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Abstract. The paper is concerned with a numerical simulation of fuel cloud behaviour which follows
releases of a liquid fuel. The main aim of the work is to develop further a mathematical model to sim-
ulate such releases into the atmosphere. The model is validated by a comparison with experimental
results. The influence of boundary conditions for turbulent kinetic energy k and its dissipation rate ε
on the solution is investigated. It is concluded that the solution depends mainly on the combination of
k and ε in the form k3/2/ε rather than each of these values separately. A way to define the boundary
conditions for k and ε is suggested. The KIVA-II code has been used as the base of the code used.
The original code has been modified to simulate low Mach number atmospheric flows, radiation, soot
formation and turbulent combustion.
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1. Introduction

Many chemical industry accidents are accompanied by fuel releases. Usually, a
large quantity of fuel is stored at high pressure in a liquid state. Even a small
rupture can cause a quick release of fuel from a tank. For example, 100 tons of fuel
are released in about 10 s. A failure of a tank with pressurised fuel is followed by
abrupt decrease of pressure, explosive boiling and evaporation two-phase outflows
of a liquid-vapour-air mixture. An ignition of such a fuel-droplet-vapour-air cloud
can cause shock-free combustion with the formation of a fireball. The powerful
radiation flux emitted by the fireball is dangerous for people and the environment.

There are a number of papers devoted to numerical investigations of the com-
bustion of vapour fuel clouds in the atmosphere. However, combustion of two-
phase releases of liquid fuel has not been studied well up to now. The present
paper is a further development of the model presented in [1]. In a comparison with
[1], a more comprehensive model for a droplet motion is used, a nonvertical fuel
release is allowed. Special attention is paid to the boundary and initial values for
turbulent variables.
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The flow of a fuel-droplet-air mixture from a ruptured tank is considered. A
Euler–Lagrange approach is used to solve the Navier–Stokes equations. The com-
bustion process (the eddy break-up model), turbulence (the k–ε model) and radi-
ation (the weighted-sum-of-gray-gases model) are taken into consideration. The
Lagrangian approach is used to simulate the behaviour of dispersed droplets and
describe the mass, momentum and energy exchange between the gas and liquid
phase via the source terms. A one-phase gas model, where instantaneous evapora-
tion of fuel liquid is assumed, is used along with the two-phase model. Numerical
results obtained on the basis of the one-phase and two-phase models are compared
with each other and with the experimental results.

The present investigations may be directly used in numerical simulation of the
tank failure. The process of a tank failure is complicated since it is accompanied
by the destruction of the tank, fuel release under high pressure, the intermixing of
fuel and air, and combustion. Furthermore, these processes can take place simul-
taneously. It is very difficult or even impossible to describe all these processes in
detail. Therefore, a simple model of the initial stage of the process is desirable.
The main aim of this investigation is to develop such a model. A comparison with
experimental data enables one to validate the model.

2. Problem Statement

2.1. GOVERNING EQUATIONS

The gas phase is described by the system of Favre averaged Navier–Stokes equa-
tions completed by the k–ε model of turbulence and the eddy break-up model
for turbulent combustion [2]. The gas is considered as a mixture of fuel vapour,
oxygen, nitrogen, carbon dioxide and water vapour.

The liquid phase consists of liquid propane droplets. The influence of droplets
on the gas is taken into account by the source terms in the conservation equations.

The governing equation system can be rewritten as follows:

∂ρ

∂t
+ ∇(ρU) = Sm, (1)

∂ρU

∂t
+ ∇(ρUU) = −∇p + ∇R̂ + (ρ − ρa)g + fd , (2)

∂h

∂t
+ ∇(ρUh) = ∇

( µ
Pr

∇h
)

+Hcw − SR + Sh, (3)

∂ρYi

∂t
+ ∇(ρUYi) = ∇

( µ
Sc

∇Yi
)

+ wi + δi1Sm, i = 1, . . . , N, (4)

∂ρk

∂t
+ ∇(ρUk) = ∇

(
µ

σk
∇k
)

