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ABSTRACT ARTICLE HISTORY

A method is developed for generating a well-distributed Pareto set for the Received 21 July 2016
upper levelin bilevel multiobjective optimization. The approach is based on Accepted 9 October 2016
the Directed Search Domain (DSD) algorithm, which is a classical approach KEYWORDS

for generation of a quasi-evenly distributed Pareto set in multiobjective Bilevel optimization;
optimization. The approach contains a double-layer optimizer designed in multiobjective optimization;
a specific way under the framework of the DSD method. The double-layer DSD; Pareto set; double-layer
optimizer is based on bilevel single-objective optimization and aims to find optimizer

a unique optimal Pareto solution rather than generate the whole Pareto

frontier on the lower level in order to improve the optimization efficiency.

The proposed bilevel DSD approach is verified on several test cases, and a

relevant comparison against another classical approach is made. It is shown

that the approach can generate a quasi-evenly distributed Pareto set for the

upper level with relatively low time consumption.

1. Introduction

In real-life engineering design and optimization, a variety of contradictory objectives such as low
cost, high performance, long life and manufacturability should be taken into consideration simul-
taneously. In general, the solution to such a problem is usually not unique. Instead, it represents a
possible trade-oft between different objectives and cannot be improved without deterioration of at
least one of them. This leads to the notion of a Pareto solution (see, e.g., Miettinen 1999). Each Pareto
point in the objective space represents a solution of the MultiObjective Optimization (MOO), and
forms a set called the Pareto set. Generally speaking, it is expected to have a sufficient number of
Pareto points to represent the entire Pareto frontier in the objective space. However, in practice, the
Decision Maker (DM) can only select a few possible Pareto points among the Pareto set according
to additional requirements. In this case, an even distribution of Pareto points can provide the DM a
good visualization of the Pareto frontier, and substantially simplify the work of the DM. Hence, it is
of paramount importance to generate a well-distributed Pareto set to acquire maximum information
on the Pareto surface at minimal computational cost (Utyuzhnikov, Fantini and Guenov 2009).
Until now, there have been various categories of MOO algorithms to search for Pareto solu-
tions and generate a well-distributed Pareto set. The Normal-Boundary Intersection (NBI) method
(Dad and Dennis 1997, 1998), the Physical Programming method (Messac 1996; Messac and Matt-
son 2002), the Normal Constraint (NC) method (Messac, Ismail-Yahaya and Mattson 2003; Messac
and Mattson 2004), and the Directed Search Domain (DSD) method (Utyuzhnikov, Fantini and
Guenov 2009; Erfani and Utyuzhnikov 2011) are some examples of classical MOO algorithms. Evo-
lutionary MOO algorithms include the Niched Pareto Genetic Algorithm (NPGA) (Horn, Nafpliotis
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and Goldberg 1994; Erickson, Mayer and Horn 2001), the Non-dominated Sorting Genetic Algorithm
(NSGA) (Srinivas and Deb 1994; Deb et al. 2002), the Strength Pareto Evolutionary Algorithm (SPEA)
(Zitzler and Thiele 1999; Zitzler, Laumanns and Thiele 2001), and some algorithms using Multi-
Objective Particle Swarm Optimization (MOPSO) (Coello Coello and Lechuga 2002; Hettenhausen
et al. 2013; Dehuri, Jagadev and Panda 2015). Among the above, the DSD approach is a classi-
cal algorithm for providing a well-distributed Pareto set. The main idea of the DSD algorithm is
to shrink a search domain to obtain a Pareto solution in a selected area of the objective space. A
well-spread distribution of the selected search domains provides a quasi-even Pareto set (Erfani and
Utyuzhnikov 2011). After the original DSD algorithm, a modified directed search domain algorithm
called DSD-II is put forward for enhancement of optimization efficiency (Erfani, Utyuzhnikov and
Kolo 2013).

However, industrial optimization problems seem more complex when they include system level
and subsystem level design and optimization. For instance, a standard spacecraft system consists of
several subsystems such as a propulsion subsystem, a power subsystem and a control subsystem. The
system level aims at low weight, long life and sometimes large available inside volume, whilst each
subsystem has its own objectives. For example, the propulsion subsystem expects low propellant con-
sumption, and the power subsystem presumes high power generating capacity. In spacecraft design
and engineering, the system level design is always based on the trade-oft design among all the sub-
systems. Here, a bilevel multiobjective optimization problem is formed, which is made up of upper
and lower levels. The feasible space of the upper level is determined by the Pareto optimal solutions of
the lower level. Then, the upper level corresponds to the system level and implements multiobjective
optimization to search for the ultimate solutions among the system level objectives. The lower level
includes all the subsystems and aims to find trade-off solutions (Pareto solutions) according to the
objectives of all subsystems. Other practical bilevel optimization problems can be found in the field of
transportation (Alizadeh, Marcotte and Savard 2013; Assadipour, Ke and Verma 2016), Stackelberg
games (Sinha et al. 2013, 2014), and industrial location problems (Qu and Jiang 2013).

