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a b s t r a c t

Near-wall turbulence modeling is a very computationally expensive problem. A new approach suggested
here allows us to avoid calculations of the region with high gradients in the vicinity of the wall while
retaining sufficient overall accuracy. A non-overlapping domain decomposition is introduced in applica-
tion to low-Reynolds number RANS models. The domain decomposition is achieved via the transfer of the
boundary condition from the wall to an interface boundary. If the governing equations in the inner
domain are simplified, then the transmission (interface) boundary conditions are of Robin type. These
boundary conditions can be obtained in an analytical form despite the fact that they are nonlinear.
Possible ways to achieve a reasonable trade-off between efficiency and accuracy are discussed. The
obtained interface boundary conditions are mesh-independent. They can be used to avoid the computa-
tionally expensive resolution of a high-gradient region near the wall. Moreover, once the solution is con-
structed in the outer domain, the near-wall profile can be restored if required. In two extreme cases, if the
interface boundary is too close to the wall or too far from it, the so-constructed solution to the problem
automatically corresponds to low- and high-Reynolds number models, respectively. It is shown that the
new interface boundary conditions are uniformly applicable in a wide range of the interface boundary
locations.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the problem of near-wall turbulence mod-
eling is very computationally expensive. In the vicinity of the wall,
there exists a thin laminar sublayer due to both the no-slip bound-
ary condition for the velocity and blocking effect caused by
the wall. Because this sublayer has a significant influence on the
flow structure, its accurate resolution is of great importance. The
structure of the layer is highly variable and can be described by
low-Reynolds number (LR) RANS models. Sufficiently accurate
resolution of the laminar sublayer requires a very fine mesh. As a
consequence, even though the thickness of the sublayer is only
about 1% of the entire thickness of the boundary layer, it takes
up to 90% of computational time [1]. Thereby, the application of
LR to industrial problems is often prohibitively expensive even
on the modern computers. That is especially relevant to multidis-
ciplinary optimization problems where the fluid dynamics module
is one of many others and multiple iterations between different
modules are required.

In contrast to LR models, high Reynolds number (HR) models do
not provide any resolution of the laminar sublayer. Physically, this
means that they are formulated outside the sublayer. Thereby,

mathematically, they require new boundary conditions because
the original boundary conditions at the wall are no longer applica-
ble in straightforward manner. This problem is usually resolved via
implementation of Dirichlet boundary conditions called wall func-
tions. In the original form, they represented an analytical solution
obtained for a thin plate [2,3]. This idea soon became very popular
especially within industrial community because of its efficiency
and reasonable accuracy. In most cases wall functions are semi-
empirical and have some free parameters to be selected for special
classes of problems. In addition, the solution is often mesh depen-
dent that does not give much confidence in the obtained results
unless additional calculations are carried out. As follows from the
main idea of wall functions, this approach should meet serious
problems if the first mesh node/cell is situated inside the viscous
sublayer because of the contradiction between the model assump-
tions and real physics.

Increasing demands to the accuracy and efficiency from indus-
trial and academic communities encourage researches to seek
ways to derive more universal wall functions. The scalable wall
functions were suggested in [4] to reduce the mesh dependence.
As shown in [5], the pressure gradient must be taken into account
to avoid mesh dependence. However, as demonstrated in [6], this
requirement is only applicable to standard wall functions based
on the log-law profile assumption. It appears that the adaptive wall
functions [6] are mesh independent although they are obtained
for zero pressure gradient flows. An interesting idea to take into

0045-7930/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2012.07.023

⇑ Address: School of Mechanical, Aerospace & Civil Engineering, Manchester
University, Manchester M13 9PL, UK.

E-mail address: s.utyuzhnikov@manchester.ac.uk

Computers & Fluids 68 (2012) 186–191

Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid



Author's personal copy

account source terms, such as pressure gradient and buoyancy
force, has been realized in the numerical and analytical wall func-
tions [7,8]. They are based on a solution obtained in a subgrid area
related to the nearest wall cell either numerically or analytically. In
contrast to the standard wall functions, the obtained solution is
incorporated into the numerical approximation used in the core
flow domain. The analytical wall functions are based on the
assumption of a piece-wise linear viscosity profile. The numerical
wall functions are free from this assumption. However, they are
significantly more computationally expensive as compared to the
traditional wall functions.

