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The paper is devoted to the further development and systematic performance evaluation
of a recent deterministic framework Nesvetay-3D for modelling three-dimensional rarefied
gas flows. Firstly, a review of the existing discretization and parallelization strategies for
solving numerically the Boltzmann kinetic equation with various model collision integrals
is carried out. Secondly, a new parallelization strategy for the implicit time evolution
method is implemented which improves scaling on large CPU clusters. Accuracy and
scalability of the methods are demonstrated on a pressure-driven rarefied gas flow through
a finite-length circular pipe as well as an external supersonic flow over a three-dimensional
re-entry geometry of complicated aerodynamic shape.

© 2013 Published by Elsevier Inc.

1. Introduction

In the last ten years or so there has been rapid development of explicit numerical methods and associated computer
codes for solving the kinetic equations of the rarefied gas dynamics in three space dimensions [20,17,2,13]. A more recent
approach is the high-order unstructured implicit Nesvetay-3D framework [38,39]. The main advantages of Nesvetay-3D over
other existing three-dimensional numerical methods for kinetic equations are two-fold. Firstly, its ability to use arbitrary
unstructured meshes, comprising not only tetrahedrons, but also elements of other shapes, makes Nesvetay-3D suitable for
industrial problems with complex geometries and various flow regimes. Secondly, the use of the efficient one-step implicit
time evolution method significantly accelerates convergence for steady-state problems. A recent application of the method
is the calculation of the flow in long finite-length pipes across a wide range of Knudsen numbers [42,41]. Results were
provided for length to radius ratios up to fifty, which so far has not been achieved by using other methods and codes.

The current implementation of the framework on parallel computers uses the Message Passing Interface (MPI) and is
based on the decomposition of the molecular velocity mesh while keeping the spatial mesh as a single block. Such approach
is simple and strictly equivalent to the sequential implementation. However, it has restrictions on the size of the spatial
mesh on the most of the existing high-performance computing systems. This is because the data structure of the complete
spatial mesh is stored at each processor and the amount of the required memory for its storage does not decrease with
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the increasing number of processors used. Another problem is that the use of the data reduction operators can affect the
scalability of the parallel code, see e.g. [40] for the studies of the analogous methods in two space dimensions.

The present work is a follow-on to [39] and has two objectives. Firstly, the developments of the existing implicit parallel
method over the last four years are reviewed and further improvements are introduced. Secondly, the multi-block version
of the numerical framework is presented, which does not use the data exchange between blocks during the solution of
the linear system of equations for the time increments in the implicit scheme. Although the resulting parallel method is
not strictly equivalent to the single-block method, the resulting method is free of the problems of the single-block parallel
implementation and is simple enough for practical implementation.

The convergence properties and parallel scalability of various versions of the method are compared on two test problems.
The first problem concerns rarefied gas flow through a short circular pipe, connecting two reservoirs with gas under different
pressures. The difficulty here is to compute the solution with satisfactory accuracy across all degrees of gas rarefaction from
the free-molecular to nearly-continuum flow. In the present work for the first time a spatial mesh convergence study is
presented, using three consequently refined meshes. The results of three advection schemes are compared with one another
and with the well-resolved DSMC calculations [48]. It is known that the use of mesh partitioning may seriously degrade
the convergence properties of the implicit time-marching schemes [34]. The results are presented that demonstrate the
behaviour of the present implicit method for multi-block meshes.

The second problem concerns an external supersonic flow over a model winged re-entry space vehicle (RSV), proposed
by Central Aerohydrodynamic Institute (TsAGI). The model has a rather complex shape, which includes a blunt fuselage,
swept wings, keel and flap. Recently, the aerodynamics of this vehicle has been extensively studied on the basis of the
compressible Euler equations for a wide range free-stream Mach numbers [43,44]. In the present work the rarefied regime
of the flow is examined for a moderate free-stream velocity for the conditions, approximately corresponding to 100 km of
altitude. To the best of our knowledge, it is the first time when the flow over such a complex vehicle has been computed
using the kinetic equations.

The selected test problems require the ability to handle three-dimensional geometries and flow features with steep
gradients at very different degrees of rarefaction. They are thus very suitable for testing the accuracy and robustness of the
numerical methods for kinetic equations.

The rest of the paper is organized as follows. The governing equations are presented in Section 1. The sequential numer-
ical algorithm is described in Section 2. The parallel strategies are discussed in Section 4. Numerical results are presented
in Section 5 and conclusions are drawn in Section 6.

2. Governing equations

The present work concerns the monatomic rarefied gas flows. A three-dimensional state of the rarefied gas is determined
by the velocity distribution function f (x, ξ), where ξ = (ξ1, ξ2, ξ3) are the components of the molecular velocity vector in
the spatial directions x = (x1, x2, x3) = (x, y, z). Let l∗ , p∗ , T∗ , μ∗ be characteristic scales of length, pressure, temperature
and viscosity, respectively; β∗ = √

2kT∗/m is used as the characteristic scale of velocity, t∗ = l∗/β∗ is the scale of temporal
variable. Here m is mass of a molecule, k is the Boltzmann constant. The non-dimensional macroscopic quantities, such as
number density n, temperature T , mean velocity u = (u1, u2, u3) and heat flux q = (q1,q2,q3) vectors are defined as the
integrals of the velocity distribution function with respect to the molecular velocity:⎛

⎜⎜⎝
n
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q
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where u2 = uαuα , ξ2 = ξαξα , v2 = vα vα , dξ = dξ1 dξ2 dξ3.
In the non-dimensional variables the Boltzmann equation with the S-model collision integral [29,30] for the distribution

function f has the following form:
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. (2)

