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Simulation of Subsonic and Supersonic Flows
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Simulation of sub- and supersonic thermochemical equilibrium flows in plasmatrons is considered. A physico-
chemical model, numerical method, and computation results for equilibrium inductive coupled plasma flows in a
plasmatron are given. An effective preconditioning technique along with an implicit total-variation-diminishing
scheme is used to solve the Navier–Stokes equations in both subsonic and supersonic regimes. The governing
equations include source terms corresponding to the electromagnetic field influence: the Lorentz force components
(so-called magnetic pressure) and Joule heat production. The necessary transport coefficients were calculated
in advance for equilibrium air plasma as the functions of pressure and temperature. Transport properties were
calculated by the precise formulas of the Chapman–Enskog method in the temperature range 300 <– T <– 15,000 K.
Calculations of equilibrium air plasma flows for the IPG-4 (Institute for Problems in Mechanics, Russian Academy
of Science) discharge channel geometry with the channel radius Rc = 0.04 m and length Zc = 0.40 m were performed.
Creation of both underexpanded and overexpanded jets exhausted from the plasmatron channel is considered. A
comparison with experimental results is given.

Nomenclature
A = Jacobi matrix
a = sound velocity, m/s
al = eigenvalues of matrix A
ãl = eigenvalues of matrix Pc A
dc = sonic nozzle diameter, m
E = total energy per unit volume, J/m3

E = flux vector, axial component
Eθ = complex amplitude of electric field, tangential

component, V/m
e = internal energy, J/kg
Fn = flux vector normal to the cell face
G = flux vector, radial component
Hz = complex amplitude of magnetic field,

axial component, A/m
h = enthalpy, J/kg
I = unit matrix
M = Mach number
n = external normal vector to a cell face
nx , ny = axial and radial components of a vector n
P0 = pressure at an inlet slot, hPa
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P∞ = pressure in a test chamber, hPa
Pr = Prandtl number
p = pressure, Pa
R = right eigenvectors matrix of matrix A
R̃ = right eigenvectors matrix of matrix APc

Rc = channel radius, m
r = radial coordinate, m
S = source term
T = temperature, K
U = vector of conservative variables
u, v, w = velocity vector components, m/s
V = vector of pressure-enthalpy variables
Vol = volume of a computational cell
W = vector of pressure-entropy variables
z = axial coordinate, m
β = preconditioning parameter
µ = dynamical viscosity coefficient, Pa s
ρ = density, kg/m3

σ = plasma electrical conductivity, 1/(ohm m)

Subscripts

h = derivation by enthalpy
i = cell number in axial direction
j = cell number in radial direction
k = cell face number
l = vector component number
n = time step number
p = derivation by pressure
r = derivation by radial coordinate
z = derivation by axial coordinate

Superscripts

e = electrical source term
i = inviscid flux vector or source term
v = viscous flux vector or source term

Introduction

AMODERN application of the inductively coupled plasmas is
simulating thermochemical interaction of high-enthalpy gas
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flows with thermal protection materials (TPM) at the hypersonic
flight conditions.1,2 The IPG plasmatrons at the Institute for Prob-
lems in Mechanics of the Russian Academy of Sciences (IPM RAS)
appeared to be very efficient tools for the TPM aerothermal testing,
and predicting the TPM catalycity.1 The efficient capabilities of the
100-kW IPG-4 plasmatron for the simulation of physicochemical
processes accompanying the hypersonic entry of a vehicle aeroshell
in the Martian atmosphere have been recently demonstrated.3,4 But
in fact, the potential capabilities of research and design facilities
to simulate reacting flow physics and plasma/surface interaction
can be revealed, if the measurements are properly combined with
computational-fluid-dynamics (CFD) modeling. CFD modeling is
an indispensable tool for aerothermal testing in order to carry out
CFD codes validation, to rebuild flowfield in plasmatron, and to
extract TPM catalycity, related to atom recombination, from heat-
transfer measurements. In general, the problem is rather tricky. Up
to now there are few computations of the nonequilibrium air5 and
argon6 plasma flows coupled with the rf electromagnetic field.

In prior papers4,7 the entire flowfield into plasmatron has been cal-
culated separately in two,7 three,4 or several8 computational zones.
Usually, plasma torch is the first zone, jet flow around the model is
the second one, and boundary layer on the test model is the third
one.