Instead of constructing a solution for the first mesh node, it was
suggested in [9] to transfer the boundary conditions from the wall
to an interface boundary, which might correspond to the first node.
For a model equation, it was demonstrated that, although the exact
solution cannot be obtained in the near-wall subdomain without
the solution in the entire domain, the boundary conditions can.
The piece-wise linear approximation, which is used in the analyt-
ical wall functions, is exploited to derive an interface boundary
condition (IBC) for HR models in [10]. The obtained boundary con-
ditions are of Robin type and called the Robin type wall functions
in [11] although the title of IBC would be more appropriate here. As
shown in [10], the boundary conditions (wall functions) are mesh
independent and do not contain free parameters. Their application
to some test cases in [10,11] demonstrated that the achieved accu-
racy is reasonable and the solution is not too sensitive to the posi-
tion of the interface boundary. As noted in [11], the solution
obtained via the analytical and Robin-type wall functions should
be intrinsically the same provided that they are based on the same
assumptions. However, the levels of robustness and convergence
are different. This issue is discussed in Section 5 in more detail.

In [11], it was shown that the IBCs [10] can be obtained via the
theory of Calderón–Ryaben’kii’s potentials [12] applied to a one-
dimensional case. More generally, this leads to nonlocal IBCs or
nonlocal wall functions. As demonstrated in [13] for a two-dimen-
sional model equation, the nonlocal IBCs can be important in the
case of complex geometries. This approach can be alternative to
other wall-distance-free turbulence models (see, e.g., [14–16]).

In the current paper, the technique of the boundary condition
transfer is applied to LR model. In contrast to the previous works,
the turbulent viscosity profile is approximated nonlinearly. This
leads to nonlinear boundary conditions of Robin type. Once the
solution is obtained in the outer domain, the appropriate solution
in the inner domain can also be found. Thus, the approach can be
interpreted as a non-overlapping domain decomposition applied
to LR model.

The rest of the paper is organized as follows. In Section 2, the
non-overlapping domain decomposition approach is described
for a linear problem. Then, it is extended to nonlinear formulations
in Section 3, where nonlinear IBCs are derived. Possible implemen-
tations of the IBCs to RANS equations are described in Section 4. In
Section 5, Chien’s LR k–� model is considered as an example, and
the entire algorithm is described in detail. Computational results
are given for the channel flow. They demonstrate that the obtained
IBCs are uniformly applicable in a wide range of the interface
boundary locations. It is also indicated that in extreme cases of
the interface boundary situated in the laminar sublayer and far
away from it the solution automatically corresponds to the LR (sin-
gle-domain) and HR models, respectively.

2. Non-overlapping domain decomposition: Linear case

Let us first consider the following one-dimensional model
equation:

LyU ¼ f ð1Þ

defined in an interval X :¼ [0, ye] with a Dirichlet boundary condi-
tion on the right-hand side:

lyUð0Þ ¼ l0;

UðyeÞ ¼ l1:
ð2Þ

Here, ly and Ly are linear differential operators of first and second or-
der, respectively. In particular, ly is equivalent to 1 for a Dirichlet
boundary condition and derivative d

dy for a Newman boundary
condition.

Eq. (1) represents the general form of the boundary-layer-type
equation. The right-hand side f is an appropriate source term
including, e.g., the pressure gradient in the momentum equation.

Along with the domain X, let us introduce domain X�:X� :¼ [0,
d], 0 < d < ye. Thus, the original domain X is decomposed into two
subdomains X� and X+, where X+ :¼ [d, ye].

To construct a nonoverlapping domain decomposition we intro-
duce two auxiliary BVPs formulated in the domain X�.

10.
BVP 1 is formulated for the homogeneous equation:

LyV ¼ 0;
lyVð0Þ ¼ 0;
VðdÞ ¼ 1:

ð3Þ

20.
In turn, BVP 2 reads as follows:

LyW ¼ f ;
lyWð0Þ ¼ l0;

WðdÞ ¼ 0:
ð4Þ

One can see that

U ¼ VUðdÞ þW: ð5Þ

Thus, we arrive at the interface boundary condition formulated at
point y = d:

U0 ¼ V 0U þW 0; ð6Þ

and this boundary condition is of Robin type.
It is worth noting that V0U is equivalent to the Steklov–Poincaré

operator S determined on X� and applied to U(d):SU(d) :¼ V0U(d).
IBC (6) can be interpreted as the transmissive boundary condi-

tion exactly transferred from the boundary y = 0 to the interface
boundary y = d, via the theory of potentials [12] one can prove that
IBC (6) does not depend on the boundary condition at the bound-
ary y = ye and the position of this boundary itself. Moreover, the
operator Ly can change in X+ under some general requirements.
Such a domain decomposition is non-overlapping. It is also called
the substructuring decomposition, which on a discrete level is re-
duced to the Schur complement method [17].

