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Abstract In design and optimization problems, a solution
is called robust if it is stable enough with respect to pertur-
bation of model input parameters. In engineering design op-
timization, the designer may prefer a use of robust solution to
a more optimal one to set a stable system design. Although
in literature there is a handful of methods for obtaining
such solutions, they do not provide a designer with a direct
and systematic control over a required robustness. In this
paper, a new approach to robust design in multiobjec-
tive optimization is introduced, which is able to generate
robust design with model uncertainties. In addition, it intro-
duces an opportunity to control the extent of robustness
by designer preferences. The presented method is different
from its other counterparts. For keeping robust design fea-
sible, it does not change any constraint. Conversely, only a
special tunable objective function is constructed to incorpo-
rate the preferences of the designer related to the robustness.
The effectiveness of the method is tested on well known
engineering design problems.

Keywords Robust design optimization ·
Multiobjective optimization · Fuzzy uncertainty ·
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1 Introduction

The operational variations and uncertainties in the model pa-
rameters can affect the performance of the optimum design.
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Therefore, the designer may demand a stable (or robust)
configuration, which is indifferent to these variations rather
than an optimal solution.

Papers by Bryne (1987) and Taguchi et al. (1989) rep-
resent first efforts in finding robust design. In particular,
they introduce a method to minimize the effects of uncon-
trollable parameters during design. The so called Taguchi
loss function (Ross 1995) is used to make a design more
tolerable to the model variations. To guarantee a less sensi-
tive design, other researchers (e.g. Ramakrishnan and Rao
1991; Sundaresan et al. 1991; Mohandas 1989; Box and
Fung 1986; Rao 1983) use optimization to minimize the
variation of input parameters. They propose a robust design
optimization with Taguchi loss function as an objective
function subject to the model constraints. Implementing
this, the constant and variable sensitivity from controllable
and uncontrollable parameters are respectively minimized
using nonlinear programming.

In single objective optimization, Parkinson et al. (1993)
seek the robust solution by studying two main issues: feasi-
bility of the design and the control of transmitted variation.
In that work, the size of feasible space is reduced to find
the robust solution unaffected by the model variation. In
addition to keeping the design feasible, the sensitivity of the
design is minimized during the optimization process. This
work is done by a nonlinear optimal design formulation.
The analysis of tolerance (Cox 1987), including both the
worst case and statistical analysis, is implemented to calcu-
late the transmitted variation of the parameters in the design
functions. However, as mentioned by Gunawan and Azarm
(2005), the information required for the probabilistic distri-
butions of variations may not be easily obtained in practical
problems.

Su and Renaud (1996), on the other hand, develop
another kind of robust design approach to single objective
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optimization. They introduce sensitivity- and experimental-
based robust design optimization to find a less sensitive
optimum solution. The essence of these two approaches is to
study the vicinity of current design and hence find the solu-
tion which is less sensitive to fluctuations of parameters and
design variables. To study the sensitivity of the design, Ting
and Long (1996) also use the sensitivity Jacobian based on
the performance tolerances. As in paper by Parkinson et al.
(1993), their approach exploits the analysis of tolerance to
find a transmitted variation in the performance functions.

In multiobjective optimization, Messac and Ismail Yahaya
(2002) develop a procedure to carry out a flexible robust
optimization. Using the physical programming lexicon
(Messac 1996), a system with a minimal variation in the
input variability and uncertainties is found while the feasi-
bility of the design solution is guaranteed. They consider
robust design with both prescribed and variable tolerances,
in which the variable tolerance level is determined optimally
in the design phase.

In another study, Deb and Gupta (2005) extend an ap-
proach used in single objective optimization and develop a
method for seeking robust solution in multiobjective opti-
mization. Two types of robust solutions are considered in
different prospectives. One type is related to optimization
of the mean effective objective functions. In another type,
the extent of robustness is taken into account by including
an additional constraint in the problem with a free parame-
ter as its right-hand side set by the designer. The essence of
the work is to minimize the feasible space to keep the design
solution feasible during the optimization. As argued by Deb
and Gupta (2005), depending on the sample population in
the vicinity of each design, this method is computationally
expensive. In addition, as discussed by Shimoyama et al.
(2009), the proposed approach faces difficulty in setting the
right-hand side as the upper limit of the robust constraints
for considering the degree of robustness.