In a bilevel multiobjective optimization problem, the Pareto set on the lower level can be a decision
set for the upper level. Thus, a bilevel optimization technique needs to search for the lower level Pareto
solutions first and then find the optimal solutions for the upper level on the basis of the lower level
trade-off solutions. This seems to be the great challenge in handling the bilevel optimization problem.

At present, there are not so many studies on bilevel multiobjective optimization problems, and
relevant approaches are quite limited. Deb and Sinha (2009) have come up with an evolutionary
approach with the use of NSAG-II to handle bilevel multiobjective optimization problems. To coordi-
nate the processing of populations between the upper and lower levels, they maintain identical upper
level variable values in subpopulations. This interactive upper and lower level population processing
strategy is able to steer the search close to the Pareto set of the overall problem. Afterwards, they
also proposed a viable and hybrid evolutionary-local-search algorithm as a solution methodology for
bilevel multiobjective optimization (Deb and Sinha 2010). In this algorithm, the population sizing
and termination criteria are made self-adaptive, so that no additional parameters need to be supplied
by the user. Then, an automatic update of the key parameters from generation to generation is also
allowed. Meanwhile, Sinha, Malo and Deb (2015) took bilevel decision making into account in bilevel
multiobjective optimization.

In addition, a classical approach has been proposed by Eichfelder (2007). In this approach, a
uniformly distributed set of points of upper level design variable x,, is generated at the beginning.
Afterward, for each x,, the lower level Pareto solutions are found using a classical multiobjective
optimization algorithm. Then, non-dominated solutions in terms of the upper level multiobjective
optimization are chosen from these solutions, and an approximate upper level Pareto frontier is
formed. Next, the chosen x,, vectors are refined in their vicinities and the lower level optimizations
are repeated until a good approximation of the upper level Pareto frontier is obtained. The disad-
vantage of this approach is that, when x,, is of high dimension, generating and refining x,, is quite
time-consuming.
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The objective of this article is to develop an efficient classical approach for bilevel multiobjective
optimization problems on the basis of the DSD algorithm. The article is structured as follows. In
Section 2, key concepts and definitions about single-level and bilevel MOO problems are introduced.
Then, the main principles and procedures of the DSD algorithm including DSD-II are explained in
Section 3. The proposed classical bilevel multiobjective optimization approach is described in Section
4. The approach is evaluated in Section 5 according to simulation results of four test cases. Discussion
as well as conclusions are presented in Section 6.

2, Bilevel multiobjective optimization problems

First, the basic concepts as well as definitions of single-level and bilevel multiobjective optimization
problems are introduced.

2.1. Multiobjective optimization problems

A general MultiObjective Optimization (MOO) problem can be described as follows:

Min  y(x) = (y1(x),y2(%), ..., yn(x)),
subjectto x € D¥, (1)

where y; (i = 1,2,...,n) are objective functions, which form a space called the objective space Y C
R”. The vector x represents a design variable in the decision space D, and D* C D C R™ is a feasible
space which is the set of elements satisfying all the constraints.

In general, the solution to problem (1) is not unique. Therefore, a set of solutions called the Pareto
optimal set is introduced on the basis of the following definition (Miettinen 1999).

Definition 2.1: Vector x* € D™ is called a Pareto (optimal) solution to problem (1) if and only if there
does not exist x € D* such that y;j(x) < yi(x*) foralli=1,...,n and yj(x) < y;j(x*) for at least one
jad=j=n.

Then, in the objective space, the vector y(x*) represents a Pareto solution not dominated by any
other feasible solution. The set of all Pareto points represents the Pareto frontier, the best trade-
off solutions to the multiobjective optimization problem (1). If the above condition only holds in
a vicinity of x*, then x* is called a local Pareto solution.

Definition 2.2: In the objective space Y, an anchor point w; represents the minimum of an ith objective
function subject to all the constraints.

Sometimes, no unique anchor point is obtained according to the above definition. Consequently a
lexicographic-based prioritization is introduced as follows (Utyuzhnikov, Fantini and Guenov 2009).

