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Caldeŕon–Ryaben’kii potentials provide the foundation for the difference potential method, which is an
efficient way for solving boundary-value problems (BVPs) in arbitrary domains. This method allows us to
reduce a uniquely solvable and well-posed BVP to a pseudo-differential boundary equation. The general
theory of Caldeŕon–Ryaben’kii potentials is considered via the theory of distributions. The definition of
Caldeŕon–Ryaben’kii potentials is based on the notion of a clear trace. The criterion of the clear trace
is formulated. Partial differential equations of the first order and the second order are considered as
particular examples. On the basis of the Calderón–Ryaben’kii potential theory, a solution of the active
sound control problem is obtained in a general formulation. For the first time, the solution of the problem
takes into account the feedback of the active shielding sources on the input (measurement) data. The
exact transfer of the boundary conditions from the original boundary to an artificial boundary is also
considered.

Keywords: potential; difference potential method; pseudo-differential equation; active noise shielding;
artificial boundary condition; clear trace.

1. Introduction

Caldeŕon–Ryaben’kii’s potentials provide the foundation for the difference potential method (DPM)
(Ryaben’kii, 2002). This method allows us to reduce a uniquely solvable and well-posed boundary-value
problem (BVP) in a quite arbitrary domain to a pseudo-differential boundary equation. The replacement
of a BVP by a boundary equation is very attractive; the boundary equation is very beneficial for numer-
ically solving the BVP because it drastically diminishes the number of unknown (grid) variables. The
classical example of such a reduction is the Fredholm integral equation for the Laplace and Helmholtz
equations. In complex analysis, this reduction is given by a Cauchy-type integral. It is worth noting
that on the basis of Green’s formula, the very efficient boundary-element method (BEM) was developed
(see, e.g.Brebbiaet al., 1984). Nevertheless, the BEMs have a relatively limited area of application.

Caldeŕon (1963) was the first to reduce a BVP for a general linear differential elliptic equation
to a pseudo-differential boundary equation. This work was further developed bySeeley(1966) who,
in particular, showed that the Calderón projection of an elliptic operator is represented by a pseudo-
differential equation. Later,Hörmander(1966) demonstrated that the Calderón theory, in fact, is not
limited by elliptic problems. Some drawbacks of these formulations were related to their complexity
and the absence of a robust method for their solvability. It was the DPM byRyaben’kii (2002) that
provided an approach for the formulation of the boundary equation in a general finite-difference form. In
Ryaben’kii(2002), Caldeŕon’s potentials are modified to be approximated via finite-difference potentials
based on the solution of an auxiliary classical BVP. Ryaben’kii introduces an auxiliary ‘simple’ domain
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containing the original domain. Although the auxiliary domain is not necessary for the reduction of
a BVP to a boundary equation, it is very important from the standpoint of applications. Ryaben’kii
effectively reduces the solution of the boundary equation to the solution of a BVP in the auxiliary
domain which is much simpler than that in the original domain. Apart from its original intended role,
the auxiliary domain appears to play a significant role in different applications such as active noise
shielding (AS) and artificial boundary conditions (ABCs) both of which are considered in this paper.

The DPM became a powerful mathematical tool for solving complicated problems of mathematical
physics; some examples are given in the monographRyaben’kii (2002). In the papers by Ryaben’kii
and his co-authors, the most attention is devoted to the development of the difference potentials, the
numerical methods for solving the boundary equation and applications. Apart from the finite-difference
formulation, inRyaben’kii(2002) the DPM is also considered in the differential classical form. General
aspects of the theory in continuous and discrete spaces are addressed inMikhlin et al. (1995). Some
extension of the DPM formalism to the linear Helmholtz-type equations with discontinuous solutions
is given in Lončaríc et al. (2001), where this theory is applied to the active sound control problem.
In Ryaben’kii (2002), it is proven by Kamenetskii that the potentials introduced bySeeley(1966) for
elliptic equations are equivalent to the Ryaben’kii potentials. In turn,Kamenetskii(2000) proved that
the Caldeŕon potentials, cited inSeeley(1966), can be reduced step by step on the discrete level to
one form of the difference potentials suggested by Reznik (Ryaben’kii, 2002). It is to be noted that the
analogue between the Calderón and Ryaben’kii potentials is not obvious and, historically, it was not
immediately observed. Therefore, for a long time the theory of the DPM was developed by Ryaben’kii
and his coworkers completely independently from the theory of the Calderón potentials.

In this paper, the theory of the Calderón–Ryaben’kii potentials is extended to a generalized formu-
lation based on the theory of distributions (see, e.g.Vladimirov, 1971; Lions & Magenes, 1972). Under
the Caldeŕon–Ryaben’kii potentials, we understand the extension of the Ryaben’kii difference poten-
tials to continuous spaces. It is to be noted that the name adopted for the potentials is not traditional in
the literature. Meanwhile, we believe that such a name is the most proper. It appears that the difference
potential theory can naturally be formulated via the formalism of distributions. The weak formulation
of the term Caldeŕon–Ryaben’kii potentials is suggested in the current paper. It allows us to exploit all
the advantages of the generalized formulations, including extending the theory to piecewise continuous
functions and generalized non-regular functions. In particular, it is important from the standpoint of the
application of the theory to physical problems. The key proposition about validity of the generalized
potential definition is given in this paper. The Calderón–Ryaben’kii potentials are based on the notion
of a clear trace. Here, the criterion of the clear trace is formulated. The generalized formulation of the
Caldeŕon–Ryaben’kii potentials can be useful for understanding the algorithms and potential applica-
tions of the DPM.

The AS problem (see, e.g.Nelson & Elliott, 1992; Tochi & Veres, 2002) is considered as an ap-
plication example in this paper. This problem is addressed using the DPM inRyaben’kii (2002, 1995),
Lončaríc et al. (2001), Lončaríc & Tsynkov (2003), Tsynkov(2003), Ryaben’kii et al. (2007, 2008)
andRyaben’kii & Utyuzhnikov(2006) and by using the theory of distributions inTsynkov(2003) and
Ryaben’kii & Utyuzhnikov(2007). The solution of this problem for a linear analogue of the Helmholtz
equation with variable coefficients is obtained inLončaríc et al.(2001) andTsynkov(2003). For an arbi-
trary linear problem of first-order equations, the AS is obtained inRyaben’kii & Utyuzhnikov(2007) in
the form of a simple layer potential. In the current paper, the general solution of the AS problem is first
obtained for a general differential operator via the theory of the generalized potentials. In particular,
the solution gives the AS secondary terms for the Helmholtz equation and the Euler acoustics equa-
tions, which coincide with the results obtained inLončaríc et al.(2001) andRyaben’kii & Utyuzhnikov
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(2007), respectively. Finally, the feedback of the secondary sources is taken into account. It is shown
that in this case, the solution of the AS problem might require the solution of some additional BVP.