Gunawan and Azarm (2005) proposed doubled loop
optimization methodology for finding a robust solution in
multiobjective optimization. An inner subproblem evalu-
ates the sensitivity of the current design by maximizing the
size of its worst case sensitivity region. Then, the outer
loop optimization is performed for the nominal value of the
parameters to find the robust solution. Although promising
for certain implementations, it seems inappropriate to pro-
vide information of the objective function variation ranges
in the case of general practical problems. Furthermore, since
the method consists of two optimization problems for each
design, the computational time increases for higher dimen-
sion problems. In addition, as argued by Gunawan and
Azarm (2005), this method only provides a robust solution
and it does not illustrate how much the solution is robust

against another design. However, the robust measure is gen-
uine to be considered for some certain optimization tasks
with non-differentiable and discontinuous functions.

Response surface (RS) methodology is exploited by
Chen et al. (1996) via the substitution of the original func-
tions by simpler ones. To account for the robust solution,
then, they simultaneously optimize the mean of the perfor-
mance and minimize the variation of the response formu-
lated in a bi-objective optimization problem. Clearly, this
provides a trade-off between the optimality and robustness.
However, the proposed approach is introduced in the context
of a single objective optimization.

Shimoyama et al. (2009) have recently presented a meth-
odology to study the trade-off between optimality and
robustness in multiobjective problems. They use RS meth-
odology to represent a simpler formulation of the functions
and avoid the computational efforts for the functions eval-
uations. Then, they introduce the robustness measure for
each objective function derived through RS with its nomi-
nal value. The robustness measure is simply proposed as the
standard deviation of a function with parameters dispersed
around the current design. As presented in the paper, the
method works quite reasonably but it does not provide any
control over the level of robustness. In addition, for high
dimension problems, the proposed method seems inefficient
since the number of objective functions doubles compar-
ing with the deterministic problem. Furthermore, the RS
methodology is an exhaustive technique even for the small
number of factors and levels (Gunawan and Azarm 2005).
Moreover, to compute the mean and variance of the per-
formance functions, sampling is required at each step. This
makes the proposed method computationally expensive.

Another formulation of robust design is introduced by
Lu and Li (2009) by solving two separate optimization
tasks: minimizing the variation in design variables and
minimizing the influence of model uncertainty. Obviously,
this design methodology enables the designer to take into
account both the model uncertainty and variations in the
design variables. However, to elicit the model uncertainty, a
sampling technique is required to find the bound of the per-
turbation sensitivity matrix. The accuracy of the proposed
method depends on the estimation accuracy of this perturba-
tion bound. Therefore, the technique seems computationally
prohibitive for practical problems.

Independently from the Taguchi work and idea of reduc-
ing the feasible space, we propose a method, which not
only ensures a robust design in uncertain environment but
also controls the extent of robustness via the designer pref-
erences. In particular, we consider the fuzzy and interval
value uncertainty of the input parameters, which is quite
common in engineering design. Furthermore, we extend
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a function as a measure for robustness for multiobjective
optimization. It is shown that the proposed method is capa-
ble of obtaining different level of robust solutions only via
the introduction of a new objective function. In addition,
it enables the designer to set a bound for the robust solu-
tion set. It is important to note that we do not add any new
constraint to the problem or even change the existing ones.

2 Handling uncertainty and robustness in optimization

In engineering design optimization problems, we often con-
sider multiple goals which are required to be set at their opti-
mum level subject to some inevitable constraints. A generic
multiobjective optimization problem takes the following
form:

Min F = {F1(x), F2(x), . . . , Fn(x)},
subject to x ∈ D∗, (1)

where D∗ is the feasible space. We seek a set of solu-
tions called the Pareto, which are based on the following
definition:

Definition 1 (Pareto Optimality) Vector x∗ ∈ D∗ is called a
Pareto solution to problem (1) iff � ∃ x∗∗ such that, Fi (x∗∗) ≤
Fi (x∗) for any i = 1, . . . , n and exists j (1 ≤ j ≤ n):
Fj (x∗∗) < Fj (x∗).