Definition 2.3: In the feasible objective space Y* = {y(x) | x € D*}, the anchor point ju; of an ith objec-
tive function is determined in the circular order: min y;, min yi11, ..., min y,, min y, miny,, ..., min
Yi—1. Any successive minimization problem: min yii ., (1 < i+ m < n,m # 0) is only to be considered
on the set {A,,—1}, which is the solution to the previous minimization problem.

Definition 2.4: A hyperplane that contains all the anchor points is called the utopia hyperplane.

The above definitions are illustrated in Figure 1.
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Figure 1. Basic definitions of MOO in objective space.

2.2. Bilevel multiobjective optimization problems

A standard bilevel multiobjective optimization problem consists of two, upper level and lower level,
multiobjective optimization problems. The variable vector of the whole problem x consists of two
parts: the upper level design variable vector x,, € R™* and the lower level design variable vector x; €
R™, such that x = (x,,x;) € R x R™. Then the bilevel multiobjective optimization problem can
be modelled as follows:

Min F(x) = (Fi(x), Fa(x),...,Fy, (x)),

G(x) = (G1(x), G2(%), ..., Gk, (%)) = 0,

5 solve | Min f®) = (i0.L@)..fu ), 2)
st gix) = (@1(x),£(x),...,8k(x)) <0,

s.t.

where F : R« x R™ — R™, G(x) are upper level constraints, f : R« x R™ — R™, and g(x) are
lower level constraints.

It is shown in problem (2) that the feasible space of the upper level optimization problem is
determined by the lower level Pareto solutions, while the lower level optimization is implemented
with a constant vector x,, from the upper level, as mentioned above. The key problem of bilevel
multiobjective optimization is to deal with the interaction between these two levels.

3. The DSD algorithm

DSD is a classical multiobjective optimization algorithm for generating a well-distributed Pareto
set in multiobjective optimization problems. Then, Erfani, Utyuzhnikov and Kolo (2013) proposed
a modified directed search domain algorithm called DSD-II to further improve the optimization
efficiency.

3.1. The original DSD algorithm

The main idea of the original DSD algorithm is to utilize a transformation technique to shrink
the search domain and seek the Pareto solution in this shrunk area. To address a multiobjective
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optimization problem containing n objective functions as explained in Equation (1) by DSD, the
following steps are needed.

Step 3.0.
Step 3.1.
Step 3.2.

Step 3.3.

Step 3.4.

The objective functions are to be scaled if necessary.
Search for the anchor points or modified anchor points.
Form the interior of the utopia hyperplane P by

n
P= Zaiﬂi,
i=1

n
ZO(,‘ = 1,
i=1

0<u;<1(i=1,...,n), (3)

where «; are reference point coefficients for generating reference points denoted by M in
the next step.

Generate a set of evenly distributed reference points M on the utopia hyperplane by
varying «; in Equation (3).

Shrink the search domain. For each reference point M = (M, ..., M,) € M, the follow-
ing single-objective optimization problem is formulated similar to the physical program-
ming (Messac 1996; Messac and Mattson 2002):

n
Min Z yi(x),
i=1

s.t. yi(x) < M;,
x € D*. (4)

In problem (4), the constraints y;(x) < M; are the search domain formed on the basis of ref-
erence point M. Therefore, different reference points result in different search domains, and
such different single-objective optimization problems are expected to have different solu-
tions. However, two nearby reference points may share a part of the other search domains.
Then, redundant solutions can be generated and degrade the evenness of the Pareto set. To
overcome this problem in the DSD algorithm, each search domain is shrunk to be dis-
tinct. To achieve this, a new coordinate system with the origin at a reference point M
is introduced to reduce the search domain, and the axes of the coordinate system form
a given angle with respect to a unit vector. Finally, the constraint to the single-objective
optimization problem (4) is modified as

i) <Y MiBi (i=1,...,m), (5)
j=1

where A = B! is the transformation matrix from the Cartesian coordinate system to the
new local coordinate system, and y;(x) = ZJ”: 1 7j(x)Bj; is an ith objective function based
on the new local coordinate system. To calculate the matrix B, the reader is referred to the

original article (Utyuzhnikov, Fantini and Guenov 2009).
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Step 3.5. Solve the new single-objective optimization based on the shrunk search domain for each
reference point M = (M, ..., M,) € M:

n
Min Z yi(x),
i=1

n
st pi(x) < ZMiji,
j=1

x € D*. (6)