Here rarefaction parameter δ defines the degree of gas rarefaction and is inversely proportional to the Knudsen number Kn;
summation of over the repeated Greek indexes is assumed. For a monatomic gas the Prandtl number Pr = 2/3. The hard-
sphere intermolecular interaction μ = √

T is used in all calculations.
The kinetic equation (2) has to be augmented with the boundary conditions. Let n = (n1,n2,n3) be the unit normal

vector to a boundary surface, pointing in the outward direction to the surface. Assuming the diffuse molecular scattering
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boundary condition with complete thermal accommodation to the surface temperature T w , the distribution function of
reflected molecules is given by:

f (t, x, ξ) = nw

(π T w)3/2
exp

(
− ξ2

T w

)
, ξn = ξαnα > 0. (3)

The number density of reflected molecules nw is found from impermeability condition stating that the mass flux through
the walls is equal to zero:

nw = Ni/Nr, Ni = −
∫

ξn<0

ξn f dξ , Nr = +
∫

ξn>0

ξn
1

(π T w)3/2
exp

(
− ξ2

T w

)
dξ . (4)

On the inflow and outflow boundaries of the spatial domain the distribution function of the incoming molecules is
prescribed as the locally-Maxwellian one with the corresponding values of the macroscopic variables.

3. Sequential single-block method of solution

The steady-state solution of the six-dimensional boundary-value problem (2)–(4) is found by means of the implicit
time-marching algorithm, developed in [38,39]. The first step in the numerical solution procedure is to replace the infinite
domain of integration in the molecular velocity space ξ by a finite computational domain, which is then discretized using
the non-uniform mesh with Nξ1 · Nξ2 · Nξ3 ≡ Nξ cells. Both Cartesian and cylindrical coordinate systems can be used in the
velocity space, depending on application. The velocity distribution function is then defined in centres ξα of the resulting
velocity mesh. The kinetic equation (2) is replaced by a system of Nξ time-dependent advection equations for each of fα :

∂

∂t
fα = −ξα∇ fα + Jα, Jα = ν

(
f (S) − f

)
α
, (5)

which are connected by the macroscopic parameters in the function f (S) from the model collision integral J . Here ∇ is the
gradient operator in the physical space (x, y, z).

3.1. Calculation of macroscopic quantities

The direct approximation of expressions (1) for macroscopic quantities yields a non-conservative numerical method
that violates the discrete mass, momentum, and energy conservation laws. A detailed analysis of this problem is provided
in [37]. There are several approaches for construction of the conservative methods for model kinetic equations, see [39]
for a short discussion on the subject. The present work uses the most recent method [36,37], which is based on the direct
numerical approximation of the integral conditions used in the derivation of the S-model collision integral [29,30]. Let ωα

be the weights of the composite quadrature rule used for integration in ξ space. In each spatial cell the eight macroscopic
quantities are found as a solution of the following system of equations (subscript i of the spatial mesh is omitted for
simplicity):
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The system is solved by means of the Newton iterations of the form:

M
(
W s−1)(W s − W s−1) = −H

(
W s−1), s = 1,2, . . . , M = ∂ H

∂W
. (7)

The initial guess W 0 for the iterations is obtained from the direct quadrature discretisation of (1).
In the special case Pr = 1 (BGK model [5]) the function f (S) no longer contains the heat flux vector making the last three

equations in (6) unnecessary. If these three equations are omitted, the procedure (6) for macroscopic parameters coincides
with the ones proposed in [23,24,11] from different considerations for the BGK model.

The difficult part of the Newton method (7) is the calculation of the Jacobian matrix M , which is given by the discrete
integral sums of the derivatives of f (S) with the respect to the macroscopic variables. The same applies to methods proposed
in [24,11]. The exact evaluation of M is both costly and cumbersome to code, more so for more complicated kinetic models,
such as the R-model of the diatomic gas [28,19]. To make this more computationally efficient, the numerical integration in
the expression for M is replaced by the exact (analytical) one so that the Jacobian matrix is approximately expressed as an
explicit function of macroscopic variables:
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M ≈
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. (8)

The use of the approximation (8) simplifies the numerical algorithm at the cost of some degradation in the convergence
speed. Although the convergence to the solution is no longer quadratic, the resulting iterative procedure requires signifi-
cantly less CPU time to converge up to δ = 1000 than the method based on the exact evaluation of the Jacobian matrix.

3.2. Advection scheme

The next step in the description of the numerical method is to outline the procedure to solve each of the kinetic equa-
tions (5) assuming the model collision integral is known from Eq. (6). Introduce in the physical variables a computational
mesh consisting of Nspace elements (spatial cells) V i . Let |V i | be the cell volume, |A|il area of face l, 
t = tn+1 − tn time
step, f n

αi the spatial average of the velocity distribution function in the cell V i at time tn for the molecular velocity ξα ,

gn
αi = f n+1

αi − f n
αi time increment of the distribution function. Also denote by σl(i) the cell index of the cell adjacent to the

face l of cell V i . For the given index α of the velocity mesh the implicit finite-volume method is written as

gn
αi = 
tLn+1

αi , Ln+1
αi = − 1

|V i|
∑

l

Φn+1
αil + Jn+1

αi , i = 1,2, . . . Nspace. (9)

Here Φn+1
αil is the high-order accurate approximation to the interface flux for the face l of the cell i. The right-hand side of

the scheme (9) is linearized around the lower time level t = tn . Two conventional simplifications are made in the calculation
of the derivatives of L in the left side of the scheme: (i) the face fluxes are assumed to be first-order ones; (ii) the compli-
cated dependence of the macroscopic variables on the discrete values of the distribution function via (6) is ignored. Then,
the general implicit scheme (9) becomes a system of Nspace linear equations for the temporal increment of the solution gn