In the objective space, Pareto solutions form a Pareto
frontier, which gives the best trade-off solutions to multi-
objective optimization problem (1).

In real-life design, model uncertainty is caused due to
some inevitable noise and uncertainties during the design
process. In this study, we consider the uncertainty of the
parameters using fuzzy variables though it is possible to
implement any kind of uncertainty within the model. Hence,
the problem (1) changes to:

Min F̃ = {F̃1(x), F̃2(x), . . . , F̃n(x)},
subject to ˜gi (x) ≤ b̃i , i = 1 . . . m,

x ∈ D∗, (2)

where tilde implies that the parameters of the model are
not precisely known but are modeled using fuzzy variables.
The use of the fuzzy variables gives an opportunity to the
designer to model a problem, in which there exists a doubt
about the exactness of input parameters, the degree of cred-
ibility, and correctness of statements (Parkinson 1995). In
return, the modeling can be done in a more flexible way,
which can be used in practical applications.

To solve problem (2) for its optimum values, the model
should be converted into a deterministic formulation. For
this purpose, the nominal value of the problem param-
eters can be used. In this way, we substitute the fuzzy
variables by their fuzzy possibilistic mean value (Erfani
and Utyuzhnikov 2010b) using the definition in Appendix.
Thus, problem (2) is reduced to

Min Fpm = {
F pm

1 (x), F pm
2 (x), . . . , F pm

n (x)
}
,

subject to g pm
i (x) ≤ bpm

i , i = 1 . . . m,

x ∈ D∗, (3)

where the pm denotes the fuzzy possibilistic mean value of
a parameter as its nominal value.

To solve the above problem for the nominal value of the
parameters, the notion of a possibilistic Pareto solution is
introduced (Erfani and Utyuzhnikov 2010b):

Definition 2 (Possibilistic Mean (PM) Pareto Optimality)
x∗ is called Possibilistic Mean Pareto solution to multiob-
jective optimization (3) iff � ∃ x∗∗ such that, F pm

i (x∗∗) ≤
F pm

i (x∗) for any i= 1, . . . , n and exists j (1 ≤ j ≤ n):
F pm

j (x∗∗) < F pm
j (x∗).

Thus, the problem is deterministic and any suitable multi-
objective algorithm can be used to generate the set of Pareto
optimal solutions for it.

As stated earlier, variation in the model components
makes the designer to look for a set of more stable solutions
rather than the optimal ones, though the optimal solution
yields a better design. A robust solution should be less
sensitive to the uncertainty of the model. The concept is
illustrated at Fig. 1. In this figure, fluctuations about design

Design variable
(input)

Objective function
(output)

B A

Global 
Minimum

Robust 
Minimum

Fig. 1 Comparing robust and global optimum solution
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A lead to less perturbation of the objective function in com-
parison to the variation of design B. Therefore, A is called to
be more robust than B, while B yields a more favorite value
of the objective function than A does. However, in multiob-
jective optimization, the problem is not as easy as in single
objective optimization, while the idea can be extended and
used. Deb and Gupta (2005) illustrate that in the multiob-
jective dimension context, the sensitivity near the solution
should be checked for all of the objective functions. The
robustness must also be defined not only for one solution,
but for all the Pareto solutions. Bearing this in mind, next
we define a robust measure in multiobjective optimization.

3 Construction of robust measure

In the literature, to realize a robust solution, the optimal
solution is shifted into the feasible space by making the
design space smaller and accepting the degradation of the
optimal value (Parkinson et al. 1993). In this way, we should
change the constraints and find the transmitted variation for
each of them, which is time-consuming. In addition, unless
the source of variability is known, changing the right hand
side of the problem is an ad-hoc process for maintaining
the feasibility percentage. In other words, in the case that
the variability is an interval value or purely is specified by
designer, there is no any control and even understanding
of the extent of the robustness. Herein, we address a new
approach for searching a robust solution without changing
the constraint via the introduction of a function as a new
objective function.