Sometimes there may no feasible solution found in the search domain, when the bound-
ary of the feasible objective space is non-convex (Messac and Mattson 2004; Utyuzhnikov,
Fantini and Guenov 2009; Erfani and Utyuzhnikov 2011). In this case, the search domain
should be flipped to the opposite side of the utopia hyperplane to search the points on the
Pareto frontier by reversing the inequalities in optimization problem (6) as

j/i(x) > ZMiji i=1,...,n). (7)
j=1

Meanwhile, it is possible that the orthogonal projection of the utopia hyperplane does not
tully cover the entire Pareto frontier (Messac and Mattson 2004; Utyuzhnikov, Fantini and
Guenov 2009; Erfani and Utyuzhnikov 2011). In order to capture undiscovered regions,
the search domain should be rotated if the reference point M is located on the edge of the
hyperplane.

Step 3.6. Eliminate local Pareto solutions by a filtering procedure.

3.2. The modified DSD algorithm: DSD-II

As a modified DSD algorithm, DSD-II mainly improves the shrinking procedure by a vector-based
shrinking strategy. A new vector v is defined as

V= MC - M, (8)
where M, = y(x) with x to be searched in the shrunk search domain. Thereafter, the new shrinking
inequality is given as

V- ny
— <
[vIH7l

0, )

Y = arccos

where ny, is a vector normal to the utopia hyperplane. By setting the value of 6, the search domain
based on each reference point is shrunk. Thus, two advantages are brought for improvement of com-
putational efficiency. On one hand, the shrinking calculation process is simplified as the complex
coordinate system transformation is avoided. On the other hand, the flipping procedure is eliminated
since the new shrunk search domain already covers both sides of the utopia hyperplane.

Meanwhile, DSD-II also proposes a modified utopia hyperplane to remove the rotating procedure
for further enhancing the efficiency. However, this is achieved by some increase of computational
time in comparison with the original DSD algorithm. The reader is referred to the article by Erfani,
Utyuzhnikov and Kolo (2013) for details of modified utopia hyperplane generation.
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4. An extension of the DSD approach to bilevel multiobjective optimization

Thus, each Pareto point of the upper level corresponds to a decision vector x = (x,,x;) in the deci-
sion space, and the image of the x in the lower level objective space is a Pareto point of the lower
level. Therefore, each Pareto point of the upper level corresponds to a Pareto point of the lower level,
depicted in Figure 2, and they share the same decision vector x = (x,, x7).

In the bilevel optimization problem, there exists a variety of decision making strategies on the
lower level. As the decision making strategy changes, the upper level Pareto frontier obtained can be
different (Sinha, Malo and Deb 2015). In this article, the optimistic formulation is considered. In such
a context, the best solution for the upper level is selected from the lower level Pareto solutions.

Then, in contrast to the upper level multiobjective optimization, the lower level optimization only
needs to find out an optimal solution rather than generate the whole Pareto frontier. To realize this
goal, lower level reference point coefficients are applied and optimized. A double-layer optimizer is
designed in such a way that both x,, and the vector of lower level reference point coefficients o are
considered as design variables at the same time. Along with the use of the DSD algorithm, the pro-
posed Bilevel DSD (BDSD) approach aims to solve the bilevel multiobjective optimization problem
efficiently as well as to guarantee an evenness of Pareto set distribution.

4.1. Double-layer optimizer

A double-layer optimizer plays a key role in the proposed algorithm. It is focused on bilevel single-
objective optimization to find the Pareto solutions based on the reference points on the upper level.
In this subsection, the definition of design variables in the double-layer optimizer is firstly discussed,
and then the major implementation steps of this optimizer are introduced.

4.1.1. Design variables of the double-layer optimizer

In the bilevel multiobjective optimization, the upper level multiobjective optimization problem is
broken down into a number of single-objective optimization problems under the framework of the
DSD algorithm. For each of these single-objective optimization problems, an optimal solution x =
(x4, x7) is found. All these optimal solutions, except the local optimal ones, form the set of Pareto
solutions of the upper level. As a part of the Pareto solution x, the optimal x,, is acquired after the
upper level optimization, while the optimal x; is obtained after the lower level optimization in which
the optimal x,, is fixed. In order to search for this optimal x; in the lower level optimization, the
concept of the reference points and reference point coefficients in the DSD algorithm are utilized.

2 Upper level Pareto frontier

Lower level objective space |  f Lower level Pareto frontier

/

Upper level corresponding to \ Lower level
Pareto point Pareto point

>

1

Figure 2. Relationship between Pareto points of upper and lower levels.