αi :

Dαi gn
αi +

∑
l

cαiσl(i)gn
ασl(i) = 
tLn

αi,

Dαi = 1 + 
tνn
i + 1

2

t

∑
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ξαnl(1 + sign ξαnl)
|Ail|
|V i| ,

cαiσl(i) = 1

2

tξαnl(1 − sign ξαnl)

|Ail|
|V i| , (10)

where ξαnl is the projection of the vector ξα onto the outward unit normal to the face l of the cell V i . If the face l of the
cell belongs to a computational boundary, then the corresponding temporal increment of the distribution function is set to
zero

gn
ασl(i) = 0. (11)

In the right-hand side of the scheme the advection operator acting on the values of the velocity distribution function on
the lower time level, is approximated as a sum of the intercell fluxes, which are calculated according to the conventional
formula

Φn
αil = ξαnl|Ail|

2

(
f − + f + − sign(ξαnl)

(
f + − f −))

,

f − = f n
αil, f + = f n

α,σl(i),l1
. (12)

Here l1 is the number of the face of the cell σl(i), adjacent to the face l of the cell i. The general formula (12) is modified
if the face l is adjacent to a boundary surface and ξαnl < 0 by applying the corresponding boundary condition.

3.3. Spatial reconstruction procedure

The calculation of the numerical fluxes Φn
αil as defined by Eq. (12) requires the knowledge of the face averages of the

distribution function f n
αil . Here the three different approaches are considered. For the first-order accurate method it is

sufficient to set these values equal to the cell value

f n = f n , l = 1,2, . . . . (13)
αil αi
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Such procedure is still used in some methods [13]. It is well known, however, that the first-order method is quite inaccurate.
There are two possibilities to obtain a higher-order accurate approximations to f n

αil . The original method [38,39] employs a
high-order fully multidimensional spatial discretization based on the least-square reconstruction. In each spatial cell V i the
distribution function fα is approximated locally by the piece-wise linear reconstruction polynomial

f ≈ f n
iα + a1e1(x) + a2e2(x) + · · · , x ∈ V i . (14)

Here ek(x) are the polynomial spatial basis functions with zero mean, the coefficients ak (degrees of freedom) are computed
using the values of f n

imα in the cells V im from the so-called spatial reconstruction stencil. Here m = 0, . . . , M is the local
spatial cell number in the stencil, with corresponding cells with spatial index im . In order to avoid non-physical (spurious)
oscillations at discontinuities the reconstruction procedure is made non-linear (solution adaptive) by introducing the so-
called slope limiter. The use of slope limiters was pioneered by Kolgan [14–16] and van Leer [45] for structured meshes
(see also [46,27]) and subsequently extended to the unstructured meshes by other authors [35,4]. The final values f n

iαl , used
in the calculations, are expressed via the unlimited face averages pn

iαl of the reconstruction polynomial as

f n
iαl = f n

iα + ψn
iα · (pn

iαl − f n
iα

)
, pn

iαl =
M∑

m=0

ωiml f n
imα. (15)

Coefficients ωiml do not depend on the solution and are defined by the stencil only. The first-order scheme corresponds to
ψn

iα ≡ 0, whereas ψn
i ≡ 1 gives a linear (oscillatory) high-order method. Here, for steady-state calculation a smooth limiter

from [49] is applied. The reconstruction procedure can be extended to polynomial reconstructions of any order of spatial
accuracy. However, the test calculations have shown that the piece-wise linear (second-order) representation is the best
compromise between the accuracy and computational cost.

The least-square reconstruction is robust, works well across all flow regimes and is significantly more accurate than the
first-order method. However, it is known that the accuracy of the least-square approximation may degrade as the cell aspect
ratio grows [26]. Additionally, for some flow problems, such as flows in long pipes, the three-dimensional reconstruction
does not take into account the fact that the flow gradients are generally large in the direction normal to the surface and
small along the pipe, with the exception of the entrance and exit regions. For the hexahedral meshes a locally structured
reconstruction method can be used [42], in which the face average for face l is computed as

f n
αil = f n

αi + φ(SL, S R)
il, (16)

where 
il is the distance from cell centre to face centre, SL , S R are left and right estimates of solution slope, φ(x, y) is the
slope limiter. The advantage of the form (16) is that in the one-dimensional case the reconstruction reproduces the linear
function exactly even if the mesh spacing is not uniform. The disadvantage is that it is generally not strictly monotone.
Experience suggests that in the extreme cases such as rapid gas flow into vacuum this reconstruction can be less robust
than the more restrictive fully three-dimensional limiting process (15). For steady-state calculations it may be necessary to
first obtain an initial approximation using either (13) or (15) and only then switch to (16).

In the present work the so-called monotonized central (MC) slope limiter is used [45]:

φ(x, y) = minmod

(
1

2
(x + y),β · minmod(x, y)

)
. (17)

Here minmod is the modification of the original slope limiter of Kolgan

minmod(x, y) = 1

2

(
sign(x) + sign(y)

)
min

(|x|, |y|),
parameter β = 1 . . . 2 controls the amount of steeping. The original paper suggests β = 2. However, experience shows that
for steady-state computations the use of a smaller value gives superior convergence properties [50]. Following [50,6], the
value β = 1 . . . 1.25 is set in the present work.

The resulting second-order method (16) requires less computational memory and runs approximately 25% faster, than
the fully three-dimensional one.