Another application example is related to the boundary conditions to be set on an artificial boundary.
In many applications, it is desirable to restrict the solution of the problem in the original domain to the
subdomain where the right-hand side is supported. It makes sense, for instance, if the new domain can be
chosen much smaller than the original one. In this case, we are required to set the boundary conditions
on the artificial boundary. Such boundary conditions are called ABCs (Tsynkov, 1998). The DPM can be
used to provide the exact transfer of the boundary conditions from the remote boundary to the artificial
boundary (Ryaben’kii, 2002; Tsynkov, 1998).

The paper is organized in the following way. The Calderón–Ryaben’kii potentials are first introduced
for a generally formulated linear BVP, which is supposed to be both uniquely solvable and well-posed.
The solution of the BVP is considered in the generalized (weak) sense. The definition of the potentials
is then formulated via the theory of distributions, which is strongly based on the notion of the clear
trace introduced by Ryaben’kii. Then, the main properties of the Calderón–Ryaben’kii potentials are
considered. They include the generalized Green’s identity, decomposition of the trace and reduction
of the original BVP to an equivalent boundary pseudo-differential equation. The criterion of the clear
trace is then given. It is shown that the potential can be obtained via the solution of some BVP with
respect to some density of the potential on the right-hand side. First-order and second-order differential
equations are considered as particular cases. The application of the Calderón–Ryaben’kii potentials is
demonstrated on the examples of the AS problem and ABCs.

2. The generalized formulation of the Caldeŕon–Ryaben’kii potentials

2.1 Statement of the problem

First, let us introduce some domainD0: D
0
⊆ Rm with smooth boundaryΓ 0 and a subdomainD: D ⊂

D0, having smooth boundaryΓ .
Let us now consider the following linear BVP:

LU = f, (1)

U ∈ ΞD0, (2)

whereL is some differential operator of orderk with sufficiently smooth coefficients,U ∈ Rp and
f ∈ Rp. Let a linear functional spaceΞD0 be such that the solution of the homogeneous BVP (1),
(2) with f = 0 is unique and trivial:U ≡ 0. To avoid any possible confusion, it is supposed that the
boundary conditions are locally formulated at the boundaryΓ 0. We say that a functionU is a generalized
solution of BVP (1), (2) if 〈LU, Φ〉 = 〈 f, Φ〉 for any test functionΦ(D 0) ∈ C∞0 (D

0). Here,〈 f, Φ〉
denotes a linear continuous functional associated with a given generalized functionf .

Suppose that in (1) the right-hand sidef ∈ FD0, where the spaceFD0 is defined such that the
solution of BVP (1), (2) exists. It is easy to see that if the solution of BVP (1), (2) exists, then it is unique.
Thus, the spacesΞD0 andFD0 are isomorphic each other. In addition, we require that iff ∈ FD0, then
θ(D) f ∈ FD0, whereθ(D) is the Heaviside-type characteristic function equal to 1 inD and 0 outside.

Along with a generalized functionφ, we introduce a local element (Vladimirov, 1971) φΩ of φ ∈
ΞD0 onΩ (Ω ⊂ D0) as the restriction ofφ to Ω. We also consider the following additional linear
spaces:

FΩ = { fΩ | f ∈ FD0}, (3)

ΞΩ = {UΩ | U ∈ ΞD0}. (4)
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We assume further that the spaceΞD0 is the space of piecewise bounded functions having generalized

regular derivatives up to orderk both on D and onD−
def
= D0\D. In addition, we require that any

function fromΞD0 is bounded along with itsk− 1 derivatives in the appropriate norms.
The specifications on to BVP (1), (2), described above, are sufficient for further analysis. However,

we introduce some additional conditions in order to make this analysis more concrete. Let us suppose
that

ΞD0 ⊂ Hs(D) ∩ Hs
0(D

−),

wheres> k− 1/2 andHs andHs
0 are Sobolev spaces. Thus,f ∈ Hs−k

loc (D) ∩ Hs−k
loc (D

−).
We assume that BVP (1), (2) is well posed according to Hadamard, i.e. we require the following

estimate:

‖UD‖
2
Hs + ‖UD−‖

2
Hs < C(‖LU|D‖

2
Hs−k + ‖LU|D−‖

2
Hs−k),

whereC is some positive constant. In addition, we suppose that the spaceΞD0 should not be degenerate.
Thus, we assume that the boundary conditions are not overdetermined. Thereby, they can contain a linear
differential operator of order not greater thank − 1, and they are not necessarily to be formulated on
the entire boundary. In particular, the linear differential operatorL in (1) can correspond to operators
of first order or second order. For the sake of simplicity, we will consider either a system of first-order
equations or one higher-order equation.

The first-order operatorL is represented by

L := L f
def
=

m∑

1

Ai ∂

∂yi
+ B, (5)

where{yi } (i = 1, . . . ,m) is some Cartesian coordinate system;Ai and B are p× p matrices:Ai =

Ai (y) ∈ C1(D
0
) andB = B(y) ∈ C(D

0
).

The following elliptic operator is the typical case of the second-order operator:

L := Ls
def
= ∇(p∇)+ q, (6)

wherep ∈ C1(D0), q ∈ C(D0) and p > 0.
Since the solution of BVP (1), (2) is unique, there exists a Green’s operatorG inverse to the operator

L : FD0 → UD0. Along with the operatorG, we can introduce the local Green’s operatorGD: FD →
ΞD as follows:

UD = GD fD
def
= (Gθ(D) f )|D.

We also introduce onD a differential operatorL DVD
def
= LV|D, whereLV|D is the restriction of the

functionLV to D.

2.2 Definition of Caldeŕon–Ryaben’kii’s potentials. Clear trace

We define an operatorPDD: ΞD → ΞD as follows.
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DEFINITION 2.1 For anyV ∈ ΞD,

PDDVD
def
= VD − GD L DVD.

The functionPDDVD can also be rewritten as

PDDVD = (GLV)|D − GD L DVD = (GLV − Gθ(D)LV)|D = (Gθ(D−)LV)|D. (7)

The functionPDDVD has the following important properties.

PROPOSITION2.2 ImPDD = kerL D andP2
DD = PDD.

Proof. From Definition2.1, it immediately follows thatL D PDDWD = 0D. In turn, if L DWD = 0D,
thenWD ∈ ΞD andPDDWD = WD. Hence, the operatorPDD is a projection:P2

DD = PDD. �
Next, we introduce a trace operation as follows. LetΓ +ε be smooth manifolds parallel toΓ in the

sense ofVladimirov (1971) andLions & Magenes(1972, Chapter 2):Γ +ε ⊂ D, Γ +ε → Γ if ε → 0.
The trace operator Tr+Γ : Hs(D)→ Hs−1/2(Γ ) is given by

Tr+Γ UD
def
= lim

ε→0
TrΓ +ε UD,

where

TrΓ +ε UD
def
= UD(x), x ∈ Γ +ε .

Similarly, in D− we introduce the trace operator Tr−Γ : Hs(D−)→ Hs−1/2(Γ ) as follows:

Tr−Γ UD−
def
= lim

ε→0
UD−(x), x ∈ Γ −ε .