ENGINEERING OPTIMIZATION 1427
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™~ Anchor point
» /i

Figure 3. Relationship between the Pareto point and the reference point.

In the bilevel multiobjective optimization under the framework of the DSD algorithm, each lower
level optimal solution corresponds to a lower level reference point Mj, as shown in Figure 3. Conse-
quently, searching for the optimal x;, which corresponds to a lower level Pareto solution with respect
to an upper level function, can be transformed to the problem of finding the optimal «;.

Therefore, x,, and o are design variables to be optimized simultaneously in the double-layer

optimizer.

4.1.2. Implementation steps of the double-layer optimizer
During the implementation process of the double-layer optimizer, the following steps are needed (as
shown in Figure 4).

Step 4.1.1.

Step 4.1.2.

Step 4.1.3.

Set original values for x,, and o;. For the lower level multiobjective optimization problem,
which contains #n; objective functions as determined in problem (2), e is defined as

o) = (an,op, ... > A(n—1)> aln1)>
=1 — (o +ap + -+ + age—1))»
O<oap<1(G=1,...,n), (10)

where «; are reference point coefficients needed for generating a reference point on the
lower level.

Find lower level (modified) anchor points u; (i =1,2,...,n;) by solving the single-
objective optimization problem for each i from 1 to n;:

Min fi(x),
st. g(x) <0. (11)

Generate alower level reference point M; on the utopia hyperplane according to the lower
level reference point coefhicients oy, i = (1,..., ny).

n
M; = Z aifL;- (12)
i—1
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The first-layer !

Sy ' Set orginal values for x, and o,
optimizer \ !
I i
| <4
____________________________ )
A 4

Find lower level anchor points p;;

Yy

The second-layer

optimizer\

I
I

I

I

I

I

I

I

I

I

I

: Generate a lower level reference
! point M; according to the

: coefficients a;
I

I

I

I

I

I

I

I

I

I

I

I

I

Modify the values
of x, and a;

A 4

Solve the single-objective
optimization on the lower level
based on M,

4

Calculate the objective function
and constraint functions
on the upper level

Convergence achieved ?

Figure 4. Implementation steps of the double-layer optimizer.

Step 4.1.4. For the reference point M; = (M, ..., My,), solve the single-objective optimization
formed by the DSD-II shrinking strategy in the lower level:

1
Min Y fi(%),
i=1

st. g(x) <0,
V-

| <0 (13)
vl 72

Y1 = arccos

where similarly v; = M;. — M;, M. = f(x) with x to be searched in the shrunk search
domain of the lower level, ny, is a vector normal to the utopia hyperplane of the lower
level, and 6; is the value set for shrinking the search domain of the lower level.

Step 4.1.5. Calculate the objective function and constraint functions of the upper level single-
objective optimization problem. It depends on whether the double-layer optimizer is
used either to find the upper level anchor points or to search for the upper level Pareto
solution based on the reference point.
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Figure 5. lllustration of local and global Pareto points.

Step 4.1.6. Analyse whether the convergence of the upper level single-objective optimization prob-
lem has been achieved. If convergence is achieved, then the double-layer optimization is
completed. Otherwise, the values of x,, and o; should be further modified.

Steps 4.1.2-4.1.4 construct the second-layer optimizer to implement lower level multiobjective
optimization. The other steps make up the first-layer optimizer which is directly relevant to the single-
objective optimization on the upper level. Both optimizers make up the entire double-layer optimizer.

4.1.3. Filtering strategy in lower level multiobjective optimization

Sometimes, the above double-layer optimizer can finally find an upper level Pareto solution which
is a local Pareto solution on the lower level. Then, the filtering strategy based on the search domain
(Erfani and Utyuzhnikov 2011) should be applied. For a lower level Pareto candidate point Py =
(Psi1> Psias - . . » Pgipy) obtained in step 4.1.4, the search domain is a 90° cone in the lower level objective
space as follows:

Cgé’o ={f(x) filx) < Pg,Vi=1,...,m. (14)

Denote the feasible objective space on the lower level by Y7 as
Y ={f(®) g <0} (15)

In the lower level objective space, if Cgélo N Y] = {Pg} only, then Py is a global Pareto point on
the lower level. Otherwise, Py is dominated by another solution in the feasible objective space on
the lower level, which means Py is a local Pareto point on the lower level. A two-dimensional case is
illustrated in Figure 5.

Therefore, the global Pareto constraint should be added to problem (13) in step 4.1.4 as follows:

CHLNYF = (Py). (16)

If Py is a local Pareto point of the lower level, the convergence in step 4.1.6 cannot be achieved.
Thus, a new iteration from step 4.1.2 to step 4.1.6 is still required with modified x,, and «;.