In the present paper a new numerical algorithm is presented, and
computer codes have been developed to simulate the problem with-
out dividing the entire domain into different subregions. The algo-
rithm allows us to simulate both sub- and supersonic regimes in
united manner.

In the paper we present the capabilities of CFD modeling in-
ductively coupled plasma and some results of computations carried
out in the wide range of the IPG-4 plasmatron operating conditions
for equilibrium air plasma. The advanced technology developed
for calculations of the plasma transport properties has been used.
It is based on the rigorous modification of the Chapman–Enskog
formalism9 and appropriate database for thermodynamic and trans-
port properties.

A time-relaxation implicit method along with the implicit is used
in the computer code developed. The code is based on a new ap-
proach to use a preconditioning technique with the total-variation-
diminishing (TVD) schemes.10,11 It allows one to simulate both low-
Mach-number and supersonic flows in a common manner. In Ref. 11,
the code used has been validated by a comparison against the com-
putational results obtained in the von Kármán Institute (VKI) for
Fluid Mechanics (Brussels)5,8,12 and the IPM RAS.4

Simulation of both underexpanded and overexpanded supersonic
jets in the plasmatron has been carried out. A quite reasonable cor-
respondence with the experimental data is observed.

Thermochemical Equilibrium Model
The IPG-4 plasmatron can operate in the wide range of pressure

10–103 hPa within a plasma torch. The relevant properties of the
chemically reacting air plasma flow alter drastically in this pressure
range: from strong thermal nonequilibrium conditions to local ther-
mal equilibrium (LTE). Therefore, there is no single thermochemical
model and appropriate CFD code that are applicable for all plasma-
tron operating conditions. A relative border between nonequilib-
rium and LTE inductively coupled subsonic air plasma flows for
the IPG-4 facility we estimate as 50 hPa. In the discharge channel
air plasma above this pressure can be considered under LTE condi-
tions. Though, an underexpanded air jet after a sonic nozzle in the
plasmatron is always under thermochemical nonequilibrium. Nev-
ertheless, the thermochemical equilibrium approximation for the
entire plasmatron flowfield appears to be quite important for the de-
velopment and validation of the numerical methods and appropriate
CFD codes in the wide range of operating conditions. Implemen-
tation of a nonequilibrium model is out of the scope of this paper
and is left for further development. A comparison with experiments
gives a qualitative indication that such a simplified model is not
completely irrelevant, and the code can be used for a real applied
configuration at least under the assumptions on the physical model
used. The equilibrium model can be considered as a reference case

if we study the influence of nonequilibrium chemistry on the loca-
tions of the shock waves. That reference equilibrium case can be
useful for predicting the pressure field. Such a model can also give
us an estimation of the heat flux at the stagnation point relevant to
the ideal catalytic wall.

The applied gas dynamic and thermochemical model is quite tra-
ditional for inductively coupled plasma computations.13 We assume
that a plasma flow in a cylindrical discharge channel and test cham-
ber is a stationary, laminar, and axisymmetric one with a swirl in
azimuth direction. In our studying, the high-frequency electromag-
netic field does not influence plasma transport properties, radiative
processes are neglected, and the flow is under LTE. The model as-
sumes that the elemental composition of the plasma is uniform: the
demixing effect is not taken into account. That allows us to use tab-
ulated values for both the thermodynamic and transport properties.
The IPG-4 operates in a supersonic regime with air at the pressure
within the plasma torch below 300 hPa. In such regimes the effects
of radiation are negligible in the terms of gas dynamics and heat
transfer because a hemispherical emissivity of air is less than 10−4

at the relevant air temperature 8000 K. We use the Stokes hypothe-
sis on the zero bulk viscosity although we are considering air with
diatomic species and flow conditions at which compressibility is
significant.