To take the robustness into account, following Fig. 1,
we consider a robust measure in its general formulation as
follows (Erfani and Utyuzhnikov 2010b):

RF = 1

nm

n∑

i=1

m∑

j=1

σFi

σx j

(4)

where m and n are the number of design components
(parameters and variables, whichever is varied in accor-
dance with design specification) and objective functions,
respectively; σ x j denotes the variance of the (fuzzy or inter-
val) parameter. To estimate the σ F (i is omitted for the sake
of simplicity), first order Taylor series is implemented as
follows:

σ 2
F =

n∑

i=1

(
∂ F

∂pi

)2

σ 2
pi

. (5)

where p is the uncertain parameter of the model. In (5), the
designer states the variance of the parameters denoted by
σp. For fuzzy or interval value parameters, the fuzzy vari-
ance may be used (Erfani and Utyuzhnikov 2010b). Having

included this in formulation and solved the problem, one
may expect a set of robust solutions. However, the prob-
lem, which is overlooked, is the control of the extent of
robustness.

3.1 Control of robustness

In this Section, we propose an approach to control the extent
of robust solution. The method provides a flexibility for
the designer to generate and choose an appropriate robust
solution. This work can be done via constructing a func-
tion and mapping robust measure (4) onto it. We construct a
dimensionless positive decreasing/increasing (whichever is
appropriate) convex function, which cannot be represented
by high-order polynomials or cubic splines. Therefore, we
introduce an approximation method, which was first sug-
gested by Utyuzhnikov et al. (2005) for other purposes. We
call this function the tunable robust function (TRF) shown
by T onward. For our purpose, TRF is approximated piece-
wisely by mapping robust measure (4) scaled between 0 and
100 onto a dimensionless positive increasing function T (R),
where R is the scaled function of R.

At the beginning, the designer proposes a level of desired
robustness L R . Then, TRF is constructed in four regions;
represented by {0, L R − d, L R, L R + d, 100} as the bound-
aries. Here, d is a free parameter set by the designer, which
can be changed appropriately. To guarantee the convex-
ity of the TRF, suppose that the derivative of TRF has the
following form:

dT

d R
= Aeα(R), (6)

A > 0, α′(R) > 0. (7)

Taking α as a smooth function of robust measure in (4) and
integrating (7), we obtain

A�k R
∫ 1

0
eα(k)(ξ)dξ = �k T, (8)

where �k T = T (Rk+1)−T (Rk), α
(k) = α(k)(ξ (k)), ξ (k) =

R−Rk
Rk+1−Rk

(Rk ≤ R ≤ Rk+1) and k = 1, 2, 3, 4 show the
region where the TRF is approximated. The sketch of the
function is shown in Fig. 2.

For the sake of positivity and convexity of TRF, the fol-
lowing conditions on α should be held. In the given region,
the lower value of the TRF in the current region coin-
cides with the upper value of the afore region (α(k)(0) =
α(k−1)(1)). This requirement guarantees the continuity and
smoothness of the TRF, since the left- and right-hand side
derivatives coincide. To satisfy this condition, a simple li-
near function

α(k)(ξ) = akξ + bk, (9)
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Fig. 2 Piecewise Robust Functions (TRF)

can be used with

ak = A�k Rebk (eak − 1)

�k T
, (10)

bk = ak−1 + bk−1. (11)

This gives a recurrent relation for the calculation of ak

and bk . As the values of TRF at the boundaries of each
region do not depend on the value of scaled robust function
(R), they are fixed if

�k T = βn�k−1T, (12)

β > 1, �0T = 1, (13)

where n denotes the number of objective functions. βn guar-
antees an exponentially increasing function, in which a k-th
region is more preferable than the k+1-th one. Finally, using
(8), the TRF can be approximated piecewisely as

T (k) = Tk + �k T
eakξ

(k) − 1

eak − 1
(Rk ≤ R ≤ Rk+1), (14)

where Tk = T (Rk) and Rk is the value of the scaled robust
measure at the boundary of the region k as shown in Fig. 2.