If Tr+Γ UD = Tr−Γ UD− , then the trace onΓ is determined as

TrΓ UD
def
= U (Γ ) = Tr+Γ UD = Tr−Γ UD− . (8)

If TrΓ UD does not exist, then the functionUΓ = U|Γ has two values: Tr+Γ UD and Tr−Γ UD− . Then, we
introduce the following definition of the trace generalizing the definition for continuous functions:

TrΓ U
def
=

1

2
(Tr+Γ UD + Tr−Γ UD−). (9)

We now give the definition of the ‘clear trace’ first introduced byRyaben’kii(2002). We consider some
domainΩ ⊂ Ω0 ⊆ Rm with a boundaryγ := ∂Ω. Let XΩ andπ(γ ) be Banach spaces of functions
defined onΩ andγ , respectively. Then, let us consider some linear operatorM : XΩ → XΩ .

DEFINITION 2.3 An operator Tr(γ ): XΩ → π(γ ) is called a clear trace operator, associated with the
operatorM , if for any two functionsV andV ′ from XΩ : Tr(γ )V = Tr(γ )V ′ ∈ π(γ ), it follows that
MV = MV ′. The pair(Tr(γ )V, π(γ )) then creates a clear trace ofM . The spaceπ(γ ) is called the
space of clear traces.

From the definition, it follows that if Tr(γ )V = 0γ , then MV = 0. Thus, ker Tr(γ ) ⊆ kerM .
Hence, the choice of the clear trace space is not unique because any subspace of some spaceπ(Γ ) is
also a space of clear traces. However, not every linear operator has a clear trace.
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With this regard, followingRyaben’kii (2002), we can introduce the notion of the minimal clear
trace.

DEFINITION 2.4 Let ker Tr(γ ) = kerM . Then, the clear trace is called the minimal clear trace.

For practical applications, it is better to chose the dimension of a clear trace space to be as small as
possible. This issue will be discussed later.

Having applied Definition2.3 to the operatorPDD, we are able to consider a clear trace operator
Tr+(Γ ) associated with the operatorPDD: ker Tr+(Γ ) ⊆ ker PDD. Also, we have ImPDD = kerL D;
thus, we have ker Tr+(Γ ) ∩ ker LD = {∅}. It is worth noting that this property can be used as an
alternative definition of the clear trace operator (Ryaben’kii, 2002).

The operator Tr+(Γ ) in Definition 2.3 of the clear trace does not necessarily coincide with the
Cauchy data trace operator of the operatorL:

Tr+c (Γ ) : ΞD0 → πc(Γ ) ⊂ ⊕
k−1
0 Hs−1/2− j (Γ ),

Tr+c (Γ )U = Tr+Γ

(

U,
∂U

∂n
, . . . ,

∂k−1U

∂nk−1

)>

,

wherek is the order of the operatorL andn is the external normal vector to the boundaryΓ . The term
‘a normal derivative’ refers to the regular normal derivative (Vladimirov, 1971).

From the definition, it follows that the spaceπc(Γ ) is the factor space of⊕k−1
0 Hs−1/2− j (Γ ) with

respect to kerPΓ . It is clear that, in contrast to the clear trace, the operator Tr+
c (Γ ) is not assigned to

any other operator. Examples of clear traces for classical solutions can be found inRyaben’kii (2002).
In particular, the operator of the clear trace can be non-local.

Now, we are able to introduce the Calderón–Ryaben’kii potentials as follows.

DEFINITION 2.5 LetV ∈ ΞD0 andξΓ = Tr+(Γ )VD ∈ π(Γ ), whereπ(Γ ) is a space of clear traces of
the operatorPDD. Then, a function

UD = PDΓ ξΓ
def
= PDDVD (10)

is called the potential with the density ofξΓ .

From the definition, it follows that the potentialPDΓ ξΓ does not depend on the complementation
of VD to VD0 ∈ ΞD0. Meanwhile, as mentioned above the complementary domainD0 is important for
practical applications (Ryaben’kii, 2002).

Let us now introduce an operatorLΓ+
def
= Lθ(D)− θ(D)L: ΞD0 → FD0. The differential operator

LΓ+ acts in a neighbourhood ofΓ .
The operatorLΓ+U can be represented as

LΓ+U = −ζΓ AΓ Tr+c (Γ )U,

whereAΓ is a matrix with the dimension of(k× p)× (k× p) andζΓ ∈ Rk is the following generalized
vector function:

ζΓ
def
=

(
∂k−1δ(Γ )

∂nk−1
, . . . ,

∂ l δ(Γ )

∂nl
, . . . , δ(Γ )

)

. (11)

Here,δ(Γ ) is the surface delta function.
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If L := L f , then AΓ = An
def
=
∑m

1 Ai ni , whereni are the coordinates of the vectorn. In turn, if
L := Ls, thenAΓ = pΓ E, wherepΓ = p(Γ ) andE is the unit 2× 2 matrix.

From the definition of the spaceFD0, it follows that LΓ+U ∈ FD0 if U ∈ ΞD0. Then,GLΓ+U =
θ(D)U − GLDUD. In the general case, the matrixAΓ includes tangential differential operators. It
should be noted that the matrixAΓ might be singular, e.g. it might have both the first row and the last
column with only zero elements.

Now, we prove the following important proposition.

PROPOSITION2.6 The pair(Tr+c (Γ ), πc(Γ )) is a clear trace of the operatorPDΓ .

Proof. From the definition and relation (7), it follows that

PDDVD = (GΨ )|D ,

whereΨ = LV − θ(D)LV = L(θ(D−)V) + LΓ+ Tr+c (Γ )V . It is easy to see thatΨ ∈ FD0 since
VD ∈ ΞD. Hence, Green’s operator is determined. If Tr+

c (Γ )V = 0Γ , thenPDD = θ(D−)V|D = 0D.
Thus, ker Tr+c (Γ ) ⊂ ker PDD. �

Proposition2.6 implies validity of the definition of the potentialPDΓ . It is to be noted that if we
consider the Cauchy data to the order ofk+ 1:

T̂r
+
c (Γ )U = Tr+Γ

(
U,
∂U

∂n
, . . . ,

∂kU

∂nk

)>
∈ ⊕n

0Hs−1/2− j (Γ ),

then they also provide a clear trace. However, it makes the application of the clear trace more compli-
cated in this case which is not justified from a practical point of view.

A clear trace Tr+(Γ ) is called a clear trace of ‘canonical type’ (Ryaben’kii, 2002) if it is obtained by
linear differential operators applied toVD ∈ ΞD0 at the boundaryΓ . It is clear that Tr+c (Γ ) represents
an example of a clear trace of canonical type. Further, we will only consider such type of clear traces.
Let us now consider the main properties of the potentials introduced.

3. Properties of Caldeŕon–Ryaben’kii’s potentials

3.1 Generalized Green’s identity and trace decomposition

We can rewrite definition (10) in the following form:

VD = PDΓ ξΓ+ + GD L DVD, (12)

whereξΓ+ = Tr+(Γ )VD. FollowingRyaben’kii(2002), this equality is called the ‘generalized Green’s
identity’. If we setL DVD = fD, then we obtain the generalized Green’s formula

VD = PDΓ ξΓ+ + GD fD. (13)

When applied to the Poisson equation, (13) gives us the well-known Green’s formula (Ryaben’kii,
2002).