3.4. Solution of the linear system and convergence criteria

The direct numerical solution of the linear system (10) is a very slow operation with the computational cost proportional
to N3

space. Therefore, an approximate factorization of the system is carried out using the approach suggested in [21,22]. The
system of equations (10) is solved approximately in two stages. Unlike the earlier implementations [39] the matrix-free
approach is used. Firstly, the backward substitution is used to calculate intermediate values g∗:

Dαi g∗
αi = −

∑
cαiσl(i)g∗

ασl(i) + 
tLn
αi, i = Nspace, . . . ,1. (18)
l: σl(i)<i
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Next, the direct substitution gives the final values:

Dαi gn
αi = g∗

αi −
∑

l: σl(i)>i

cαiσl(i)gn
ασl(i), i = 1, . . . , Nspace. (19)

The formulas (18), (19) do not require the storage of the matrix of the system (10). The computational cost of solving
(18), (19) is linearly proportional to Nspace. As a result, the cost of one time step of the implicit method is only 25% larger
than the computational cost of an explicit method with the same spatial reconstruction procedure and the conservative
calculation of macroscopic parameters.

In calculations, the value of the time step 
t is evaluated according to the expression 
t = C mini di/ξ0, where C is the
prescribed CFL number, di the characteristic linear size of the cell V i . The numerical solution is deemed as converged to the
steady state if the integral residual R1 in the macroscopic conservation laws

R1 =
∑

i

∣∣Rn
i

∣∣ · |V i|, Rn
i =

∑
α

⎛
⎝ 1

ξ

ξ2

⎞
⎠

α

Ln
iαωα (20)

drops below the specified tolerance εR .

4. Parallel solvers

For large-scale problems such as the ones reported here the calculations are carried out on modern high-performance
clusters using Message Passing Interface (MPI). In the present work two approaches to extend the single-processor method
to multiple processors via MPI are exploited.

4.1. Single-block parallelization

In the single-block strategy the spatial mesh is not partitioned, instead the velocity mesh is divided into blocks of equal
size. It appears that this strategy was first used in [3] for explicit schemes. In the present method each processor is assigned
a number of molecular velocities. The stages of the single-block parallel algorithm can be summarized as follows:

1. Each processor computes its part of the integral sums for the boundary condition (3).
2. Using MPI_AllReduce, the integral sums are summed up on the master processor, the densities of reflected molecules

(4) are computed and sent to each of the processors for cell faces, adjacent to the solid boundaries.
3. For each velocity node, the kinetic equation is solved using the implicit method (10). The solution procedure includes

spatial reconstruction, calculation of intercell fluxes and the model collision integral. Parts of the macroscopic integral
sums (1) and residual vector (20) are calculated.

4. MPI_AllReduce command is used to sum the parts of the integral sums from each processors. The initial guess W 0 for
macroscopic quantities at the new time level is computed and sent to each processor.

5. The correction procedure is called (6), consisting of the following steps:
(a) Calculation of parts of H s−1 in Eq. (7).
(b) Summation of residual parts from all processors and broadcasting of the results using MPI_AllReduce.
(c) Calculation of the next approximation W s .
Iterations are repeated until convergence.

6. Verification of the global convergence criteria (20).

Experience shows that for transitional and nearly-continuum regime δ � 1 the process converge rapidly within 2–3
iterations in the majority of cells. However, there are a small number of cells, for which up to 10 iterations may be required.

4.2. Discussion of the single-block approach

The advantages of the single-block approach to parallelization over existing methods [17] are its simplicity and fast
convergence to steady state due to the use of the implicit time-marching method (10). For relatively coarse spatial meshes
and single-precision data representation the parallel version of the algorithm was shown to scale well up to 512 cores
[39]. However, on the most of the HPC systems parallelisation with respect to the velocity mesh may restrict the size of
the spatial mesh. This is because all the unstructured mesh data such as connectivity, areas, volumes and reconstruction
matrices must be kept by each processor. Experience shows that on a typical distributed-memory machine with 1 GB of
RAM per core only the meshes with up to approximately Nspace = 2 · 105 cells can be used. Indeed, for double-precision
calculations using NCPU cores, the required amount of memory M in bytes for each core can be estimated as

M = 8Nspace

(
Mspace + Nξ

)
. (21)
NCPU
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Here Mspace ≈ 103 is the amount of memory, required by the second-order unstructured-mesh spatial solver (15) to store
the mesh data as well as reconstruction data (list of cells in the stencil, reconstruction matrix, basis function values at faces,
etc.), as well as ξ -independent variables, such as macroscopic data; Nξ is the total number of cells in the velocity mesh.
If the number of cores is sufficiently large NCPU � 1, one can disregard the second term in the brackets in (21). Then, the
minimum required memory per core can be estimated as M ≈ 8000 · Nspace. Taking into account that the operating system
also needs memory, the spatial mesh of at most Nspace = 105 cells can be used if 1 GB of RAM per core is assumed.

The second disadvantage of the single-block approach is that its scalability stalls for sufficiently large spatial meshes due
to the multiple use of MPI_AllReduce command during the calculation of macroscopic variables. The effect is stronger if the
double-precision representation is used, which is essential for small Knudsen number calculations. This effect was studied
in [40] for a similar numerical method, but in two spatial dimensions. As we intend to run the simulations on hundreds
and possibly thousands of cores, a better parallel strategy may be required.

In the present work the computer implementation of the correction procedure (6) is modified in order to improve the
overall efficiency. The convergence of the Newton-type iterations (7) is now controlled locally so that in the converged cells
the residual vector is not recomputed. This saves computer time for recalculations of data as well as MPI_AllReduce calls.

