0=10° . The increase in the cone angle leads to the entropy layer absorption coming earlier and, starting from 10
radii, the solution corresponds to the classical boundary layer asymptotics . When Re > 10° in the neighborhood of L5
Ro there is a clearly defined second extremism of the heat flux, but the inversion of q, '(Re_) is more weakly expressed .
It is of interest to note that, starting from Re =10°, the quantity q,' practically does not change in the neighborhood
of the local extremism . On the leeward side the solution differs qualitatively in that the intense entropy layer absorption
comes considerably later - in the vicinity of 50 radii . In the case of flow over the same cone but at an angle of incidence
of 5 ° the entropy layer absorption on the windward side is displaced into the neighborhood of 20 bluntness radii .

The flow over a cone with the same parameters as in Fig. 1 but for M_= 5 (Fig. 4) is characterized by the fact that,
along with a decrease in the heat flux, the influence of the entropy layer absorption is weakened . In this case, starting
from Re= 105, the solution corresponds to the classical boundary layer asymptotics . A second extremism of qw ' is not
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formed, although there is a weak inversion of q, '(Re_) at z > 10 .
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