Along with the operatorPDΓ , we introduce a boundary operatorPΓ : π(Γ )→ π(Γ ) as follows.

DEFINITION 3.1 LetV ∈ ΞD0 andξΓ = Tr+(Γ )V . Then,

PΓ ξΓ
def
= Tr+(Γ )PDΓ ξΓ . (14)
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From the definition and properties ofPDD, it immediately follows that the operatorPΓ is a projec-
tion: P2

Γ = PΓ .
The next two propositions give a decomposition ofξΓ+ = Tr+(Γ )V if V ∈ ΞD0.

PROPOSITION3.2 Let us considerξΓ+ = ξ
+
Γ+

def
= Tr+(Γ )U+D whereU+D is defined such thatLU+ =

f +, U+ ∈ ΞD0 and suppf + ⊂ D. Then,U+D = GD f +D , PDΓ ξ
+
Γ+
= 0D andPΓ ξ

+
Γ+
= 0Γ .

Proof. It immediately follows from the chain

GD f +D = GD LU+|D = (GLU+)|D = U+D .

The last statement of the proposition follows from Green’s formula (13). �
Thus,GD L DUD = UD. Hence,L DGD L DUD = L DUD and the operatorL D is semi-inverse to the

operatorGD (Ryaben’kii, 2002).

PROPOSITION3.3 Let us now considerξΓ+ = ξ−Γ+
def
= Tr+(Γ )U−D whereU−D is such thatLU− =

f
−

, U− ∈ ΞD0 andsupp f
−
⊂ D−. Then,U−D = PDDU−D andPΓ ξ

−
Γ+
= ξ−Γ+ .

Proof. It is easy to see that

PDDU−D = PDΓ ξ
−
Γ+
= (G f−)|D = U−D . (15)

Then, having taken Tr+(Γ ) from both sides of (15), we obtain

PΓ ξ
−
Γ+
= ξ−Γ+ .

�

COROLLARY 1 If in BVP (1), (2) f = f + + f
−
(supp f + ∈ D, supp f

−
∈ D

−
), U ∈ ΞD0, ξΓ =

Tr+(Γ )UD, thenPΓ ξΓ+ = ξ
−
Γ+

. This immediately follows from the linearity of the problem.

COROLLARY 2 The spaceπ(Γ ) of clear trace ofΞD0 onto the boundaryΓ is decomposed into a direct
sum of two subspaces:π(Γ ) = ker PΓ ⊕ Im PΓ .

COROLLARY 3 If (ξΓ , π(Γ )) is the minimal clear trace, thenPΓ ξΓ = ξΓ (Ryaben’kii, 2002). It
immediately follows from the definition of the minimal clear trace and Corollary 2.

We note here that, generally speaking,ξ−Γ+ is not fully determined byUD− because the function

U ∈ ΞD0 can be discontinuous onΓ andsupp f
−
⊂ D− ∪ Γ .

3.2 Boundary pseudo-differential equation

The next proposition gives us the representation of the solution of the BVP set inD via the potential
PDΓ .

PROPOSITION3.4 Assume that

L DVD = fD, (16)

VD ∈ ΞD.
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Then, there exists a solution of (16) with Tr+(Γ )VD = ξΓ ∈ π(Γ ) iff

ξΓ = PΓ ξΓ + Tr+(Γ )(GD fD). (17)

If (17) is valid, then the solution of BVP (16) having Tr+(Γ )VD = ξΓ is unique and given by

VD = PDΓ ξΓ + GD fD. (18)

Proof. If the solutionVD exists, then from the generalized Green’s formula (13) it follows that (18) is
valid. Applying the operator Tr+(Γ ) to both sides of (18), we obtain (17).

If now (17) is valid, then the functionVD in (18) has the following traceξΓ :

Tr+(Γ )VD = PΓ ξΓ + Tr+(Γ )(GD fD) = ξΓ .

On the other hand, the functionVD is a solution of (16). Indeed,

L DVD = L D PDΓ ξΓ+ + L DGD fD = fD.

It is not difficult now to prove that the functionVD with Tr+(Γ )VD = ξΓ such thatL DVD = fD is
unique. This immediately follows from the uniqueness of the potentialPDΓ ξΓ . �

Thus, (17) provides the necessary and sufficient condition forξΓ to be extended to the interior of the
domainD as a functionVD: L DVD = fD (Ryaben’kii, 2002). AlthoughVD from (18) is unique, the
solution of the boundary equation (17) is not unique.

It is also important to note that relation (17) does not depend on the boundary conditions on the
external boundaryΓ 0 and on the structure of the operatorL in D− provided it does not violate the
assumptions of BVP (1). In particular, (17) does not depend on the domainD−. Therefore, (17) can
be interpreted as the ‘internal’ boundary condition (Ryaben’kii, 2002) for the subdomainD. It is worth
noting that in the case of the operatorL corresponding to either the Poisson equation or the Helmholtz
equation, (17) includes the Fredholm equation of the second kind for the density of the potential. In ad-
dition, (17) contains another equation which excludes the possibility of internal resonance (Ryaben’kii,
2002).

As an example, let us consider the following Dirichlet BVP set inD:

L DUD = fD,

UD|Γ = UΓ ,

θ(D) fD ∈ FD0.

UD can be represented asUD = UD,l +UD, f , whereUD, f = GD(θ(D) fD) andUD,l is the solution of
the following homogeneous BVP:L DUD,l = 0D andUD,l |Γ = UΓ −UD, f |Γ .

SincePΓUD, f |Γ = 0Γ , then (17) is reduced to the following equation:

PΓ Tr+(Γ )UD,l = Tr+(Γ )UD,l .

The solution of this equation does not depend on the extension ofUD,l outsideD in view of the definition
of the potential.

The numerical solution of the pseudo-differential equation (17) can be effectively realized via the
DPM. In the numerical realization of the DPM, the choice of the domainD0 and the boundary conditions
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onΓ 0 is important since they affect the well-posedness of the so-called auxiliary problem (Ryaben’kii,
2002). The auxiliary problem represents a BVP inD0 with a specifically chosen right-hand side corre-
sponding toθ(D−)LV in (7).

Next, from (18) we have

VD = PDDVD + GD fD.

Meanwhile, from Corollary 2 of Proposition3.3, it follows that

VD ∈ ker PDD ⊕ Im PDD.

Thereby, ifV ′D ∈ Im PDD, thenV ′D = PDDV ′D andV ′D retains if the auxiliary problem changes due
to the change of either the boundary conditions or the domainD−. In turn, if V ′′D ∈ ker PDD, then
V ′′D = GD fD. Obviously,V ′′ = G−1θ(D) fD depends on the auxiliary problem. Hence,V ′′D depends
also. Thus, only ImPDD is invariant to the change of the auxiliary problem.