4.3. Multi-block parallelization

The second approach to the construction of parallel solvers uses the partitioning of the spatial mesh into the blocks. For
kinetic equations it has been used in a number of papers, e.g. [17], for the explicit advection schemes only. The implementa-
tion of high-order explicit advection schemes on multi-block unstructured meshes is well documented in the literature, see
e.g. [8]. However, explicit schemes miss the key advantage of the implicit algorithm (10), namely fast convergence to steady
state using large CFL numbers. The direct generalization of (10) to multi-block meshes is very difficult from the algorithmic
point of view as well as for maintaining good MPI scalability of the code. For the two-dimensional structured meshes such
implementation is reported in [25]. The authors used a special re-numeration of the spatial cells and asynchronous MPI
communications to implement the parallel algorithm, which is identical to the sequential time marching. To the best of our
knowledge, no extension of this algorithm to the three-dimensional unstructured meshes has been reported. Various simpli-
fied realizations of the parallel LU-SGS methods for multi-block unstructured meshes were studied in [34] as applied to the
compressible Navier–Stokes equations. The authors noted a significant decrease in the convergence speed to the stationary
solution as the number of spatial blocks grows. This sort of performance is not very suitable for the present method.

From the practical point of view, the preferred parallel version of the implicit method is such that does not use data
exchange between blocks during the solution procedure (18), (19). Instead, the boundary condition (11) is used at block
interfaces. The transient behaviour of the resulting parallel algorithm is not equivalent to the single-block method (either
sequential or parallel). One of the goals of the present work is to access the impact of the mesh partitioning on the
steady-state convergence of the implicit method.

The time advancing algorithm of the multi-block implicit method is now different from the single-block implicit one and
consists of the following stages:

1. At each processor the integral sums for the boundary condition (3) are computed and the density of reflected molecules
(4) are found. For the second-order method, the reconstruction procedure at this stages uses the cell values of the
distribution function from the previous time level. Since we are not interested in the time-accurate transient, this is
admissible.

2. For each velocity mesh node
(a) For higher-order spatial schemes (15), (16) exchange of values of the distribution function in ghost cells is carried

out.
(b) The Reconstruction procedure is invoked to compute face values of the distribution function f n

iαl .
(c) Exchange of face values at block boundaries is carried out.
(d) Intercell fluxes F n

iαl are computed according to (12).
(e) The kinetic equation is solved using the implicit method (10) and the residual vector (20) is computed.

3. For each spatial cell the macroscopic parameters are computed according to (7) and steady-state convergence criteria
(20) is checked.

To improve the parallel efficiency, all interprocessor exchanges are carried out using non-blocking send/receive MPI
commands.

The estimate of the required amount of memory per core (21) is now rewritten as

M = 8
Nspace

NCPU
(Mspace + Nξ ). (22)

It is seen, that unlike (21), the required memory M decreases linearly with the number of cores NCPU. Moreover, the parallel
algorithm does not contain the calls to the slow command MPI_AllReduce. Instead, each processor (core) exchanges data
with the direct neighbours only. Therefore, the parallel multi-block method is free of the two main bottlenecks of the
single-block parallel algorithm.
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5. Numerical examples

In this section numerical results are presented for the first-order method (13), three-dimensional TVD method (referred
to as TVD3D) (15) and locally structured reconstruction method (16) (referred to as TVD1D). Both single-block and multi-
block versions are used. The calculations have been carried out on the HPC “Lomonosov” of Lomonosov Moscow State
University, Russia. “Lomonosov” supercomputer consists of both Intel Xeon X5570/X5670 CPUs and Nvidia X207 GPUs and
has 1.7 PFlops of peak performance. The total number of Xeon cores, available for calculations, is 52 168. In the present
work the runs were performed on 64 to 1024 cores of the machine (8 to 256 quad-core Xeon processors) with 3 GB of RAM
per core.

5.1. Pipe flow

5.1.1. Formulation
Consider a rarefied gas flow through a circular pipe of length L and radius R , connecting two infinitely large reservoirs

(volumes) filled with the same monatomic gas. Gas in reservoirs is kept under pressures p1 > p2, respectively, and at the
same temperature T1 = T2 = T0. The complete accommodation of momentum and energy of molecules occurs at the pipe
surface, which is kept under the same constant temperature T w = T0. The values of pressure, temperature and viscosity
in reservoir 1 are used as p∗ , T∗ , μ∗ , whereas the pipe radius R is taken as the characteristic linear dimension l∗ . The
calculations presented here correspond to the short pipe L/R = 1 and two pressure ratios: p1/p2 = 2 (moderate drop) and
p1/p2 = ∞ (flow into vacuum). The problem in this geometrical formulation with both reservoirs and the pipe is now
included in the proposed database of benchmark problems in rarefied gas dynamics [33].

The main computed quantity is the mass flow rate Ṁ through the pipe

M =
∫

A(z)

ρ(x, y, z)w(x, y, z)dx dy.

Here the quantity mn1β1 R2 is used as the scale to pass to non-dimensional value of Ṁ . In the presentation of the results,
it is more convenient to use the so-called reduced mass flow rate Q instead. The value of Q is defined as a ratio of the
mass flow rate Ṁ at given value of the rarefaction parameter δ1 and L/R1 to its values M0 in the free-molecular orifice
flow [32,48]. In the non-dimensional variables Q is calculated as

Q = Ṁ

Ṁ0
, Ṁ0 =

√
π

2
. (23)

For the free-molecular case δ1 = 0 the solution can be obtained using the integral equation of Clausing [7]. There were
a number of solutions of this equation obtained by other authors afterwards as well as statistical solutions; for discussions
see e.g. [18]. The dimensional mass flow rate is given by

Ṁ∞ = π R2 p1 − p2√
2π(k/m)T0

W (24)

where W is the Clausing coefficient. In the non-dimensional variables one obtains

Ṁ∞ = 1

2

√
π(p1 − p2)W , Q ∞ = (p1 − p2)W . (25)

For L/R = 1 the Clausing coefficient is equal to W = 0.672 so that Q ∞ = 0.336 for p1/p2 = 2 and Q ∞ = 0.672 for
p2 = 0. These values can be used to assess the accuracy of the methods in the free-molecular regime. It should be noted
that such a regime is quite difficult for shock-capturing schemes as discontinuities of the distribution function are not
tracked explicitly like in shock-fitting schemes, often used for two-dimensional calculations [31,1].