To obtain a function defined in R, it is possible to choose
a simple exponential function

T (0) = eA(R−R1), (15)

for the region of R < R1. Then,

a0 = 0, b0 = 0, (16)

are the initial conditions, and hence, T (0) = 1.
Parameter A can be chosen as 1

R5−R1
to have the same

dimensionality with R−1.

It is worth noting that, a positive solution to (10) can be
obtained by the method of simple iterations if we choose

a0
k > −ln

(
A�k Rebk /�k T

)

as the initial condition (Utyuzhnikov et al. 2005). Since the
robust measure of (4) is introduced as an objective function
to be minimized, the increasing TRF is implemented.

It should be noted that by this method the designer is able
to cover all the robustness ranges as the robust measure is
scaled between 0 to 100. At the extreme points of 0 and 100,
the most robust solution (100 %) and the regular (optimum
solution) are generated, respectively. Obviously, one may
expect the overlap between the optimum solution and the
robust one under some conditions. It goes without saying
that the region with the overlap is of the most interest for
the designer.

Figure 3 shows the TRF for different value of robustness.
It is worth noting that in addition to the flexibility the

TRF function introduces, the final design is robust at least
to a degree which the designer wishes to obtain. As one
can investigate, the TRF is a soft constraint and the opti-
mal value of robustness, therefore, is estimated during the
optimization procedure.

In comparison with the existing methods, the proposed
approach is efficient in finding robust design. The exist-
ing methods exploit the variance as a robust measure, for
which a huge number of points is needed to calculate the
variability. Obviously, for time consuming functions, this is
exhaustive and not efficient. Meanwhile, in our approach
to finding the robust solution, we only add one simple
objective function to the original problem regardless of the
problem dimension. Furthermore, it is to be noted that the
proposed method does not require a presumed probability
distribution of variation.

50 Scaled 
Robust measure

TRF

30 9010

90% robust
10% robust

70% robust

Fig. 3 Different Tunable Robust Functions (TRF)
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The algorithm to summarize the methodology is shown
in Algorithm 1.

Algorithm 1 Desired robust solution algorithm
1. Use fuzzy, interval or probabilistic mean to calculate the nominal value of pa-
rameters.
2. Calculate the robust measure ( ).
3. Specify the level of desired robustness (LR).
4. Scale the and map it onto the non-dimension exponential function based on
LR and call it T R F.
5. Include the TRF as a new objective function.
6. Solve the following problem using any optimizer i.e. DSD:

Min pm x

Min TRF R

s t gpm
i x bpm

i i 1 m

x

7. if another desired robustness is needed then
Go to Step 3

4 Engineering test problems

In this Section, we test the new approach to find the robust
design for two bar trusses, welded beam and pressure vessel.
For each case, the problem is discussed and the results are
presented. All the Pareto and robust frontiers are generated
using the Directed Search Domain (DSD) method (Erfani
and Utyuzhnikov 2010a). The DSD method is able to gener-
ate an evenly distributed Pareto set in a general formulation,
which is based on shrinking a search domain in a selected
area on the Pareto frontier.

4.1 Case 1: two bar truss design

A symmetric two-bar truss structure is a popular structural
design which we study for the best robust-configuration.
The test case is taken from Messac and Ismail Yahaya
(2002) and is shown in Fig. 4. The structure is supposed
to support a load F . The truss consists of two steel tubes
pinned together at one end and supported on the ground at
the other. The design variables are the diameter of mem-
bers (x1) and the height (x2) of structure. We consider two
objectives of the design: (i) minimize total mass of truss
members and (ii) minimize the vertical deflection due to the
application of the load F = (150, 20, 30) kN as a triangular
fuzzy number (see the Appendix). As can be seen, these two
objectives are in conflict. Thus, multiobjective optimiza-
tion is needed for finding a trade-off set of solutions. The
parameters of the problem are the two fuzzy numbers: mem-
ber thickness t = (2.5, 0.5, 1.5) mm and structure width
w = (750, 100, 50) mm, and the two crisp (real) numbers:
mass density ρ = 7.8 × 10−3 gr/mm3 and Elastic modu-
lus E = 210000 Nmm2. The normal stress has to be less
than the buckling stress as constraint and 1 ≤ x1 ≤ 100