The finite-difference counterpart of Proposition3.4 is one of the basic theorems in the DPM. It
allows us to reduce the solution of the BVP set on some quite arbitrary domainD to the solution of
the BVP formulated on some domainD0: D ⊂ D0. Here, we can effectively exploit the fact that the
domainD0 can be as simple as we chose. Then, the numerical solution of the BVP set inD0 can be
simpler than the solution of the original BVP if the domainD is complicated. In other words, it allows
us to represent Green’s operatorGD via GD0 which is either known or easy to find.

Along with the potentialPDΓ in D, we can introduce the potentialQD−Γ in D− as follows.

3.3 Potential on the external subdomain

DEFINITION 3.5 LetV ∈ ΞD0, then an operatorQD−D− is defined as

QD−D−VD−
def
= VD− − GD−L D−VD− , (19)

where the definition of the operatorsGD− andL D− are similar to the definition ofGD andL D, respec-
tively.

It is clear that ImQD−D− = kerL D− . Similarly to Tr+(Γ ), we are able to introduce an operator
Tr−(Γ ):ΞD0 → π(Γ ) such that the pair(Tr−(Γ ), π(Γ )) creates a clear trace associated withQD−D− .

DEFINITION 3.6 LetV ∈ ΞD0 andξΓ = Tr−(Γ )V ∈ π(Γ ). Then,

QD−Γ ξΓ
def
= QD−D−VD− .

In the case of the potentialQD−D− , the total boundaryΓt includes the boundary of the domain
D0: Γ 0 := ∂D0. A clear trace ofQD−D− in spaceΞD0 onto the boundaryΓ is given by the pair
(Tr−(Γ ), π(Γ )). Meanwhile, e.g. the clear trace in spaceHs(D0) does not coincide with the clear trace
in ΞD0 and must be completed by the appropriate boundary condition on the boundaryΓ 0. Thus, if we
consider the necessary and sufficient condition for clear traceξΓt to be extended to the interior of the
domainD−:

ξΓt = QΓt ξΓt + Tr−(Γt )(GD− fD−), (20)

then the appropriate boundary condition on the boundaryΓ 0 must be included in the clear trace.
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3.4 Criterion of the clear trace

We now obtain the criterion for a clear trace and derive differential equations for the potentialsPDD and
QD−D− . For this purpose, let us now introduce a boundary operator inD0 as follows:

LΓU
def
= LU − {LU }, (21)

where{LU } means the regular part of the functionLU in D0.
In the case ofL f with infinitely differentiable coefficients, we have

〈LU, Φ〉 = 〈U, L∗Φ〉 =
∫

D0
(U, L∗Φ)dy =

∫

D
(U, L∗Φ)dy

+
∫

D−
(U, L∗Φ)dy = −

∫

D

m∑

1

∂

∂yi

(
U, Ai>Φ

)
dy+

∫

D
(LU , Φ)dy

−
∫

D−

m∑

1

∂

∂yi

(
U, Ai>Φ

)
dy+

∫

D−
(LU , Φ)dy = ({LU }, Φ)+ (An[U ]Γ ,Φ).

From here on,(U,V) is a scalar product of vector functionsU andV , L∗
def
= −

∑m
1 Ai> ∂

∂yi + B> and

[U ]Γ
def
= Tr−Γ U − Tr+Γ U .

Thus,

L f|ΓU = An[U ]Γ δ(Γ ). (22)

It is possible to prove that the properties of the coefficients determined in (5) are sufficient for (22).
For this purpose, it is enough to rewriteL fU in the following equivalent form:

L fU =
∑m

1
∂
∂yi (A

i U )+
(

B−
∑m

1
∂
∂yi Ai

)
U,

U ∈ ΞD0.

In order to consider the operatorLs, let us consider

∇U = {∇U } + [U ]Γ nδ(Γ ) (23)

and the generalized Green’s formula for distributions (Vladimirov, 1971; Tsynkov, 2003):

1U = {1U } +
[
∂U

∂n

]

Γ

δ(Γ )+
∂

∂n
([U ]Γ δ(Γ )).

Then,

∇(p∇U ) = {∇(p∇U )} + pΓ

[
∂U

∂n

]

Γ

δ(Γ )+
∂

∂n
(pΓ [U ]Γ δ(Γ )).

Hence,

LsU = {LsU } + pΓ

[
∂U

∂n

]

Γ

δ(Γ )+
∂

∂n
(pΓ [U ]Γ δ(Γ ))
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and

Ls|ΓU = pΓ

[
∂U

∂n

]

Γ

δ(Γ )+
∂

∂n
(pΓ [U ]Γ δ(Γ )). (24)

From (22) and (24), it follows that if L := L f , thenAΓ = An, and if L := Ls, thenAΓ = pΓ E.
If L := ∇ l , then by a recurrent chain one can prove that

∇ l U =
l−1∑

i=0

∂ l−1−i U

∂nl−1−i |Γ

∂ i δ(Γ )

∂ni
+ {∇ l U }

andAΓ = E, whereE is the unitl × l matrix.
Let us consider the general equation of higher order:

LU := L(k)U =
m∑

i, j=1

bi j∇i L
(k−1)
j U. (25)

Here,L(k−1)
j are differential operators of orderk− 1 andbi j are smooth enough coefficients. Then,

L(k)U = {L(k)U } + ζ (k)Γ AΓ,L(k) [U ]c,Γ ,

where [U ]c,Γ
def
= Tr−

c
(Γ )U − Tr+c (Γ )U , ζ (k)Γ =

( ∂k−1δ(Γ )
∂nk−1 , . . . , δ(Γ )

)
and the matrixAΓ,L(k) is a lower

triangular matrix with elements including differential operators on the manifoldΓ . If the coefficients of
the operatorL(k) are dimensionless, then the dimension of an element(i, j ) of the matrix is given by

dim A(i, j )
Γ,L(k)

= lengthj−i (i > j ),

which can be proven via the method of induction. Indeed, from (23) we have

∇L(k−1)
j U = {∇L(k−1)

j U } + [{L(k−1)
j U }]Γ nδ(Γ )+ ∇(ζ (k−1)

Γ AΓ,L(k−1) [U ]c,Γ ). (26)

In (26), the discontinuity of any derivative can be represented via the discontinuity of the normal deriva-
tives (see, e.g.Egorov & Shubin, 1992):

[{L(k−1)
j U }]Γ =

k−1∑

1

D j,p

[
∂k−1−p

∂nk−1−p
U

]

Γ

.

Here,D j,p are the differential operators of orderp on the manifoldΓ .
Having considered the appropriate co-normal derivatives related to the matrixbi j in (25), we find that

the singular part ofL(k)U has the form ofζ (k)Γ AΓ,L(k) [U ]c,Γ . Thus, ifU ∈ ΞD0, thenLΓU = LΓ [U ]c,Γ
and

LΓ = ζΓ AΓ [U ]c,Γ

and the functionζ is given by (11). A similar statement is also valid for the operatorLΓ+ .
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Thus, for any functionU smooth enough acrossΓ : Tr+c (Γ )U = Tr−c (Γ )U , we have

LΓU = 0.