+G− ρε + St, (5)
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∂ρε

∂t
+ ∇(ρUε) = ∇

( µ
Pr

∇ε
)

+ ε

k
(C1G− C2ρε + CSSt), (6)

R̂ = µ((∇U + ∇U)T − 2

3
(∇U)Î)− 2

3
ρkÎ, (7)

G = µt

(
(∇U + ∇UT )ij∇iUj − 2

3
(∇U)2

)
− 2

3
ρk(∇U)− µtg

ρ
∇ρ, (8)

µ = µ1 + µt, µt = Cµρ
k2

ε
, P = ρRT

N∑
i=1

Yi

mi

,

N∑
i=1

Yi = 1, (9)

w = ρA
ε

k
min

(
YF ,

YO

νO
,
BYP

νP

)
. (10)

Here t is time, ρ is the density, ρa is the undisturbed atmosphere density, p is the
deviation of pressure P from the atmospheric one, U is the velocity, R̂ is the stress
tensor, g is the gravity acceleration, h is enthalpy, Hc is the heat of combustion,
the source terms SR, St , Sm, Sh are determined below, k is the kinetic energy of
turbulence, ε is turbulent dissipation rate, Î is the unit tensor, µl and µt are the
laminar and turbulent viscosities, R is the universal gas constant, T is temperature,
index 1 corresponds to the fuel vapour, N is the total number of gas species. The
gas phase consists of five components (fuel, O2, N2, CO2, H2O) with mass fractions
Yi and the molecular mass mi . The reaction rates for individual components are
wi = ±νiw, νF = 1, νP = νCO2 + νH2O = 1 + νO, YP = YCO2 + YH2O, where the
indexes O and P correspond to the oxidiser and combustion products, respectively.
Propane C3H8 is considered as the fuel. The constants in (1) are as follows Cµ =
0.09, C1 = 1.44, C2 = 1.92, Cs = 1.5, σk = 1.0, σε = 1.3, Pr = 0.7, Sc = 0.7,
A = 4, B = 0.5.

To take into account radiative heat transfer, the weighted-sum-of-gray-gases
model is used [3]. This model is based upon an approximation of the optical prop-
erties of a real gas by a number of gray gases with different absorption coefficients
κ . The total radiation is represented by the sum of the contributions from each
spectral group. The contribution of the molecular band radiation of carbon dioxide
and water vapour mixture is approximated by three spectral groups, which cor-
respond to optically thin, thick and intermediate spectrum bands. One additional
gray gas, characterised by zero absorption coefficient, is added for a continuous
spectral representation of the total gas-soot mixture. The radiative heat transfer
associated with the soot is approximated by two groups. Thus, the gas-soot mixture
is represented by eight gray gases as in [1] and the total radiative source term SR is

SR =
8∑

k=1

∇qR,k. (11)



140 S.V. UTYUZHNIKOV

For optically thick gray gases, the radiative heat fluxes qR,k are determined by
the diffusion approximation method, which is reduced to the solution of an elliptic
equation

qR,k = − 1

3κk
∇Uk, ∇qR,k = −κk(akUb − Uk), (12)

where ak is a weight coefficient, Uk is the radiative energy density of k-th gray gas,
Ub = 4σT 4 is the black body radiative energy density, σ is the Stefan–Boltzman
constant.

For optically thin gray gases, a simpler model of the “volume emission” is used.
In this case

∇qR,k = 4κkakσ (T
4 − T 4

a ), (13)

where Ta = 293 K is the atmospheric temperature.
The optical thickness ιk , corresponding to k-th gray gas, is determined as the

maximal value among the integrals of the absorption coefficient κk along vertical
and horizontal lines. The value ι∗ = 1 is considered as the critical point. If ιk is less
than ι∗ the gray gas is treated as a thin one; otherwise, the gas is thick.