5.1.2. Mesh convergence study
It is very difficult to perform proper six-dimensional mesh convergence studies due to the very high computational cost

of the simulations. Experience shows that the solution is most sensitive to the spatial accuracy of calculations, whereas
the velocity space discretization has a smaller influence; fine velocity mesh is important for the rarefied flow regimes only.
Therefore, in the present work first the required velocity mesh resolution is determined using the cylindrical arrangement of

velocity nodes. For the case p1/p2 = 2 the coarse velocity mesh consists of 15 points in the radial direction ζ =
√

ξ2
1 + ξ2

2

and 16 cells in the z and angular direction. The radial and z component of the velocities vary in the limits 0 � ζ � 4,
−3.5 � ξ3 � 3.5 with the ζ mesh clustered towards the origin. The second mesh consists of 25 × 32 × 32 nodes with the
same domain size. The calculations showed that the coarse mesh is sufficient for δ1 > 1, whereas for δ1 � 1 the finer mesh
provides higher accuracy; the difference for the most difficult free-molecular flow regime is around 1%. Therefore, for the
rest of the pipe flow studies the coarse mesh is used for δ1 > 1 and the fine mesh is for δ1 � 1.
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Fig. 1. Velocity meshes for the pipe flow.

For the flow into vacuum p1/p2 = ∞ a finer velocity mesh is required in all cases, consisting of 25 × 16 × 32 nodes with
the extended domain size −4 � ξ3 � 4. Moreover, the ξ3 mesh is clustered towards the origin. Such differences in velocity
mesh construction are necessary in order to take into account a large temperature decrease in the vacuum reservoir and
high gas velocity. The Simpson rule is used for odd number of cells in ζ direction whereas the trapezoidal rule is used for
the even number of cells in ζ and for two other components of velocity mesh. Fig. 1 shows the 15 × 16 × 16 nodes mesh
for the moderate pressure drop and 25 × 16 × 32 node mesh for the vacuum case.

The definition of the parameters of the spatial mesh begins with the estimation of the required size of the reservoirs. The
use of small domains for reservoirs decreases the computational effort required to obtain the solution, but may lead to the
underestimation of the mass flow rates. This is especially so for relatively short pipes and/or δ1 � 1. Our test calculations
(not shown here) indicate that the size parameters recommended in the DSMC studies [48] are quite adequate. In the
present work, larger reservoirs of length and radius 10 are used to allow for more reliable studies for δ1 � 1.

Figs. 2, 3 illustrate the first (coarsest) and third (finest) spatial meshes. The first mesh consists of 5600 cells and is
exceedingly coarse with only 10 cell intervals along the pipe, 116 cells in the cross-sectional plane of the pipe (240 cells
for the reservoir cross section with the pipe). This should be compared with much finer cross-sectional meshes used for
the infinite pipe calculations. The cell size in the direction normal to the pipe surface and exits is 0.06. The second and
third meshes are constructed by approximately doubling the number of cells in each direction so that the total number of
cells is 40 761 and 349 905, respectively. The spatial mesh resolution is selected to be deliberately coarse in order to better
highlight the difference between spatial schemes (13), (15), (16).

To summarize the mesh description, it is noted that the finest six-dimensional computational mesh (x, y, z, ξ1, ξ2, ξ3)

contains 1.3 × 109 cells for p1/p2 = 2 case and 4.5 × 109 cells for the flow into vacuum.
The convergence study for p2/p1 = 0.5 is reported in Table 1 for selected values of the rarefaction parameter δ1 = 0,

0.1, 1, 10 and 100. As a reference solution also provided the results of the DSMC studies from [48]. For the monatomic
gas the well-resolved DSMC calculations can be considered as equivalent to the direct numerical solution of the Boltzmann
equation with the exact collision integral. The S-model equation is exact for the free-molecular regime and provides the
correct limit for δ1 � 1 (nearly continuum and continuum flows). For the rarefied and transitional flows the use of the
approximate collision integral can lead to the deviation from the solution of the Boltzmann kinetic equation with the exact
collision integral by a few percent. Therefore, one does not expect the numerical results from the S-model equation to be
equal to the DSMC results [48] in the complete range of the rarefaction parameter values.

It is seen from Table 1 that the second-order accurate locally one-dimensional method (16) is the most accurate scheme
for the present problem, including in the free-molecular regime. The difference between its results on two finest meshes is
within 1%. For δ1 = 100 the present calculations give a somewhat higher flow rate than the DSMC data, which is however
still within the stated computational error of [48]. For δ1 = 1 there is a discrepancy at the level of 3%, which is due to
the use of the approximate collision integral. Overall, the middle spatial mesh of 40 761 is sufficient to obtain the accurate
results in the complete range of the considered values of the rarefaction parameter. The use of the coarsest mesh gives
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Fig. 2. Spatial meshes for the pipe flow.

Fig. 3. Cross-sectional cuts of the spatial meshes in the x–y plane.

acceptable values for δ1 � 1, but results in a significant error of up to 7% for δ1 � 10. However, on 16 cores it takes only
3 hours to obtain the converged solution for δ1 = 100 and hence this coarse mesh can be used for preliminary studies.