Let us also introduce operatorLΓ−
def
= Lθ(D−) − θ(D−)L: ΞD0 → FD0. Similarly to LΓ+ , we can

representLΓ− as follows:

LΓ−U = ζΓ AΓ Tr−c (Γ )U.

In the general case, the potentialPDΓUΓ can be obtained as the solution of some BVP.

PROPOSITION3.7 If ξΓ ∈ πc(Γ ), then

PDΓ ξΓ = −GD(LΓ ξΓ ) := −GD(ζΓ AΓ ξΓ ) (27)

and the potentialPDΓ ξΓ can smoothly be extended to a functionW: W ∈ ΞD0, suppW ⊂ D−.

Proof. If ξΓ ∈ πc(Γ ), then from the trace theorem (Lions & Magenes, 1972, Chapter 1) there exists a
V ∈ Hs(D) ∩ Hs

0(D
−): Tr+c (Γ )V = ξΓ . Since the potentialPDΓ ξΓ does not depend onVD− , we can

setUD = VD andUD− = 0D− . It is clear thatUD ∈ ΞD. Taking into account that Tr+c (Γ )U = ξΓ , we
have

〈LU, Φ〉 = ({LU }D, Φ)− (LΓ ξΓ ,Φ)

for any test functionΦ. Hence,LU − θ(D)LU = LΓ+U = −LΓ ξΓ ∈ FD0, and (27) is valid.
For anyε > 0, there exists (Vladimirov, 1971) a functionηε ∈ C∞(Rm) such that 06 ηε(x) 6 1,

ηε = 1 on D and D ⊂ suppηε ⊂ Dε ⊂ D0, where Dε → D if ε → 0. Thus, there exists an
ε0: WD0 = ηε0UD ∈ ΞD0. It is easy to see thatL DVD = 0D and suppL D0WD0 ⊂ D−. �

The last statement of the proposition also follows from the trace theorem (Lions & Magenes, 1972,
Chapter 1).

Similarly to Proposition3.7, one can prove the following proposition.

PROPOSITION3.8 If ξΓ ∈ πc(Γ ), then

QD−Γ ξΓ = GD−(LΓ ξΓ ) := GD−(ζΓ AΓ ξΓ ) (28)

and the potentialQD−Γ ξΓ can smoothly be extended to a functionW: W ∈ ΞD0, suppW ⊂ D.

The next proposition immediately follows from Propositions3.7and3.8.

PROPOSITION3.9 If ξΓ ∈ πc(Γ ), then the solution of BVP

LU = LΓ ξΓ , (29)

U ∈ ΞD0

is given by

U =

{
−PDΓ ξΓ in D,

QD−Γ ξΓ in D−.
(30)
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Let L = Ls and ξΓ ∈ πc(Γ ). If ξΓ = (ξ0, 0)>, then the potentialsPDΓ ξΓ and QD−Γ ξΓ are
represented by the potential of a double layer:

LsU = ∂
∂n (pΓ ξ0δ(Γ )), (31)

U ∈ ΞD0.

In turn, if ξΓ = (0, ξ1)>, then the potentialsPDΓ ξΓ and QD−Γ ξΓ correspond to the potential of a
single layer:

LsU = pΓ ξ1δ(Γ ), (32)

U ∈ ΞD0.

In both cases,PDΓ ξΓ = −UD andQD−Γ ξΓ = UD− .
In some simple cases, we can obtain the relation between the classical potentials and the Calderón–

Ryaben’kii potentials. For example, having considered the Laplace operator instead ofLs in BVP (31),
its solution is given by the potential of a double layer (Vladimirov, 1971):

PDΓ ξΓ =
∫

Γ
ξ0
∂Gr

∂n
dσ,

where Gr is the Green’s function and the surface integral represents the appropriate convolution.
Taking into account the uniform limit of the double-layer potential on the boundary (Vladimirov,

1971), we arrive at the following Fredholm equation of second kind:

Tr+Γ PDDVD =
ξ0

2
+
∫

Γ
ξ0
∂Gr

∂n
dσ, (33)

whereVD ∈ ΞD. Equation (33) determines an operatorT : VD → ξ0. One can prove (Ryaben’kii, 2002)
that the operatorT corresponds to the clear trace. Indeed,ξ0 is equal to zero only if the potentialPDDVD

equals zero. The clear trace operator represented byT , obviously, is non-local.
The next proposition is important for the analysis of the discontinuities of the generalized Calderón–

Ryaben’kii potentials across the boundaryΓ .

PROPOSITION3.10 Let us consider the following BVP inD0:

LU = LΓ ξΓ ,

U ∈ ΞD0.

Assume thatξΓ ∈ πc(Γ ). Then,

PΓ Tr−c (Γ )U = 0Γ , (34)

QΓ Tr+c (Γ )U = 0Γ . (35)

Proof. Since the potentialPDΓ Tr−(Γ )U does not depend on the extension toD−, we can setV
D
− =

U
D
− in Definition 2.5 of the potentialPDΓ . The functionV

D
− can smoothly be extended toD+:

Tr+(Γ )V = Tr−(Γ )U . Thus, suppLV ⊂ D+. Hence,PDΓ Tr−c (Γ )U = 0D. Similarly, one can
prove (35). �
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COROLLARY PΓ QΓ ξΓ = QΓ PΓ ξΓ = 0Γ .

Now, we can prove the criterion of a clear trace.

PROPOSITION3.11 The pair(ξΓ , πc(Γ )) is a clear trace iffζΓ AΓ ξΓ ∈ FD0.

Proof. In one implication this statement follows from Propositions3.7and3.8. To prove this statement
in the opposite implication, let us consider the following BVP:

LU = ζΓ AΓ ξΓ ,

U ∈ ΞD0.

FunctionV+ = θ(D)U is the solution of BVP

LV+ = −ζΓ AΓ Tr+c (Γ )U,

V+ ∈ ΞD0,

while functionV− = θ(D−)U is the solution of BVP

LV− = ζΓ AΓ Tr−c (Γ )U,

V− ∈ ΞD0,

andξΓ = [U ]c,Γ . Hence,V+D = PDΓ Tr+c (Γ )U while V−D = QD−Γ Tr−c (Γ )U . From Propositions
3.7 and3.8, there exist functionsW+ ∈ ΞD0 and W− ∈ ΞD0: W+D = V+D , suppW+ ⊂ D− and
W−D− = V−D− , suppW− ⊂ D+.

Let us now consider the functioñU = W− − W+ ∈ ΞD0 and Tr+c (Γ )Ũ = Tr+c (Γ )W
− −

Tr+c (Γ )W
+ = ξΓ . Then,PDΓ ξΓ = −W+D = −UD. Similarly, QD−Γ ξΓ = W−D− = UD− .