4.2. Overall optimization procedures of the BDSD algorithm

This approach takes advantage of the double-layer optimizer, which is made up of the first-layer and
second-layer optimizers. On the basis of the DSD-II algorithm, the overall procedure for tackling the
bilevel multiobjective optimization problem is as follows (as depicted in Figure 6).
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Find anchor points of ill rl: Double-layer
upper level optimizer

A 4

Generate evenly distributed
upper level reference points

A 4

Solve the single-objective

. Double-layer
optimization for each upper ..
. optimizer
level reference point

A 4
Apply filtering process in the
upper level

\ 4
Evenness analysis for upper
level Pareto frontier

A 4
End

Figure 6. Overall optimization procedures of the BDSD algorithm.

Step 4.2.1. Find the anchor points of upper level u,; (i = 1,2, ..., n,) with the use of the double-
layer optimizer by solving the following single-objective optimization problem for each
i from 1 to ny:

Min Fj(x),
st. x1 € argmin(xl){f(x) = (1 (x),....fn(x)) | gx) <0},
G(x) <0. (17)

Step 4.2.2. Generate evenly distributed upper level reference points M, on the utopia hyperplane
by varying o;,;:

ny
P, = § Qi My
i=1

ny
2 =1,
i=1
Ofauifl(izla---)nu)> (18)
where «,; are reference point coefficients for generating reference points.

Step 4.2.3. For each upper level reference point M, = (My;,. .., Myu,) € My, solve the single-
objective optimization formed by the DSD-II shrinking strategy with the use of the
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double-layer optimizer.

ny
Min > Fi(x),
i=1
st. G(x) <0,
x; € argming, \ {f(x) = (i(x),....fn, () | g(x) < 0},
Y, = arccos Vu* Muh <0, (19)
AN

where v, = M, — M,,, M, = F(x) with x to be searched in the shrunk search domain
of the upper level, n,, is a vector normal to the utopia hyperplane of the upper level, and
0, is the value set for shrinking the search domain of the upper level.

Step 4.2.4. Utilize a filtering process to remove local upper level Pareto solutions.

Step 4.2.5. Evenness analysis for upper level Pareto set.

5. Test cases

The proposed BDSD approach is validated on four test cases of which the first two are from Deb
and Sinha (2009). The test cases include both convex and non-convex Pareto frontiers on the upper
level. The results obtained by BDSD are compared against the classical reference technique (Eichfelder
2007) with respect to the evenness of the upper level Pareto set and the time consumption of the whole
bilevel optimization process. In the approach of Eichfelder (2007), the DSD-II algorithm is used to
search for the lower level Pareto solutions.

In order to describe the evenness of the upper level Pareto set mathematically, a coefficient of
evenness needs to be defined (Utyuzhnikov, Fantini and Guenov 2009). For an ith upper level Pareto
point P! (except an anchor point) in the upper level Pareto set, the distance vector between it and
other Pareto points is given by

d' = (|P., — Pl I, ... IP,, — P M |PL, — PEFLIL L | PE, — P (D), (20)

where 7, is the number of Pareto points (including n,, anchor points) obtained in the upper level
Pareto set. Then, the effective distance vector d.g for P!, is defined as

i:ff = (min(d"), second min(d’), . . ., n,th min(d")), (21)

where n,th min(d’) is the 1, th smallest value of d’. Then, the coefficient of evenness for upper level
E, is defined as

1 2 Mpu—Muy
5o max(dogq, dog, . ... d g ) (22)
u— . Mpy—hy
mln(d::ﬂf, dgﬂc, cees deff )

If E, = 1, then the upper level Pareto set is completely even. If E,, increases, then the evenness of the
Pareto set becomes worse.

In the whole bilevel optimization process, MATLAB R2015a is utilized for simulation. The fmin-
con optimization function is used as a basis optimizer, in which the active-set algorithm is chosen as
the basis optimization algorithm.
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Figure 7. Upper level Pareto points (np, = 26) of Problem 1 by BDSD and the Eichfelder (2007) approach.