H
e
i
g
h
t

Width  2w

F

Thickness t

Diameter

Fig. 4 Two-bar truss. Structure (left), section of member (right)

and 10 ≤ x2 ≤ 1000 must hold. Therefore, the formulation
takes the following form:

Minimize F1 = Mass = 2πρt x1

√
w2 + x2

2 ,

Minimize F2 = Def lection = F(w2x2
2)3/2

(2π t Ex1x2)2
,

s.t. s ≤ 1

8
π2 E

t2 + x2
1

w2 + x2
2

,

1 ≤ x1 ≤ 10,

100 ≤ x2 ≤ 1000,

where

s = F

2π t x1x2

√
w2 + x2

2 .

The triangular fuzzy parameters are substituted by their
possibilistic mean value of F = 151.6 kN, t = 2.66 mm
and w = 741.6 mm (see the Appendix). Thus, the con-
straints are modified. To formulate Step 6 of the algorithm
for finding the robust frontier, the robust measure is con-
structed via considering the variance of 1020.6, 0.4 and
30.61 for F , t and w, respectively(see the Appendix).

Assume that F1 and F2 are the two objective functions
representing mass and deflection. The robust measure given
in (4), is then determined as follows, with F , t and w as the
three uncertain parameters:

RF = 1

2 × 3

((
σ F1

σ F
+ σ F1

σ t
+ σ F1

σw

)

+
(

σ F2

σ t
+ σ F2

σw

))
. (17)

Here, σ F1 and σ F2 are calculated using (5) with respect
to the uncertain parameters.

To find T (i) for different regions using (14), a = [0,

5.02, 0.24, 0] is approximated accordingly (Section 3.1),
where β = 1.5, n = 2 and A = 1

100 (10). Having
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scaled RF , denoted by R, TRF is then piecewisely con-
structed for 50% robust frontier using (14). This is shown
below with {0, 40, 50, 60, 100} representing the boundaries
for each region.

T RF(R) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 R ≤ 40
T (2) 40 < R ≤ 50
T (3) 50 < R ≤ 60
T (4) 60 < R ≤ 100
T (5) R > 100

Therefore, including the above T RF(R) in the problem
as the new objective function and using the possibilistic
mean value of the uncertain parameters, we can generate
the appropriate robust frontier. By changing the L R value,
one can find the new TRF and obtain the desired robust
frontier accordingly. The generated Pareto and robust Pareto
frontiers are shown in Fig. 5.

As can be seen, the robust frontiers displace inside the
feasible space with respect to the true Pareto frontier. All
these solutions are less sensitive to the parameters varia-
tions. However, as Fig. 5 shows, the design should be cho-
sen with more value of mass and less value of de f lection.
The reason is that the robust solution in this region (in bot-
tom right of Fig. 5) deviates from the Pareto frontier less
than the other design candidates. Thus, these solutions are
not only near optimal but also robust. It is worth noting
that, even before optimization, it is intuitive to design these
trusses with large mass for obtaining less de f lection. It
is equivalent to the choice of a solution from the indicated
region in Fig. 5, as it exactly follows from the optimization
formulation. The other thing to be noted is the extent of the
deviation of the 100% robust frontier from the 50-and 0%

2000 2500 3000 3500 4000 4500 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  f
1

 
f
2

Global Frontier
50% Robust Frontier
100% Robust Frontier

Fig. 5 Pareto solution for two bar truss design

frontiers. Although, using the new method, a robust solution
with any desired level can be found, it is advised to choose a
robustness degree by which the robust solutions are closer to
the Pareto solutions. This selection simply gives the trade-
off between optimality and robustness. Therefore, for the
test case in question, it is better to choose the 50% robust
frontier. In fact, these candidates are all at least 50% robust
with respect to the constructed TRF objective function.