Thus, we can use the interface (or transmissive) boundary con-
dition for a wide range of BVPs corresponding to quite different
boundaries ye and variations of the right-hand side in the domain
X+. As soon as we obtain the solution in the domain X+, we can re-
store the solution in the domain X� straightforward from (5). It is
important to note that, although one cannot obtain the solution in
the domain X� without the remaining part of the original domain,
we are able to obtain IBC.

3. Non-overlapping domain decomposition: Non-linear case

Consider a domain decomposition for a non-linear equation:

LyðUÞ ¼ f ; ð7Þ

where Ly is a non-linear differential operator of second order, and
boundary conditions (2).
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There are different ways to tackle this problem, via nonlinear
potentials introduced in [18], one can obtain transmissive bound-
ary condition at the interface boundary:

Uy ¼ WðU; f Þ: ð8Þ

However, such a boundary condition is nonlinear and its computa-
tional efficiency is questionable.

One possible algorithm to simplify computations is as follows.
First, we can approximate f by a constant in the domain X�. Then,
solving BVP (7) and (2) with l1 = U, we obtain Uy(d). This procedure
is equivalent to the identification of the nonlinear Steklov–Poin-
caré operator W in (8). Then, the results can be stored for different
U and f in look-up tables. In some sense, a similar procedure was
used in [6] to obtain dependence between U and sw for zero pres-
sure gradient flows (f � 0).

Another approaches can be related with approximation of oper-
ator Ly by a linear operator Ly:

LyðUÞ � LyU:

Then, Eq. (6) yields the IBC for the nonlinear BVP formulated in the
domain X+.

Such an approach is accompanied by an inevitable error. To re-
duce this error, we can try to make the approximation more accu-
rate by using an iterative procedure:

LyðUðnþ1ÞÞ � LðnÞy Uðnþ1Þ:

Then, we arrive at the following IBC at iteration n + 1 for the nonlin-
ear BVP set in the outer domain X+:

Uðnþ1Þ0 ¼ V ðnÞ0Uðnþ1Þ þW ðnÞ0; ð9Þ

where functions V(n) and W(n) are obtained from the following two
auxiliary BVPs:

LðnÞy V ðnÞ ¼ 0;

lyV ðnÞð0Þ ¼ 0;

V ðnÞðdÞ ¼ 1;

ð10Þ

and

LðnÞy W ðnÞ ¼ f ðnÞ;

lyW ðnÞð0Þ ¼ l0;

W ðnÞðdÞ ¼ 0:

ð11Þ

In this way, in particular, we can reach the exact domain decompo-
sition organizing appropriate iterations and specifying the operator
Ly. General efficient iterative algorithms can be found, for example,
in [17].

4. Interface boundary conditions for RANS equations

Any of the RANS equations besides the continuity one is of sec-
ond order and has the following structure:

ðl/yÞy ¼ Rh; ð12Þ

where / is the appropriate leading variable of the equation. The
right-hand side Rh includes the convective and force terms. In gen-
eral, these terms depend on /, /y, other dependent variables and
their derivatives including derivatives along other space directions.

4.1. One-dimensional domain decomposition

For the sake of simplicity, first consider a one-dimensional
problem. Then, there are different ways for either exact or approx-
imate domain decompositions.

4.1.1. Exact domain decomposition
In this case, we linearize the right-hand side Rh with respect to

both /(n) and /ðnÞy :

Rh /ðnþ1Þ;/ðnþ1Þ
y

� �
� aðnÞ/ðnþ1Þ

y þ bðnÞ/ðnþ1Þ þ cðnÞ;

where a(n), b(n), c(n) are the appropriate linearization coefficients.
Thus, we can introduce a linear operator

LðnÞy :¼ @

@y
lðnÞ

@

@y
� aðnÞ

@

@y
� bðnÞ: ð13Þ

Then, the iterative algorithm can be organized in three steps as
follows.