5.1. Problem 1

First, a simplistic bilevel two-objective optimization problem is considered in which x,, = (x,;) and
x; = (X1, xp):

Min F(x) = (F1(x), F2(x)),
st x; € argming, ) {f (x) = (f; (%), /,(x))},
0<xy1 <2, —1=<xpn,xp=<2
where
Fi(x) = (xn — 1) + x5, + %2,
Fa(®) = (e — D? + x5 + (% — 1,
filx) = x121 + xlzz’

H®x) = (xn — x)* + X35 (23)

The upper level Pareto sets acquired with the BDSD approach and the algorithm of Eich-
telder (2007) are identical, as shown in Figure 7. To illustrate the feasible objective space of the upper
level, a set of feasible non-Pareto solutions is generated, and the corresponding feasible objective set
is depicted in Figure 7. In addition, a lower level frontier obtained with the approach of Eichfelder
is shown in Figure 8. Comparison between these two approaches on the evenness E,;, as well as time
consumption ¢, is presented in Table 1. Here, 1; is the ratio of time consumption by BDSD to that by
the Eichfelder (2007) approach.

It can be inferred that in this case the BDSD approach drastically reduces optimization time by
about 75-80%. In addition, the more upper level Pareto solutions obtained, the greater is the effect in
saving computational time achieved.
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Figure 8. A lower level Pareto frontier of Problem 1 (x,; = 1).

Table 1. Comparison of optimization performance in Problem 1.

Eichfelder (2007)

BDSD approach
Npu Ey t(s) Ey t(s) ne (%)
26 1.39 125 1.39 47.6 26.3
51 1.40 215 1.40 94.7 227
101 141 40.7 1.41 189.5 215
5.2. Problem 2
Problem 2 also has x,, = (x,1) and x; = (x11, x12).
Min F(x) = (F1(x), F2(x)),
st x € argming, ) {f(%) = (f; (%), ,(x)|g1 (%) = x}, + xj, — x;; < 0},

Gi(x) = —(xn +xp+ 1) <0,

0<xu1 =1, —-1=xpxp=1,

where

Fi1(x) = x;1 — xu1,

Fy(x) = xp,

fHx) = xn,

£ = 5. (24)

In contrast to Problem 1, Problem 2 has inequality constraints both on the upper and lower levels.
The upper level Pareto sets obtained with BDSD and the Eichfelder algorithm are shown in Figures 9
and 10, respectively. A lower level frontier obtained with the approach of Eichfelder is shown in

Figure 11. These approaches are compared with each other in Table 2.
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Figure 9. Upper level Pareto points (np, = 51) of Problem 2 by BDSD approach.
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Figure 10. Upper level Pareto points (n,, = 51) of Problem 2 by approach (Eichfelder 2007)

In Problem 2, BDSD essentially cuts down the time consumption by nearly half, whilst signif-
icantly improving the evenness of the upper level Pareto set. Similar to Problem 1, the impact on
computational time reduction increases as the number of upper level Pareto points generated rises.

5.3. Problem 3

In Problem 3, the upper and lower level design variables contain two elements: x,, = (x,1,x,2) and
x] = (x11, x12), respectively.

Min F(x) = (Fi(x), F2(x)),
st xp € argmin ) {f(x) = (f, (%), £,(x)},



ENGINEERING OPTIMIZATION 1435
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Figure 11. A lower level Pareto frontier of Problem 2 (x,7 = 0.5).

Table 2. Comparison of optimization performance in Problem 2.

Eichfelder (2007)

BDSD approach
Npuy Ey t(s) Ey t(s) 1t (%)
26 1.37 89.2 422 173.5 514
51 1.42 161.0 447 329.6 48.8
96 1.46 3033 5.79 647.0 46.9
0 <xyp,xu2 <2, —1=xp,xp =<2,
where
2 2 2 2
Fi(x) = (xnp — D" + xp5 + 231 + (2 — 17,
By (x) — C )2 4 a2 )2 442
2(x) = (xp )"+ Xp + (Xu1 )+ Xy0»
2 2
fi(x) = xp; + (xp — x41)7%,
2 2
falx) = (xp — xu2)” + Xp- (25)

In this case, the coupling relationship between the upper level and the lower level is stronger. The
upper level Pareto sets generated by the two approaches are almost identical, as shown in Figure 12,
and a lower level frontier obtained with the approach of Eichfelder is shown in Figure 13. Then,

comparison between the two approaches is presented in Table 3.

In Problem 3, the evenness of the upper level Pareto set can still be maintained at a high level by
both approaches. However, as the dimension of the upper level design variable vector x,, increases,
the whole optimization time is reduced by almost 90% or more with the use of the BDSD approach. In
other words, the optimization efficiency is enhanced as much as one order of magnitude or even more.
Hence, the BDSD approach becomes more effective and efficient as the dimension of x,, increases.
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Figure 12. Upper level Pareto points (np, = 16) of Problem 3 by BDSD and the Eichfelder (2007) approach.
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Figure 13. A lower level Pareto frontier of Problem 3 (x,7 = 0.5, x,» = 1).