4.2 Case 2: welded beam design

In this optimization problem (Rao 1996), a beam is to be
welded to a large case tolerating the force of P = (6000,
54.8, 54.8) lb (Fig. 6). The welding is to be done with
the minimum cost (F1) and the minimum deflection (F2)
of the beam. The shear stress in weld (τ ), bending stress
in the beam (σ ) and the buckling load on the bar (Pc) are
the design constraints adopted from Rao (1996). The design
variables of the problem are the beam thickness (b), the
beam width (t), the length of the welded joint (l) and the
weld thickness (h); and L = (14,3.5,3.5) in is the uncertain
fuzzy parameter. The design formulation is as follows:

MinimizeF1 = Cost = 1.105h2l + 0.048tb(14 + l),

MinimizeF2 = Def lection = δ = 4P L3

Et3b
,

s.t. τ ≤ 13600,

σ ≤ 30000,

h ≤ b,

Pc ≥ P,

0.125 ≤ b ≤ 5, 0.1 ≤ t ≤ 10,

0.1 ≤ l ≤ 10, 0.125 ≤ h ≤ 5,

F

t

b

L
l

h

Fig. 6 Welded beam design
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where

σ = 6P L

t2b
,

Pc = 64746.02(1 − 0.3t)tb3,

τ =
√

τ ′ 2 + τ ′′ 2 + lτ ′ τ ′′
√

0.25(l2 + (h + t)2)
,

τ ′′ = P(14+0.5l)

√
0.25(l2+(h + t)2)

2(0.71hl(l2/12+0.25(h+t)2))
,

τ ′ = P√
2hl

,

P = (6000, 54.8, 54.8)lb, L = (14, 3.5, 3.5)in,

E = 30e6psi.

To find the robust solutions, using the procedure from
the first test case, the TRF is constructed and Step 6 of the
Algorithm is formulated. In Fig. 7, the generated 50% and
100% robust frontiers are shown. As discussed before, all
the robust solutions are situated between the non-dominated
frontier and 100% robust one. These generated solutions
provide useful information to the designer. As can be seen,
the least sensitive part of Pareto frontier corresponds to the
best solution. The solutions in this region are optimum and
meanwhile show less variation in the presence of uncer-
tainty. A designer may choose these solutions provided that
there are enough resources. It can be seen that, using the
TRF as well as the fuzzy variance of 500 and 2, respectively
for P and L, an appropriate design can be made. Further-
more, it is obvious that the acceptance of the cost between
12 to 16 pounds does not bring any significant change to
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Fig. 7 Design of welded beam

both optimal and 100% robust deflection (F2). Thus, incur-
ring the cost in the given range, the designer can obtain an
optimal structure, which is utmost in robustness.

In addition, as can be seen in Fig. 7, some of the solutions
degrade more as the robustness increases from 50% to 100%
than it does from 0% to 50%. Hence, the designer can accept
the robustness range of 50% as the designs in this range are
closer to optimal. For the same trade-off analysis in welded
beam design, one may refer to the paper by Amarchinta and
Grandhi (2008), where the designer’s preferences are also
taken into account.

4.3 Case 3: pressure vessel design

In this test case, the optimization consists of finding the
best design for a cylindrical vessel with two hemispherical
heads at both ends (Kannan and Kramer 1994). As shown in
Fig. 8, x1 = Ts (shell thickness), x2 = Th (head thickness),
x3 = R (inner radius) and x4 = L (vessel cylindrical section
length without the head) are to be optimized in order to be
applied for the working pressure of 3,000 psi and the min-
imum volume of 750 f eet3. The problem is formulated as
follows:

Minimize F1 = 2π DCsx1x3x4 + 2π DChx2x2
3

+ 3.17x2
1 x4 + 19.84x2

1 x3,

Minimize F2 = −x1 − x2,

s.t. 0.02x3 ≤ x1,

0.00954x3 ≤ x2,

πx2
3 x4 + 4

3
πx3

3 ≥ 750 × 1728,

x4 ≤ 240,

1.1 ≤ x1 ≤ 2, 0.6 ≤ x2 ≤ 2,

0 ≤ x3 ≤ 100, 0 ≤ x4 ≤ 240,

where

D = 0.284, Cs = ï£¡0.35/ lb, Ch = ï£¡1/ lb.