Thus, the pair(ξΓ , πc(Γ )) is the clear trace of the potentialsPDD andQD−D− . �
FollowingRyaben’kii(2002), we can combine the potentialsPDΓ andQD−Γ into the Cauchy-type

operator (Ryaben’kii, 2002) RD0Γ : π(Γ )→ ΞD0 with densityξΓ ∈ π(Γ ) as follows:

RD0Γ ξΓ
def
=

{
−PDΓ ξΓ on D,

QD−Γ ξΓ on D−.
(36)

The pair([V ]c,Γ , πc(Γ )) creates a clear trace associated with the operatorRD0Γ andRD0Γ ξΓ ∈ ΞD0.
This statement follows from Definition2.3, the properties of the potentialsPDΓ and QD−Γ and the
uniqueness of the solution of the BVP (29).

By immediate substitution, one can prove that the solution of (29) is represented by

U = V − G{LV}D0, (37)

whereV ∈ ΞD0 and [V ]c,Γ = ξΓ . From (30), (36) and (37) it can be shown that for anyV ∈ ΞD0, the
following equality is valid:

VD0 = RD0Γ [V ]c,Γ + G{LV}D0. (38)

Thus, we can decompose the spaceΞD0 as follows:ΞD0 = Ξc,D0 ⊕Ξd,D0. Here,Ξc,D0 is the space of
continuous functions acrossΓ andΞd,D0 is the space of discontinuous functions satisfying the homo-
geneous equation on both domainsD andD−.
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From (38), it follows that if a functionV ∈ ΞD0 has a discontinuity onΓ : [V ]c,Γ = ξΓ , andV
satisfies the homogeneous equation on bothD andD−, then it is uniquely recovered via the potentials
PDΓ ξΓ and QD−Γ ξΓ . Thus, there is a deep analogy between these potentials and the Cauchy-type
integral in complex analysis.

The following proposition gives a relation betweenPΓ andQΓ .

PROPOSITION3.12 Let the pair(ξΓ , πc(Γ )) be a clear trace. Then,

PΓ ξΓ + QΓ ξΓ = ξΓ . (39)

Proof. It immediately follows from Propositions3.9and3.11if we setU = GD0 LΓ ξΓ . �
Thus, the space of the Cauchy data of continuous functionsU : [U ]c,Γ = 0Γ ,U ∈ ΞD0 is decom-

posed into a direct sum of clear traces of functions satisfying the homogeneous equation (1) on either
domainD or domainD−. This result was proved bySeeley(1966) for elliptic equations. In the general
case of discontinuous functions fromΞD0, this statement is not valid.

It appears that the boundary equality (39) can be extended to any functionV ∈ Ξ if we setξΓ =
[V ]c,Γ . Indeed, from (38) it follows thatV = U +W, whereU = RD0Γ ξΓ andW = G {LV}D0. Then,
ξΓ = [U ]c,Γ , and (39) immediately follows from Proposition3.10and the following equalities:

PΓ ξΓ = − Tr+c (Γ )U,

QΓ ξΓ = Tr−c (Γ )U.

Let us next introduce the generalized Cauchy data onΓ :

Trc(Γ )V
def
=

1

2
(Tr+c (Γ )V + Tr−c (Γ )V).

Then, (39) is also valid forξΓ = Trc(Γ )V .
In this case, following the previous proof we considerV = U +W. Then, (39) is obtained from

PΓ Trc(Γ )U =
1

2
Tr+c (Γ )U,

QΓ Trc(Γ )U =
1

2
Tr−c (Γ )U

and Proposition3.12.
Now, let us consider some applications of the Calderón–Ryaben’kii potentials.

4. AS problem

Suppose that problem (1), (2) describes an acoustic field in the domainD0. The sources situated inD
are considered as wanted, while those situated outsideD are interpreted as unwanted sources of noise.

Assume that we know the value of the functionU in some neighbourhood of the boundaryΓ . We
note that only this information is assumed to be available. In particular, the distribution of the sources
f := F on the right-hand side of the BVP is unknown. The AS problem is reduced to searching
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additional sourcesg on D− such that the solution of the BVP

LU (g) = F + g, (40)

F ∈ FD0,

supp g ⊂ D
−
,

U (g) ∈ ΞD0

coincides onD with the solutionU of BVP (1), (2) if F = f +. An ‘obvious’ solutionF = − f − is not
applicable here because the distribution off − is unknown. The solution of this problem can be derived
via the generalized potentials as follows.

Let us introduce the following two BVPs:

LU+ = f +, (41)

supp f + ⊂ D,

U+ ∈ ΞD0,

and

LU− = f −, (42)

supp f − ⊂ D−,

U− ∈ ΞD0.

From Proposition3.2, it follows that the requirements of the noise cancellation is equivalent to

PDD L−1
D ( f + g) = PDDU+D = 0D.

On the other hand, from Propositions3.7and3.3, we have

PDD L−1
D f = PDΓ ξΓ = L−1

D (−ζΓ AΓ ξΓ ),

whereξΓ = Trc(Γ )U and

PDD L−1
D g = L−1

D g.

Thus, we can choose

g = g0+ LW, (43)

g0
def
= ζΓ AΓ ξΓ , (44)

whereW is any function fromΞD0 such that suppW ⊂ D−.
It can be shown that the solution of BVP

LV = g0, (45)

V ∈ ΞD0
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is the following:

L−1g0 =

{
−U− in D,

U+ in D−.
(46)

The termg0 represents the surface potential part of the AS solution (Ryaben’kii & Utyuzhnikov,
2007). In the application to the differential operatorsL f and Ls, we obtain the following AS source
terms:

g0|f = AnUΓ δ(Γ )

and

g0|s = pΓ
∂U

∂n |Γ
δ(Γ )+

∂

∂n
(pΓUΓ δ(Γ )).

In particular cases of the Euler acoustics equations and Helmholtz equation, the AS solution (44)
provides the source terms obtained inRyaben’kii & Utyuzhnikov(2007) andLončaríc et al. (2001),
respectively.

The solution (44) is general and can be applied to different kinds of the operatorL, e.g. it can be
used for the Maxwell equations (Utyuzhnikov, 2007).

Let us now analyse the solution of BVP (40) with g determined by (43) and (44). The realization
of the source (44) is based on the knowledge (measurement) of Trc(Γ )U . Once the AS source is im-
plemented, the field changes in the shielded domainD and, possibly, outside. Moreover, the fieldU (g)

becomes discontinuous across the boundaryΓ . In the domainD, we have Tr+c (Γ )U
(g) = Trc(Γ )U+.

Thus, the measured field coincides with the casef − ≡ 0 and the AS is not required. Hence, the imple-
mentation of the AS source leads to some uncertainty. This fact can especially be important if the field
f − changes in time.

In the external domainD−, the field corresponding to Tr−c (Γ )U
(g) may also change in comparison

to UΓ due to the additional field generated by the secondary sourceg if f + 6= 0, in particular. On
the other hand, from Proposition3.10, we havePΓ Tr−c (Γ )U

(g) = Trc(Γ )U−. Thus, the potential
PΓ Tr−c (Γ )U

(g) filters the contribution of the secondary termg0, and the value of the AS source term is
given by

g0 = ζΓ AΓ PΓ Tr−c (Γ )U
(g). (47)

Hence, the measurements must be performed at the external boundary and the realization of AS requires
the solution of a BVP in the domainD0. We note that the AS (47) gives an optimal solution because
PΓ Trc(Γ )U+ = 0Γ . Thus, this solution efficiently filters the ‘friendly’ sound which does not require to
be shielded. From (45) and (46), it follows that the secondary source does not affect the fieldoutsideD
if f + ≡ 0. Then, the solution of the additional BVP is not required sincePΓ Tr−c (Γ )U

(g) = Tr−c (Γ )UΓ
and the right-hand side is assumed to be immediately obtained from the measurements.