The soot formation is described by the following equations [4, 5]:

dNs

dt
= ∇

(
µ

Sc
∇Ns

ρ

)

+ g0Nr(Ns +Nr)/K − A
ε

k
Ns min

(
1,

νsρO2

νSmsNs + νOρF

)
, (14)

dNr
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= ∇

(
µ

Sc
∇Nr

ρ

)
+ AsYF exp

(
− E

RT

)

+ (f − g)Nr

YF

YF0

− g0Nr(NS +NR)

− A
ε

k
Nr min

(
1,

νsρO2

νSmsNs + νOρF

)
, (15)

where d/dt is the convection derivation operator, mS = ρSπD
3
S/6, ρS = 2 ·

103 kg/m3, DS = 200 A, AS = 6.2 · 1040 sm−3s−1, E = 7.54 · 105 J/mole,
f − g = 100 s−1, YF0 = 0.2, g0 = 10−15 m3/s, K = 5.

Soot particles are considered as passive ones without influence on gas except
through radiation. The soot volume fraction is determined as fv = mSNs/ρS . In
the calculations the mass fraction of soot was not more than 10−2.

Droplets are described by using the Lagrange approach as in [6]. This dispersion
phase is presented by sample parcels, each containing a large number of physically
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identical droplets. In the i-th parcel, all droplets have the same diameter di , coordi-
nate ri , velocity Ui and temperature Ti . Drop collisions can be taken into account,
but for simplicity they are not considered in this research.

The motion equation of a droplet is as follows:

mi

d2ri
dt2

= fdi +mig,

fdi = Cd
πd2

i

8
π |Ug − Ui|(Ug − Ui), (16)

where Ug = U + U′ is local velocity, U′ is turbulent fluctuating velocity, and Ui is
droplet velocity.

Cd =




24

Rei

(
1 + Re2/3

i

6

)
, if Rei < 103,

0.44, else,

(17)

Rei = ρdi |Ug−Ui|µ/(̂T ), T̂ = (T +2Tdi /3, Tdi is the temperature of i-th droplets.
It is assumed that U′ corresponds to the Gaussian probability distribution with

the mean 2/3k. The correlation time tcor for U′ is estimated as the minimum of an
eddy breakup time and the time needed for a droplet to traverse an eddy. Thus

tcor = 4e min

(
1

(2k/3)1/2
,

1

|Ui − Ug|
)
, (18)

where 4e = C3/4
µ k3/2/ε is the characteristic size.

Evaporation of a droplet is simulated by using the Frossling formula [7]

ddi
dt

= −2Dd(T̂ )

ρldi

Y ∗
1 − Y1

1 − Y ∗
1

Shd , (19)

where Y ∗
1 is fuel vapour mass fraction at the droplet surface, Dd is fuel vapour

diffusivity in air, Shd is the Sherwood number, ρl is fuel density,

Shd = (2 + 0.6Re1/2
d Sc1/3

d )
ln(1 + bd)

bd
,

Scd = µ(T̂ )

Dd(T̂ )
, bd = Y ∗

1 − Y1

1 − Y ∗
1

. (20)

Droplet temperature Td is determined by the energy balance equation

1

6
ρldclṪd − ρlRL(Td) = Qd, (21)

Qd is determined by Ranz–Marshall correlation

Qd = λ
T − Td

d
Nud, (22)
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where Nud is the Nusselt number

Nud = (2 + 0.6Re1/2
d Pr1/3

d )
ln(1 + bd)

bd
. (23)

Prd = Prd(T̂ ) is the Prandtl number, λ is the molecular heat conductivity.
The following equation [7] is solved to simulate break-up of droplets:

ρld
2
i

d2s

dt2
+ 20µl

ds

dt
+ 64αs/di = 2.7ρ(Ug − Ui)

2, (24)

where α is the surface tension coefficient, s is the formal distortion parameter. The
criteria of breaking up is s > 1. After break up the new droplet radii satisfy to a
distribution with the following distribution function:

g(d) = 2/dc exp(−d/dc), dc = d̄/(7 + 0.05ρl d̄
3s̄2
t /α). (25)