Step 10

Suppose that we know the field /(n) along with its derivative
either from an initial approximation or previous iterations. Then,
solving BVPs (10) and (11) with f(n) = c(n), we can specify the IBC
for the outer domain X+:

/ðnþ1Þ0 ¼ V ðnÞ0/ðnþ1ÞðdÞ þW ðnÞ0: ð14Þ

Step 20.
Upon obtaining the solution in the outer domain, we restore the

solution in the inner domain X� from

/ðnþ1Þ ¼ V ðnÞ/ðnþ1ÞðdÞ þW ðnÞ: ð15Þ

Step 30.
Finally, we can update the transport coefficient l in the inner

domain and repeat iterations if required.
If convergent, such an algorithm is accurate in the one-dimen-

sional case. Its main advantage is that we can implement com-
pletely different meshes in the domains X+ and X�. In addition,
the computations in these domains, including the solutions of aux-
iliary BVPs, can be easily parallelized.

4.1.2. Approximate domain decomposition
In the vicinity of a wall, the right-hand side Rh can be simplified.

One possible way is to either omit or approximate the convective
terms. Then, we can obtain the IBC explicitly via a Robin boundary
condition:

/0 ¼ /
I1
þ I1IS1 � IS2

l�I1
; ð16Þ

where I1 ¼
R y�

0
l�
l dy; IS1 ¼

R y�

0 Rhdy; IS2 ¼
R y�

0
l�
l

R y0
0 Rhdydy0.

Assuming Rh is constant, obviously this boundary condition can
be reduced to

/0 ¼ /
I1
þ Rh

l�
y�I1 � I2

I1
; ð17Þ

where I2 ¼
R y�

0
y0l�
l dy0.

Such boundary conditions were suggested in [10,11] for high-
Reynolds number models. However, they could also be used as
the IBC for low-Reynolds number RANS models.

In [10,11], the transport coefficient l was approximated by a
piece-wise linear function similar to the analytical wall function
approach [7]. In this case, the inner domain can be completely sep-
arated from the outer domain. Although the results obtained for
the HR models are reasonably good, the accuracy of this approach
can be improved if applied to the LR models with a more accurate
approximation for the transport coefficient l.

In the next Section, we apply the following approximation for
the turbulent viscosity profile suggested in [20,21]:

lt ¼ lljyþð1� expð�yþ=AÞÞ2; ð18Þ

where j = 0.41, A = 19, y+ = usqy/ll, us ¼
ffiffiffiffiffiffiffiffiffiffiffi
sw=q

p
; sw ¼ lluyð0Þ; u is

the velocity, ll the laminar viscosity coefficient, q density.
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In contrast to the linear profile, lt in (18) depends on sw. Obvi-
ously, it is linked with uy(d):

sw ¼ ðll þ ltðdÞÞuyðdÞ �
Z d

0
Rhudy; ð19Þ

where Rhu corresponds to Rh in (12) applicable to the momentum
equation.

Thereby, the IBC (16) is nonlinear and represents a simplified
form of the nonlinear IBC (8) although it is not exact. Practically,
it should be realized via an iterative procedure as was demon-
strated in the next Section.

5. Interface boundary conditions for low-Re model

The application of the IBCs is illustrated on the example of LR k–
� models.

The following five-step iterative algorithm can be applied.
Step 10.
Assume we know sw and � from either an initial approximation

or previous iteration. Then, we set the boundary condition for u at
y = d from (17):

u0 ¼ u
I1
þ Px

l�
y�I1 � I2

I1
; ð20Þ

where I2 ¼
R y�

0
y0l�
l dy0; l ¼ ll þ lt; lt is determined by (18), Px is

the approximation of the pressure gradient at y = d.
Step 20.
For the turbulent kinetic energy we set Dirichlet boundary

condition:

kðdÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�ltðy�Þ=ðClqflÞ

q
:

Here,

lt ¼ Clqflk2
=~�;

~�ðyÞ ¼ �� 2mk
y2 ;

m ¼ ll=q;
fl ¼ flðyþÞ:

Step 30.
For �, we can use the following Dirichlet boundary condition

[7]:

�ðyÞ ¼max
k3=2

Cly
;
2mk
y2

( )
; ð21Þ

where Cl = 2.55.

Step 40.
For all other functions, the IBCs are represented by (16).
Step 50.
Finally, sw is updated via Eq. (19).