The accuracy of the three-dimensional spatial approximation (15) is comparable to that of the scheme (16) for the rar-
efied flow regime δ1 � 1. However, as the flow approaches the continuum, the three-dimensional least-square reconstruction
becomes less accurate. Both second-order schemes are, however, superior to the simple first-order accurate method (13).
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Table 1
Mesh convergence studies for the reduced flow rate Q defined in Eq. (23), for finite pressure ratio p1/p2 = 2. Results (i), (ii) and (iii) correspond to the
spatial meshes with 5600, 40 761 and 349 905 hexahedra.

δ1 First-order scheme (13) TVD3D scheme (15) TVD1D scheme (16) DSMC,
Ref. [48](i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

0. 0.327 0.333 0.335 0.333 0.335 0.336 0.335 0.336 0.336 0.336
0.1 0.334 0.340 0.343 0.342 0.344 0.344 0.344 0.345 0.345 0.343
1. 0.383 0.401 0.410 0.407 0.417 0.420 0.412 0.419 0.421 0.405
10. 0.626 0.734 0.802 0.800 0.855 0.873 0.832 0.871 0.876 0.866
100. 0.912 1.093 1.187 1.134 1.233 1.285 1.220 1.292 1.303 1.29

Table 2
Mesh convergence studies for the reduced flow rate Q defined in Eq. (23), for the flow into vacuum p1/p2 = ∞. Results (i), (ii) and (iii) correspond to the
spatial meshes with 5600, 40 761 and 349 905 hexahedra; Ref. [42] uses 270 000 hexahedra.

δ1 TVD1D scheme (16) Ref. [42] DSMC,
Ref. [47]

Exp. data,
Ref. [10](i) (ii) (iii)

0. 0.666 0.670 0.672 0.670 0.672
0.1 0.678 0.683 0.684 0.681 0.680 0.675
1. 0.758 0.766 0.768 0.758 0.754 0.743
10. 1.035 1.061 1.066 1.058 1.062 1.06
100. 1.290 1.351 1.367 1.355 1.358 1.33
200. 1.331 1.406 1.425 1.412
500. 1.331 1.454 1.474 1.449

The difference is most striking for δ1 � 1, when the first-order method (13) has a 12% error even on the finest mesh. Since
the computational cost of all three methods is comparable, the use of the first-order approximation is not recommended.

For the second case of flow into vacuum p1/p2 = ∞ only the most accurate locally one-dimensional scheme (16) is used.
Table 2 contains the present results for all three spatial meshes, DSMC data from [47] and experimental data from [10]. The
numerical results cover the range 0 � δ1 � 500, corresponding to flow regimes from the free-molecular one to the nearly
continuum. It is seen that the locally one-dimensional scheme clearly converges as the spatial mesh is refined and yields
sufficient accuracy on the second mesh even for δ1 = 500. The free-molecular solution is computed with 0.3% error. The
deviation from the DSMC data is now reduced to 2% for δ1 = 1 and well below 1% for other values of the rarefaction param-
eter. The comparison with the previous results based on an original version of the method [42] demonstrate a discrepancy
at the level of 1%. However, it should mentioned that the calculations in [42] were run on a spatial mesh of 270 × 103 cells
with a much stronger clustering towards the surface. Therefore, the present modification of the method maintains the same
accuracy using the spatial mesh with 6 times fewer cells.

Comparison with the experimental data shows that the kinetic solution on the finest spatial mesh differs from the
experimental data by 2–3% depending on the value of the rarefaction parameter δ1. The DSMC solution agrees slightly
better, mostly in the rarefied flow regime. Overall, the difference of the numerical and experimental results is comparable
with the experimental measurements error of 2%. It is expected, that if the correct accommodation coefficient is used in the
boundary condition, the discrepancy between experimental and computational results can be further decreased.

5.1.3. Comparison of single- and multi-block parallel solvers
For the multi-block solver the finer of the three spatial meshes with 349 905 cells is split into the required number of

blocks using version 4.0 of METIS software package [12]. For 64 cores each spatial blocks contains 5467–5468 cells with
between 1300 and 2000 ghost cells per block for the high-order method. For 1024 cores the number of cells in the block
varies between 340 and 344 (load balance of approximately 1.01) and 200 to 300 ghost cells.

The steady-state convergence of both parallel versions of the method is assessed by computing the solution to the
problem for p1/p2 = 2 at δ1 = 1, using the locally one-dimensional spatial scheme (16) and the velocity mesh with 15 ×
16 × 16 cells. The initial condition for all runs is provided by the locally-Maxwellian function, corresponding to the gas at
rest with the linear density distribution along the pipe. Fig. 4 shows the behaviour of the maximum norm residual R∞
and normalized flow rate Q for the single-block method and multi-block method run on 128 and 512 blocks. It is seen
that mesh partitioning into spatial blocks affects the convergence behaviour of the method insignificantly, at least for the
considered value of the rarefaction parameter.

The scalability of variants of the parallel method is assessed using 64, 128, 256, 512 and 1024 cores on the third (finest)
spatial mesh. For this set of runs it is more convenient to use the velocity mesh with 163. For the single-block solver the
velocity mesh is naturally split into the required number of blocks, equal to the number of CPU cores.

The wall clock times of each calculation are given in Table 3. It is seen that overall, the single-block method does
not scale above 512 cores and the time required for one time step, grows sharply. This behaviour is due to the high
computational cost of calling MPI_AllReduce command on the given spatial mesh. The analysis, carried out in [40] for
the two-dimensional version of the single-block parallel method, showed that the condition for good scalability is the
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Fig. 4. The maximum norm residual R∞ and normalized flow rate Q for δ1 = 1 as a function of number of spatial blocks.

Table 3
Wall clock time in seconds of single- and multi-block solvers with the spatial scheme (16). Spatial mesh with 349 905 cells and 163 velocity mesh are used.