The magnitudes d̄ and s̄t (st = ds/dt) correspond to s = 1.
The source terms in Equations (1–10) are determined by summing contributions

of all individual droplets in parcels as follows:

fd = − 1

∇V
∑
∇V

Nifd,iδ(r − ri ), Sm = − 1

∇V
∑
∇V

Niṁiδ(r − ri ),

St = − 1

∇V
∑
∇V

Nimi

d2r
dt2

· U′δ(r − ri ),

Sh = − 1

∇V
∑
∇V

Niṁi(h−Hv)δ(r − ri ), (26)

Here mi = ρlπd
3
i /6, h = h(Td) is the fuel vapour enthalpy, Hν is the heat of evap-

oration, Ni is the number of droplets in i-th parcel, <V is the computational cell
volume. The summation is performed over all droplets within the computational
volume <V surrounding the end of the vector r.

The effect of the liquid volume fraction has been neglected because the evap-
oration time is essentially less than the total time of the problem and the flow is
mainly considered much further from the source, where the liquid phase can be
essential.

2.2. INITIAL AND BOUNDARY CONDITIONS

The problem is considered as an axysimmetrical one in the cylindrical coordinate
system (r, z). It is assumed that fuel vapour and droplets are injected into an
undisturbed atmosphere with constant temperature Ta and pressure Pa .

The principal question is how to define initial data for liquid-vapour fuel. We
assumed that the fuel is injected from a circular source. The other way of defining
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the initial data is to consider a given initial fuel distribution, which is established
instantaneously. As our study shows, the latter approach failed to give sufficiently
satisfactory results.

The source is considered to be a plane disk of diameter D. The source height is
negligibly small in comparison with the characteristic size of the region. Initially,
the source injects a fuel vapour-liquid mixture into the atmosphere. The injection
velocity is represented by a piecewise function of time. It is assumed that spatial
distribution of the velocity follows the Gaussian distribution with the maximum
value of Uin(0) on the axis z and decrease of the velocity at the source boundary
by a factor of

√
2.

The incompressible Bernoulli equation is used to estimate the maximum out-
flow velocity Uin(0), so that

Uin(0) = (2(P0 − Pa)/ρl)
1/2, (27)

where P0 is the pressure in the tank at the moment of failure, ρl is the liquid propane
density at pressure P0.

The injection is realised at an angle θ = θ(r) to the axis of symmetry, so that
θ(0) = 0, θ(D/2) = θ∗. In calculations θ∗ = 70◦ was assumed. Fuel consists
of fuel vapour characterised by the mass fraction xν while the liquid part is rep-
resented by droplets with the same initial diameter d0 for simplicity. We assumed
d0 = 50 µm. The initial droplet diameter has been taken as a constant and is
equal to 50 µm because, according to [1], the initial diameter slightly influences
the solution if the fuel mass is above 1 kg.

It is difficult to estimate the fraction xν of the fuel mass discharged as vapour.
We considered two approaches. In the first simplistic approach we assumed that
the fuel is evaporated instantaneously, so that xν = 1. The second approach for
the estimation xν was used in [1], where xν was calculated by an average balance
assuming that the liquid heat capacity Cl and heat of evaporation Hν are constant.
Then xν = Cl(T0 − Tbp)/Hν , where T0 is the lading temperature at the point of
failure (58◦C), Tbp is the temperature at the boiling point (−42◦C).

After the depressurisation, the density of the two-phase mixture is

ρin = 1
xν
ρν

+ 1−xν
ρl

, (28)

where ρν = ρν(Pa) is the vapour density on the saturation line at ambient pressure,
ρl = ρl(Pa) is the liquid fuel density at ambient pressure.

We assumed that the vapour-liquid mixture is injected from the source with the
total density ρin and mass vapour fraction xν .

Since ρin �= ρl, it is necessary to consider the equivalent source with the diam-
eter Deff

ρlD
2
b = ρinD

2
eff, (29)

where Db corresponds to the breach area Sb.
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The right and upper boundaries are located far enough so that droplets do not
reach these boundaries. After termination of the release, the inlet flow boundary
conditions in the source were changed to the solid wall boundary conditions.