Upon the solution in the outer domain has been obtained, the
solution in the inner domain can be calculated straightforward if
required.

As can be seen, iterations between the inner and outer domains
are needed. Thus, IBC (20) can be interpreted as a simplified ver-
sion of the IBC (8). However, the solution in the inner domain is
not required and the recalculation of the IBC is relatively fast.

5.1. Test cases

The domain decomposition approach described in Section 5 has
been tested in application to a fully developed plane channel flow.

As an example, the LR model by Chien [19] has been chosen as the
governing equations:

@

@y
ðmþ mtÞ

@u
@y

� �
¼ px=q;

mt
@u
@y

� �2

� �þ @

@y
ðmþ mt=PrkÞ

@k
@y

� �
¼ 0;

C�1f1
~�
k
mt

@u
@y

� �2

� C�2f2
~�2

k
þ Eþ @

@y
ðmþ mt=Pr�Þ

@~�
@y

� �
¼ 0;

� ¼ �0 þ ~�; mt ¼ Clflk2
=�; f l ¼ 1� e�0:0115yþ ;

f1 ¼ 1; f 2 ¼ 1� 0:22eð�ReT=6Þ2 ; C1 ¼ 1:35; C2 ¼ 1:8;

�0 ¼ 2m
k
y2 ; E ¼ �2m

~�
y2 e�yþ=2; Ret ¼

k2

~�m
:

ð22Þ

Similar to [9], two regimes have been considered: Res = 395 and
Res = 3950. Here, the Reynolds number Res is defined via the friction
velocity us and the half of the channel height: Res = ush/m.

In all computations, first the solution in the outer domain is ob-
tained and then it is restored in the inner domain. As to the inter-
face boundary d, different values of y+⁄ = d us/m are considered. The
results are compared against a single block solution obtained on a
mesh fine enough to reach a mesh independent solution. In addi-
tion, the algorithm from Section 5 has been applied to the HR k–
� model. This approach is equivalent to the algorithm based on
the Robin-type wall functions [11] with the nonlinear approxima-
tion (18) for the viscosity coefficient. Such a type of the solution is
called NRWF below. In this case, the solution is not obtained in the
inner domain.

In Fig. 1, the velocity profile is given for y+⁄ = 1 and Res = 395. As
can be seen, the two-block solution is very close to the benchmark
solution. In the case of y+⁄ = 50 shown in Fig. 2, there is some dis-
crepancy with the single block solution mostly in the outer do-
main. The NRWF approach gives notably different friction
coefficient, which is associated with the inclination of the profile
u. As d increases, the error in the outer domain is gradually re-
duced. However, the solution in the inner domain retains to be
quite accurate as can been seen in Fig. 3 for y+⁄ = 100. For this case
and greater values of d, the wall-function based solution NRWF al-
most coincides with the LR two-block solution.

In the case of Res = 3950, the two-block solution for y+⁄ = 1 al-
most coincides with the benchmark solution similar to Res = 395
as shown in Fig. 4. However, for y+⁄ = 10 (Fig. 5) the difference be-
tween the two solutions is more visible. It is important to note that
the wall-function based solution NRWF gives a significant error.

Fig. 1. Velocity profile: Res = 395. Solid line is single block solution; � corresponds
to inner profile; o, outer profile.
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It is interesting to note that if d increases then the two-block
solution is very close to the benchmark solution even for
y+⁄ = 200 as demonstrated in Fig. 6. The HR solution with NRWF al-
most coincides with the LR two-block solution in the outer domain.

Overall, the HR solution is significantly more accurate in compari-
son to the approach based on the piece-wise approximation of the
viscosity profile lt described in [9].

It is worth noting here that the domain decomposition de-
scribed in Section 4.1.1 gives the solution coinciding with the
benchmark solution because it is accurate in one-dimensional case.
However, it is more time consuming and the algorithm is more
complicated.

5.2. Comparison against analytical and numerical wall functions

It can be interesting to compare the IBC approach against ana-
lytical wall function (AWF) and numerical wall function (NWF)
algorithms. Although the latter two techniques were developed
for HR models, with some modifications they could also be applied
for LR models. Both these algorithms are mesh dependent while
the IBCs are formulated in a mesh independent form.

The AWF were derived for a piece-wise linear profile of the tur-
bulent viscosity lt in the inner domain. It is important that this ap-
proach leads to a Dirichlet boundary condition at point d, which is
obtained via integration of the governing equation in a simplified
form. This boundary condition (wall function) obviously depends
on the boundary condition at the wall. As we know, the wall
boundary condition can be transferred to the interface boundary.