5.4. Problem 4

In Problem 4, one constraint is added on the upper level on the basis of Problem 3.

Min
s.t.

F(x) = (F1(x), F2(x)),

x; € argmin ) {f (x) = (f, (), /,(x))},
Gi(x) = —(xy1 +xu2 —2) <0,

0 <xu, X2 <2, —1=<xp,xp =2,

where

Fi(x) = (xp — D+ x5, + 221 + (2 — 17,
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Table 3. Comparison of optimization performance in Problem 3.

Eichfelder (2007)

BDSD approach
Npy Ey t(s) Ey t(s) 1t (%)
16 1.39 229 1.35 214.9 10.7
31 1.42 54.7 1.38 851.7 6.4
61 1.43 93.1 1.40 4428.7 2.1

’-.'d' 'fd_r*'-'.‘:‘:'O.I"‘.-"’ -,r L ? :4....&“4.__!_1"‘- . —
'y LA IO T 2 /7" 0;' #.74 « feasible objective set of upper level
45+ / ’ Y, W ,{,’iﬁ/‘:gjﬁ% # upper level Pareto point
£ % 4<’f';/<z’f S tin ]
/ "//‘.. ’/'.
3.5 /;,’ %" i
3+ |
25 ]
2F _
1.5F .
1+
0.5 |
D | 1 | 1 1 | 1
0 1 2 3 4 5 6 7 8

Figure 14. Upper level Pareto points (ny, = 18) of Problem 4 by BDSD.

5 L - o f L - s &Foa Vs - r J [ L] ¥
s 'f"': ::./ ":’;:P/c.f 7/'." 4 = feasible objective set of upper level
45- A '///, . :7,;"{/ * upper level Pareto point !
/ ///" ,-,A{:" e, ::" PR A S N RTINS
4l 7 L e e i
G545 SIS
3.5¢ Feltas sttt -
7, &
3T . -
25- d
2 e -
1.51 N
1 f= -
0.5 .
0 | | | | ] 1 |
0 1 2 3 4 5 6 T 8

Figure 15. Upper level Pareto points (np, = 18) of Problem 4 by the Eichfelder (2007) approach.

Fo(x) = (xp — 1? + x5 + (e — D? + 42,
fl (%) = x121 + (xp — xul)zy

H®) = (i — x)? + x5 (26)
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Figure 16. A lower level Pareto frontier of Problem 4 (x,7 = 1, x,2 = 1).

Table 4. Comparison of optimization performance in Problem 4.

Eichfelder (2007)

BDSD approach
Npuy Ey t(s) Ey t(s) 1t (%)
10 1.34 4.6 1.41 217.0 2.1
18 1.37 6.8 1.40 846.7 0.8
35 1.39 12.6 1.40 3556.7 0.35

The upper level Pareto sets obtained with BDSD and the approach of Eichfelder are shown in
Figures 14 and 15, respectively. A lower level frontier obtained with the approach of Eichfelder is
shown in Figure 16. The approaches are compared with each other in Table 4.

In Problem 4, the evenness of the upper level Pareto set obtained with BDSD is a little better than
that acquired with the approach of Eichfelder. However, BDSD drastically cuts down the optimization
time by nearly 98% or more. The computational efficiency is improved by as much as two to three
orders of magnitude.

6. Conclusion

A classical approach based on the DSD algorithm for bilevel multiobjective optimization problems
has been proposed. The new Bilevel DSD approach breaks down the upper level optimization prob-
lem into a set of single-objective optimization problems on the upper level. To solve each of these
single-objective optimization problems, a double-layer optimizer has been developed. In order to
avoid generating the whole Pareto frontier on the lower level, the reference point coefficients vec-
tor on the lower level has been utilized as a design variable in the double-layer optimizer. Thus, the
optimal lower level design variables can be found directly, and optimization time can be saved.

The approach has been tested on different cases and the performance has been compared with
that of the algorithm by Eichfelder. It is shown that the BDSD approach can generate a quasi-evenly
distributed Pareto set for the upper level with high computational efficiency. As the number of upper
level Pareto points obtained rises, the computational efficiency essentially increases. In addition, for



ENGINEERING OPTIMIZATION 1439

the bilevel problem with higher dimension of the upper level design variables, the BDSD approach
becomes more effective and efficient. It is also worth noting that the proposed algorithm can easily
be parallelized according to its structure.
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