On the solid wall the following boundary conditions for k and ε were used

k = 0, ∇ε · n = 0. (30)

Here n is the internal unit normal vector.
The following boundary conditions for radiative fluxes were used for optically

thick gray gases

2qR,k · n = (akUb − Uk)|w. (31)

We assumed that an ignition is sparklike and takes place near the source surface in
a small volume.

3. Numerical Procedure

The small Mach number approximation [8] was used to solve the system of gov-
erning equations. In this approach, a pressure deviation from the atmospheric value
Pa (proportional to the square of the Mach number) is neglected everywhere except
in the pressure gradient in the momentum equation. The Poisson equation for the
pressure correction has to be solved. This simplification allows one to remove the
stiffness associated with propagation of sound waves.

A staggered rectangular nonuniform mesh was used. The approximation was of
the second order for the spatial derivatives and the first order for the time deriva-
tives. Usually, a computational mesh included 100 × 200 mesh points. The elliptic
equations were solved by a preconditioned conjugate gradient method.

The elliptic equations were solved by the preconditioned conjugate gradient
method [9] as follows. Let us assume that a finite-difference analog of the elliptic
equation is the following system of linear equations

AX = b. (32)

Then, an approximate solution of the system is defined by the following procedure:

xj+1 = xj + αjpj , α = ‖rj‖2/(Apj ,Mpj ), (33)

rj+1 = rj − αjApj , βj+1 = ‖rj+1‖2/‖rj‖2, (34)

pj+1 = M−1rj+1 + βjpj . (35)

Here M is a preconditioning symmetric positive definite matrix, the vectors are
considered in the Euclidean space with the following inner product

(a,b) = M−1
ij ajbi . (36)
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The radiation problem is the most difficult to solve due to a stiffness caused by
a wide range of the absorption coefficients. A successful choice of the precondi-
tioning matrix M is very important here. The Jacobi matrix is a simple suitable
way to choose M. The other way, used in this work, is to choose M as the matrix
corresponding to matrix A when there is an uniform mesh and constant “effective”
absorption coefficient. In this case, the inverse matrix M−1 may be obtained very
quickly by the method of quick Fourier transformation in one direction along with
the Thomas algorithm in the other one. Usually, the second way has proved more
effective. As a result, calculation of the radiation part of the problem was not time
consuming and added only about 20% to the total computing time.

The system of Equations(14–15) for the soot formation was integrated at each
time step after all the other governing equations had been integrated by using the
method of splitting into physical processes. The most difficult subsystem for the
solution is the chemical kinetic one

dNs

dt
= g0Nr(Ns +Nr)/K, (37)

dNr

dt
= AsYF exp

(
− E

RT

)
+ (f − g)Nr

YF

YF0

− g0Nr(Ns +NR), (38)

because of its stiffness. To integrate this system, we use the method of total ap-
proximation splitting the system into the differential equations, which include the
free term, linear term with Nr and nonlinear part into the right side accordingly.
The final approximate solution at the next time step t = tn+1 can be received
analytically in quadratures as follows:

Nr(tn+1) = N ′′
r Drs(<t)De(<t), (39)

Ns(tn+1) = (Ns(tn)+N ′′
r )Drs(<t)−Nr(tn+1), (40)

N ′
r = ASYf

tn+1∫
tn

exp(−E/(RT )), (41)

N ′′
r = N ′

r exp


(f − g)/YF0

tn+1∫
tn

YF


 , (42)

where

Drs(<t) = Ns(tn)+N ′′
r − (1 − β)N ′′

r De(<t),

De(<t) = exp(−g0(Ns(tn)+ βN ′′
r )<t), β = 1/K, <t = tn+1 − tn.
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It is easy to show that scheme (39–42) is positively defined. It means the scheme
guarantees positivity of Nr and Ns in calculations.

4. Comparison with Experimental Data

We considered test 93-12 from the report [10] since this experiment is presented
with the most comprehensive set of measurements. The tank failure was accom-
panied by the BLEVE phenomena in this experiment. The main parameters of the
experiment were M0 = 110 kg, P0 = 2.1 MPa, T0 = 331 K, Sb ≈ 0.01 m2. In this
case we have xν ≈ 0.6, ρin ≈ 4 kg/m3, ρv ≈ 2.4 kg/m3, Uin(0) = 94.7 m/s.