Fig. 2. Velocity profile: Res = 395. Solid line is single block solution; � corresponds
to inner profile; o, outer profile; dash-dotted line, wall-function solution.

Fig. 3. Velocity profile: Res = 395. Solid line is single block solution; � corresponds
to inner profile; o, outer profile.

Fig. 4. Velocity profile: Res = 3950. Solid line is single block solution; � corresponds
to inner profile; o, outer profile.

Fig. 5. Velocity profile: Res = 3950. Solid line is single block solution; � corresponds
to inner profile; o, outer profile; dash-dotted line, wall-function solution.

Fig. 6. Velocity profile: Res = 3950. Solid line is single block solution; � corresponds
to inner profile; o, outer profile.
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Eventually, the AWF can be reformulated in the differential form
similar to (6) as a linear combination of the function and its deriv-
ative. The solutions based on AWF and IBC would coincide pro-
vided that the same approximations for the governing equation
(including profile lt) were used since the solution to the problem
must be unique. However, the realization of AWF is reduced to

UðnÞ0 ¼ V ðnÞ0Uðnþ1Þ þW ðnÞ0 ð23Þ

in contrast to IBC (14) because of the Dirichlet boundary condition.
Thus, one of the two leading terms in the boundary condition (6) is
taken from the previous iteration that inevitably affects the
convergence.

In turn, if applicable to a LR model, the NWF would be similar to
the one-dimensional exact domain decomposition described in
Section 4.1.1. However, this approach would lead to a Dirichlet
boundary condition similar to AWF and its realization would be
less efficient because one of the two leading terms was taken from
the previous iteration. In addition, it is well known that Robin
boundary conditions are more robust than Dirichlet or Newman
boundary conditions.

5.3. Extension to a multidimensional case

IBC (16) can immediately be used for multidimensional prob-
lems. However, in this case the right-hand side in Eq. (12) depends
on derivatives with respect to the other independent variables. One
possible way to overcome this problem is to either neglect or
approximate these derivatives using the solution at the interface
boundary (see, e.g., [7,11]). In this case, we obtain locally one-
dimensional IBC and introduce an inevitable error. In particular,
the one-dimensional exact domain decomposition approach de-
scribed in Section 4.1.1 cannot be exact in a multidimesnional case.
A possible improvement over this approach can be based on the
combination of the nonlocal domain decomposition [13] with the
IBC derived in this paper for one-dimensional case.

6. Conclusion

The approach to a non-overlapping domain decomposition for
near-wall turbulence modeling has been suggested and analyzed.
It is applicable to LR and HR turbulence models and based on trans-
ferring the boundary conditions from the wall to an interface
boundary. The algorithm allows to avoid computationally expen-
sive calculations related to the near-wall area while retaining a
sufficiently high accuracy.

The approach provides interface boundary conditions uniformly
applicable for a wide range of interface boundaries. It appears that
if at the interface point y+ < 1, then the solution corresponds to the
LR model used. In turn, if the interface point y+ > 100, then the
solution in the outer domain coincides with the HR solution.
Although the former case is accurate, the domain decomposition
does not bring any essential advantage because of a negligibly
small inner domain. The latter case is intrinsically equivalent to
the application of the Robin-type wall functions based on the non-
linear approximation of the turbulent viscosity profile. This leads
to a significant improvement in comparison to the piece-wise lin-
ear approximation considered in the previous works.

The uniform suitability of the IBC for very different locations of
the interface boundary is very important because it yields a flexi-
bility to the approach especially for multidimensional problems.
Overall, the interface boundary position needs to be chosen rea-
sonably. If it is too close to the wall, there is little effect from the
domain decomposition. In turn, if the boundary is too far from
the wall, it affects the accuracy.

As the next step, the developed approach will be applied to
multidimensional problems. There are two opportunities. The sim-
plest one can be based on a locally one-dimensional approximation
of the governing equations in the near-wall subdomain including
approximations of some derivatives along the wall. Intrinsically,
it does not distinguish from the approach described in this paper.
Another opportunity can be based on the combination of the non-
local domain decomposition [13] derived for a linear model with
the current approach. As demonstrated in [13], the latter approach
is significantly more accurate in the case of complex geometries.
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