The developed AS solution can immediately be applied to non-stationary problem with some minor
modifications in the theory.

5. Artificial boundary conditions

Assume that BVP (1), (2) holds such that the source terms are only situated onD: supp f ⊂ D. It is
possible to exactly transfer the boundary conditions from the boundaryΓ 0 to the boundaryΓ . In the
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continuous space, they are formulated as follows. Having applied Proposition3.4to the domainD−, we
find that the vector function

ξΓ = Tr−c (Γ )U ∈ πc(Γ ) ⊂ ⊕
k−1
0 Hs−1/2− j (Γ )

can be extended toUD ∈ ΞD if and only if

QΓ ξΓ = ξΓ . (48)

Thus, the condition (48) determines the subspaceπ+c (Γ ) of the boundary vector functions fromπc(Γ )
to be the trace Tr+c (Γ )UD of the solution of BVP (16).

Thus, it is possible to say that the boundary condition on the original boundaryΓ 0 is exactly trans-
ferred to the boundaryΓ via the condition (48). It is clear that this boundary condition is not local. It
can be reformulated in the form of a pseudo-differential boundary equation

∂U

∂n |Γ
= RΓUΓ , (49)

where RΓ is a non-local operator of Poincaré–Steklov type. The described approach is used in
Utyuzhnikov (2008) to develop non-local wall functions for turbulence modelling. Another particu-
lar class of the Poincaré–Steklov operators are provided by the Dirichlet-to-Neumann maps (Givoli &
Patlashenko, 2004).

In turn, it is possible to transfer the boundary conditions from the boundaryΓ (if they are set there)
to a remote artificial boundaryΓ0. This makes sense if the domainD is complex while the domainD0

is ‘simple’.
For this purpose, let us consider a uniquely solvable and well-posed BVP, which is formulated on

D ⊂ D0:

LU = f,

lΓU = αΓ ,

wherelΓ is some differential operator on the boundaryΓ .
Assume thatξΓ is the solution of the following set:

QΓ ξΓ = ξΓ , (50)

l̂Γ ξΓ = αΓ .

The first equation in (50) determines the subspaceπ+c (Γ ), while the second equation restricts it to the
traces of the functions satisfying the boundary conditions. Then, the solution of the following BVP
formulated onD0:

LW = f − ζΓ AΓ ξΓ , (51)

W ∈ ΞD0,

is given byW = θ(D)UD. It immediately follows from Section4 since−ζΓ AΓ ξΓ provides the AS of
the domainD− from the field generated byf .
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6. Conclusions

The general theory of the Calderón–Ryaben’kii potentials has been considered via the theory of dis-
tributions. The theory allows us to reduce a uniquely solvable and well-posed linear BVP to a bound-
ary pseudo-differential equation. The DPM provides an efficient way for the numerical solution of the
boundary equation. The definition of the Calderón–Ryaben’kii potentials is based on the notion of a clear
trace. The criterion of the clear trace has been formulated. On the basis of the Calderón–Ryaben’kii po-
tential theory, the solution of the active shielding problem has been obtained in a general formulation.
For the first time, the AS solution takes into account the diffraction effects such as the feedback of the
AS on the input (measurement) data. It has been shown that the Calderón–Ryaben’kii potentials provide
an efficient approach for the exact transfer of boundary conditions from the original boundary to an
artificial boundary.
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LONČARIĆ, J. & TSYNKOV, S. V. (2003) Optimization of acoustic sources strength in the problems of active noise

control.SIAM J. Appl. Math., 63, 1141–1183.
MIKHLIN , S. G., MOROZOV, N. F. & PAUKSHTO, M. V. (1995)The Integral Equations of the Theory of Elasticity.

Stuttgart, Germany: B.G. Teubner.
NELSON, P. A. & ELLIOTT, S. J. (1992)Active Control of Sound. San Diego, CA: Academic Press.
RYABEN’ KII , V. S. (1995) A difference shielding problem.Funct. Anal. Appl., 29, 70–71.
RYABEN’ KII , V. S. (2002)Method of Difference Potentials and Its Applications. Berlin: Springer.
RYABEN’ KII , V. S., TSYNKOV, S. V. & UTYUZHNIKOV, S. V. (2007) Inverse source problem and active shielding

for composite domains.Appl. Math. Lett., 20, 511–515.



148 S. V. UTYUZHNIKOV

RYABEN’ KII , V. S. & UTYUZHNIKOV, S. V. (2006) Active shielding model for hyperbolic equations.IMA J. Appl.
Math., 71, 924–939.

RYABEN’ KII , V. S. & UTYUZHNIKOV, S. V. (2007) Differential and finite-difference problems of active shielding.
Appl. Numer. Math., 57, 374–382.

RYABEN’ KII , V. S., UTYUZHNIKOV, S. V. & TURAN, A. (2008) On the application of difference potential theory
to active noise control.J. Adv. Appl. Math., 40, 194–211.

SEELEY, R. T. (1966) Singular integrals.Am. J. Math., 88, 781–809.
TOCHI, O. & VERES, S. (2002)Active Sound and Vibration Control. Theory and Applications. New York: The

Institution of Electrical Engineers.
TSYNKOV, S. V. (1998) Numerical solution of problems on unbounded domains. A review.J. Appl. Numer. Math.,

27, 465–532.
TSYNKOV, S. V. (2003) On the definition of surface potentials for finite-difference operators.J. Sci. Comput., 18,

155–189.
UTYUZHNIKOV, S. V. (2007) Nonstationary problem of active sound control in bounded domains.Proceedings of

Waves 2007, The 8th International Conference on Mathematical and Numerical Aspects of Waves, 23–27 July
2007 (N. Biggs, A.-S. Bonnet-Bendhia, P. Chamberlain, S. N. Chandler-Wilde, G. Cohen, E. Luneville, B.
Pelloni, D. Potherat & R. Potthast eds), University of Reading - INRIA, pp. 443–445.

UTYUZHNIKOV, S. V. (2008) Robin-type wall functions and their numerical implementation.J. Appl. Numer.
Math., 58, 1521–1533.

VLADIMIROV, V. S. (1971)Equations of Mathematical Physics. New York: Dekker.


	Introduction
	The generalized formulation of the Calderón--Ryaben'kii potentials
	Statement of the problem
	Definition of Calderón--Ryaben'kii's potentials. Clear trace

	Properties of Calderón--Ryaben'kii's potentials
	Generalized Green's identity and trace decomposition
	Boundary pseudo-differential equation
	Potential on the external subdomain
	Criterion of the clear trace

	AS problem
	Artificial boundary conditions
	Conclusions