The influence of the initial and boundary conditions for k and ε on the solution
was investigated. Our calculations showed that the solution depends mainly on
the combination of k and ε in the form k3/2/ε rather than each of these values
separately. Even a variation of k and ε within several orders of magnitude had
a weak effect on the solution if the combination k3/2/ε was held constant. This
prompts the following way of defining the initial and boundary conditions for k and
ε. According to Prandtl’s mixing-length hypothesis, the mixing length 4 = k3/2/ε

may be obtained by using the local equilibrium assumption (G = ε) and eddy
viscosity model. Originally, values of 4 at the source (4in) and in the atmosphere
(4a) have to be estimated. Thereafter values of k and ε may be estimated roughly.

We assumed that the inlet value of 4 at the boundary is

4in = 0.05D, (43)

which is the natural correlation between a typical path scale and 4, e.g. in case of
a round jet 4 = 0.04D [11].

It is difficult to estimate 4a for the initial boundary conditions in advance. It
depends on atmospheric conditions near the experimental equipment. In the ex-
periment, just one quantitative characteristic is available that is the span tFB of
the fireball (tFB as the time taken for the fireball to be visible). Calculations show
that increasing 4a causes a decrease in tFB. The value of tFB has been used as a
characteristic value to determine 4a .

In the experiment, tFB was about 4 s. In calculations, 4a was taken as 0.7 m that
corresponds to D/2 approximately. The relation between 4a and D is just formal
(of course, they are physically independent parameters) and it is used here to find
reference point for the estimation of 4a .

The certain dependence of the fireball span on the turbulence length scale 4a

seems unexpected. Possibly, it takes place due to the use of the equilibrium k–
ε turbulence model in nonequilibrium conditions. The use of such a model, with
the value 4a as a free parameter, is justified by its simplicity in comparison with
nonequilibrium turbulence models.

To estimate the inlet and initial turbulent kinetic energy at a given 4, it is
sufficient to satisfy such clear demands as

kin � U 2
in, ka � kin, (44)
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Figure 1. Fireball. Temperature. Two-phase model. M0 = 110 kg, tin = 0.2 s. Simulation of
experiment [10]. Dashed line corresponds to the visible fireball in the experiment. Dotted line
indicates the visible fireball in the calculations.

where kin is the inlet kinetic turbulence energy, ka is the initial value for k.
In the calculations we assumed that

kin = 10−2U 2
in, ka = 10−7U 2

in. (45)

Calculation results are presented in Figure 1 for the two-phase model. The
injection period tin was 0.2 s. The fireball dynamic is presented at the time in-
stants t = 0.5, 1.5, 2.5 and 3.5 s. The predictions are shown as a contour plot of
temperature. The dashed line is the visible fireball boundary in the experiment. The
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boundary is indicated approximately since the fireball was essentially asymmetric.
The dotted line indicates the fireball boundary, obtained in the calculations, from
the outside point of view.

A reasonable agreement can be claimed between the experimental and compu-
tational positions of the upper fireball edge, except the first instant (t = 0.5 s). The
latter can be explained by simplifications of our model, which were accepted for the
initial stage of the process. In the experiment, the fireball is essentially asymmetric.
Possibly, this is the main reason for the difference between the experimental and
computational fireball location at the last instant (t = 3.5 s).

The lower edge location depends strongly on the injection time. Afterburning
fuel affects the location of the lower boundary in the experiment. To show the role
of this effect, we considered a case where the liquid fuel was injected for 1.4 s but
the injection time for the vapour fuel remained as in the previous example. The
computational results are presented in Figure 2. Due to the delay in the fuel injec-
tion, the computational fireball lower edge is essentially closer to the experimental
edge.