Th

R

L
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Ts

Fig. 8 Design of a pressure vessel
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Fig. 9 Design of pressure vessel

where D is the density of carbon steel from the ASME
codes, Cs = (0.35,1.55,1.55) is the cost of rolled plate and
Ch = (1,1.9,1.9) donates the cost of forged plates as the
fuzzy parameters. Using the same side constraints as pro-
posed by Kannan and Kramer (1994), the thickness of the
shell is not to be less than 1.1 inches and the thickness of
the head is not to be less than 0.6 inches. The variance of Cs

and Ch are calculated as 0.4 and 0.6, respectively (see the
Appendix).

One objective maximizes the thickness of the vessel shell
and the other keeps the cost of vessel construction as low as
possible. The maximization of the shell guarantees the min-
imization of the chance of fracture. In Fig. 9, the global
frontier is shown for this problem. In addition, using the
same detailed approach reported for the first test case, it
is illustrated that the 50%-generated robust frontier is close
enough to the global frontier. Thus, the solutions are not
sensitive even when the robustness changes from 0% to
50%. However, as the robustness changes to its extreme of
100%, the solutions shift into the feasible space and distant
from the global frontier without any overlap. For the exam-
ple in question, the bounds for the robustness is explicitly
shown in the Fig. 9.

5 Conclusion

The current paper has introduced a flexible robust design
methodology in uncertain environment. The method allows
the designer to obtain a desired robust design via implemen-
tation of one additional objective function to the problem.
Although any kind of uncertainty can be handled, we have
implemented the fuzzy value uncertainty on the parameters.
Using the mean and variance of fuzzy parameters, an uncer-
tain formulation is converted to a deterministic formulation.

To realize the robust design, a robust measure is developed,
and a tunable robust function (TRF) is constructed. The TRF
maps the proposed robust measure into a dimensionless pos-
itive convex function. The shape of the TRF depends on
the level of robustness the designer demands. The proposed
approach is tested on engineering problems and the results
are promising. It is shown that we are able to set an upper
bound for robust frontier using the proposed approach. All
the other robust solutions, with any level of robustness, are
situated between the introduced frontiers.
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Appendix: Fuzzy numbers

The α-cut of a fuzzy number is defined as follows.

Definition 3 (α-cut of fuzzy set) If Ã is a fuzzy set, the
crisp set of the elements:

Ãα = {x ∈ X | μ Ã(x) ≥ α},

is called α-cut of Ã. Here, μ Ã(x) is the membership
function of the fuzzy number A.

As an example, suppose A is a tr iangular fuzzy num-
ber shown by membership function A = (a, b, c), where b
and c are the left-width and right-width of the fuzzy number
centered at a. Therefore, the α-cut of A is defined by

Aα = [a − (1 − α)b , a + (1 − α)c], ∀α ∈ [0, 1].

Definition 4 (Possibilistic Mean value of fuzzy number)
Following the paper by Carlsson and Fuller (2001), if A is a
fuzzy number, its possibilistic mean value is the arithmetic
mean of its lower and upper possibilistic mean value, i.e.

Mean(A) = M(A) + M(A)

2
,

where

M(A) = 2
∫ 1

0
αAdα, M(A) = 2

∫ 1

0
αAdα,

and A and A are the lower and upper bounds of α-cut of
fuzzy number A, respectively.

Definition 5 (Variance of fuzzy number) If A is a fuzzy
number, the variance of it is defined as (Carlsson and Fuller
2001)

V ar(A) = 1

2

∫ 1

0
α(A − A)2dα.
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If A is a tr iangular fuzzy number shown by A =
(a, b, c), it is easy to prove that the possibilistic mean value
of the fuzzy number is given by

M(A) =a + c − b

6
,

and also its variance is calculated as

V ar(A) = (b + c)2

24
.
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