Cores 64 128 256 512 1024

Single-block 48 27 15 8.6 20
Multi-block 54 23 12 7 5.2

Fig. 5. Re-entry space vehicle geometry.

use of relatively coarse spatial mesh and finer velocity mesh. This was confirmed in [39] where the single-block method
was shown to scale well up to 512 cores, running on the spatial mesh of ≈ 5.5 × 104 cells. However, for many flow
problems this requirement on the number of cells in spatial and velocity meshes is not feasible. However, the new adaptive
implementation of the macroscopic correction procedure allows the single-block method to scale well up to 512 cores on
a significantly finer spatial mesh as compared to the earlier work [39]. The multi-block parallel version scales up to 1024
cores, although the gains are relatively small going from 512 to 1024 cores. Moreover, it is faster for the most cases except
for 64 cores.

5.2. Supersonic flow over a model re-entry space vehicle

The geometry of the re-entry space vehicle (RVS) is provided in initial graphics exchange specification (IGES) format and
is shown in Fig. 5. The aerodynamic shape of the RSV consists of a fuselage with spherical nose bluntness, two wings with
dogtooth extension and end edges, and a vertical keel and fuselage flap. The length of the fuselage is 9000 mm, the radius
of the nose is 450 mm, the upper surface diameter is 2600 mm. The total length of the RVS with the flap is 10 000 mm.
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Fig. 6. Surface mesh for the RVS calculations.

Fig. 7. Volume mesh cut around the vehicle for the RVS calculations.

The hybrid computational mesh in the physical space x, y, z is initially constructed in the dimensional variables. Its use
allows to capture all essential flow features without spending considerable effort on generation of a multi-block structured
mesh. The surface of the RVS is covered by the triangles with the appropriate refinements to the sharp features of the
geometry as well as to the blunted nose. Fig. 6 illustrates the surface mesh and its decomposition into 256 blocks, used in
calculations. The four layers of prismatic cells of 20 mm heights are used near the surface of the RVS, whereas the rest of
the computational domain is filled with tetrahedrons. Fig. 7 shows the cut through the volume mesh at the symmetry plane.
The total number of spatial cells is Nspace ≈ 533 × 103, including approximately 386 × 103 tetrahedrons, 147 × 103 prisms
and 551 pyramids. Each block contained approximately 2100 internal cells and between 900 and 2800 so-called ghost cells,
required by the second-order TVD3D method (15). Such a large variation in the number of ghost cells seems to be due
to the strong clustering of cells towards surface combined with the relatively large number of blocks for the considered
number of spatial cells.

The total length of the vehicle is chosen as the spatial scale l∗ , whereas the free-stream values of pressure and temper-
ature are set as p∗ , T∗ . The surface temperature was fixed and equal to the free-stream temperature. The non-dimensional
spatial mesh is obtained from the initial dimensional mesh by dividing over l∗ . Calculations were carried out for the non-
dimensional free-stream velocity number u∞ = 2. The rarefaction parameter is set to δ∞ = 1000, which approximately
corresponds to the altitude of 100 km (1 cm mean free path). The velocity mesh consisted of 243 nodes. The total number
of cells in the 6-dimensional mesh is thus approximately 6.9 × 109.
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Fig. 8. Flow visualisation in the x–y plane: density (left) and pressure (right).

Fig. 9. Flow visualisation in the x–y plane: streamlines.

The calculation process is organized as follows. The free-stream values of all macroscopic variables are used as the initial
guess. The first-order solution is constructed, using the first-order scheme. The time step is chosen according to the CFL
number of 25. Then, the second-order solution is computed using the TVD3D scheme and first-order solution as the initial
guess. One time step takes approximately 120 seconds. The complete steady-state convergence requires several thousand
iterations.
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Fig. 10. Surface distribution of pressure and normal component of heat flux.

Figs. 8, 9 provide a general representation of the flow field. Shown are the isolines of density and pressure on the
symmetry plane as well as streamlines. Fig. 10 depicts surface distribution of pressure as well as normal heat flux to
the surface. Overall, a typical flow pattern of a supersonic rarefied gas flow over a cold body is observed. The flow is
characterized by the formation of the bow shock wave in front the vehicle as well as sharp drop in pressure and density in
the wake close to the tail. The rarefaction parameter related to the blunted nose is δnose ≈ 45, hence the bow shock wave is
quite diffused. Pressure and heating at the largest at the stagnation point on the nose. Along the cylindrical surface of the
fuselage pressure and density change quite slowly. However, there is significant heating of the front edges of the wings and
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the keel, which is expected. At this value of the rarefaction parameter a recirculation zone is formed after the tail above the
flap. Finally, there is no visible loss of symmetry in the surface plots even though the unstructured mesh is not symmetric.

6. Conclusions

A numerical framework for modelling the three-dimensional steady rarefied gas flows on the basis of the Boltzmann
kinetic equation with the model collision integrals has been reviewed and extended to multi-block unstructured meshes.
It is shown that steady-state convergence properties of the proposed method do not degrade with mesh partitioning into
increasing number of blocks. Moreover, the multi-block implicit algorithm scales better, than the corresponding single-block
one. The newly proposed method is shown to be applicable to external flows over re-entry space vehicles of complex
aerodynamic shape, for which its ability to use hybrid unstructured meshes, implicit time marching and good scalability
combine into a versatile computational fluid dynamics tool. Future work include the extension of the method to diatomic
gases on the basis of the R-model kinetic equation [28,19], hypersonic flows and even higher orders of spatial accuracy
using a non-intrusive defect-correction strategy [9], where the higher-order corrections are included as a source term into
the low-order scheme.
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