It is useful to compare these results with the ones obtained for the simpler gas
model with xν = 1, which means instantaneous evaporation of fuel. In this case
ρin = ρν and Deff = 1.5 m. The fuel is ignited faster in the case of the gas
model since the stage of droplet evaporation is absent. It takes time for droplet
evaporation. The last droplets disappeared in about 0.5 s. Since the fuel evaporates
much faster than the fireball span, the fireball structure is similar to that of the
two-phase model (Figure 1).

It is interesting to verify the proposed approach to the definition of boundary
conditions for the turbulent variables k and ε at another experiment. A comparison
with Hasegawa–Sato’s experiment [12] on the vertical combustion of fuel-vapour
clouds created by an impulse source was done. Test Pr -5 has been considered as
in [1]. The experiment is characterised by the following data: M0 = 5.85 kg,
T0 = 301 K, P0 = 10 atm. No precise data on the size Sb is given in [12]. The
equivalent diameter was taken to be Deff = 0.5 m, which corresponds to an actual
breach diameter of Dreal, release time of tin = 0.13 s and the vapour fraction
xν = 0.386. These parameters coincide with the data chosen in [1]. The calculation
results, presented in [1], showed that the breach diameter influences the fireball
characteristics weakly as long as the release time is relatively short.

The ignition source corresponds to the pilot flame in the experiment. It has co-
ordinates (r, z) = (0.5 m, 4 m) and the typical size dig = 0.2 m. In the calculations
the reactions were artificially completed in this region up to the end in each time
step.

To compare with the calculation results [1], as well, we only considered a
vertical release with a constant injection velocity Uin = 60.6 m/s. According to
Makhviladze et al. [1], the initial droplet diameter is not essential for fuel masses
exceeding about 1 kg, so that we used the same diameter d0 as for the previous test
case.
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Figure 2. Fireball. Temperature. Two-phase model. M0 = 110 kg, tin = 1.45 s. Simulation
of experiment [10]. Dashed line corresponds to the visible fireball in the experiment. Dotted
line indicates the visible fireball in the calculations.

A fireball dynamic is presented at the time instants t = 1.17, 1.45 and 2 s in
Figure 3. The dashed line corresponds to the visible cloud shape in the Hasegawa–
Sato experiment Pr -5. A good correspondence between our results and both the
experimental and computational results [1] has been obtained, but in [1] the initial
and boundary conditions were chosen specially to coincide with the experiment
[12].
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Figure 3. Fireball. Temperature. Two-phase model. M0 = 5.85 kg, tin = 0.13 s. Simulation
of the Hasegawa–Sato experiment [12]. Dashed line corresponds to the visible fireball in the
experiment.

In Figure 4, the comparison of the maximum temperature as the function of
time is given for different radiation models. The continuous line corresponds to
the model (20–24). The dashed line represents the case where the radiation has
not been taken into account. The comparison shows that due to the radiation the
temperature decreases by up to 400 K. The soot contribution has not been so es-
sential: the change of temperature was within 50 K. The dotted line represents a
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Figure 4. Maximum temperature in fireball as function of time for different radiation models.

simplified radiation model which uses just one “average” absorption coefficient
k = ∑8

1 aj kj . This model is much less time-consuming, because we only need to
solve one radiation equation, and the model gives quite reasonable results.

5. Conclusions

A mathematical model was developed to simulate the behaviour of releases, fol-
lowing tank failures with hydrocarbon fuels at high pressures.

The k–ε model is used to simulate the turbulent processes. Inlet and initial
boundary conditions for k and ε have to be specified. In this work, an approach
was suggested to estimate the initial and inlet boundary conditions for k and ε.
This approach is based on the results of our calculations which show that the
mixing length 4 is a governing parameter to choose initial and boundary values
for k and ε. It means that the solution depends more strongly on the inlet and
boundary conditions for 4 than on the inlet and initial values of k and ε separately.
The choice of inlet value of 4 is suggested.

It was shown that it is acceptable to use a pure gas model to simulate fuel cloud
behaviour in the case of nondelayed ignition.

The mathematical model developed was verified by a comparison with different
experimental data.

Three-dimensional effects can be essential in the simulation of real phenomenon
and will be considered in future research.
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