Governing Equations
The plasma flow is assumed to be governed by the Navier–Stokes

equations coupled with the magnetohydrodynamics (MHD) equa-
tions for rf electromagnetic field. To apply a time-relaxation method,
the gas dynamical subset of governing equations is written in the
following nonstationary form:
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The equations are given in dimensional form and written in cylin-
drical coordinates (z, r ) accounting for the tangential velocity com-
ponent w; t is the time; τzz, τzr, τzθ , τrr, τrθ , τθθ are the viscous stress
tensor components corresponding to axial, radial, and tangential co-
ordinates. Axial symmetry with nonzero transversal momentum is
assumed. The axial component of the Lorentz force is neglected.
The averaged Lorentz force radial component Fl and Joule heating
term Q in the right-hand side of Eq. (1) are expressed in terms of
the tangential component of the electric field complex amplitude
Eθ . The axial component of the Lorentz force is neglected (see the
following).

The governing equations are closed by constitutive relations,
which define electrical conductivity, transport properties, and equa-
tion of state of plasma under LTE. The equation of state, conductiv-
ity, and transport properties are handled in a table form.

The boundary conditions are as follows: necessary flow param-
eters besides the pressure are specified at annular inlet slot at the
channel entry section; the pressure is set in the test chamber; velocity
components equal zero at rigid surfaces; and symmetry conditions
are applied at the axis.

Numerical Method
A structured grid that is adaptive to the flow geometry is used.

All metric information is expressed in the terms of finite volume
method notations. The second-order-upwind TVD scheme, origi-
nally developed by Yee et al.,14 is used to approximate flux vectors
and flux-vector Jacobian matrices at the cell faces. The scheme
is based on local characteristic approach and has a second order
of accuracy in space almost everywhere excepting extrema of the
characteristic variables. The corresponding set of linear algebraic
equations can be written in δ form as
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The elements φl of the vector 
 for the upwind-TVD scheme are
(the second index j is omitted everywhere for simplicity):
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where al
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To satisfy the entropy condition, the numerical viscosity ψ is
corrected near sonic points as follows13:

ψ(z) =
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(5)

The approximation of the numerical flux Jacobian at the cell face
(i + 1

2 , j), 〈A〉n
i + 1/2, j , is obtained after a linearization of the numer-

ical flux term given by Eq. (3):
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Values al
i + 1/2, j Ri + 1/2, j , R−1

i + 1/2, j are calculated by an averaging
procedure of some kind.

The flux vector, representing fluxes of conservative variables U
through the cell face, is
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The corresponding Jacobian matrix and its eigensystem decompo-
sition for the case of normal gas are given in Ref. 11.

Inside a plasmatron discharge channel the gas flow is charac-
terized by low Mach numbers (usually, 0.01 < M < 1). As is well
known, the governing equations become stiff as the Mach num-
ber tends to zero, and thus, the convergence rate of the itera-
tion procedure is slow. In recent years, a number of precondi-
tioning methods have been developed by several authors to solve
the problem.15 The preconditioning matrix15 has the simplest di-
agonal form P = diag[β2, 1, 1, 1] in the variables pressure-entropy
W = (p, u, v, S)T . Then, in the conservative variables the precon-
ditioning matrix U = (ρ, ρu, ρv, E)T is as follows:
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One can obtain the preconditioning matrix in the conservative
variables for a gas with an arbitrary equation of state:
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Instead of Eq. (2) we solve
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But a TVD approximation is constructed in Eq. (8) as for the
system
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Here, the variables with the tilde are associated with the precon-
ditioned flux Jacobian Pc A.

It is easy to see that this is a general way to combine precondition-
ing with a TVD approximation. Following this way, it is possible to
deduce, in particularly, the preconditioning method15 developed for
the Roe scheme of a first order of approximation.

In detail our approach is given in Ref. 11, where the results,
obtained by the code, described are compared against the codes
developed at the IPM and VKI. In major characteristics, including
temperature profiles, the difference mainly is within a few percent.
An illustration of the comparison results is given next.

Discharge Electrodynamics
Suppose that the oscillating external current in separate inductor

circular coils produces a monochromatic electric field with the com-
plex amplitude E(z, r). Following Ref. 13, we use the assumption
for the tangential component of the electric field amplitude Eθ (z, r):
∂ Eθ /∂z � ∂ Eθ /∂r , which leads to a quasi-one-dimensional approx-
imation of the MHD equations:

d

dr

[
1

r

d

dr
(r Eθ )

]
= −iωµ0σ Eθ (11)

iωµ0 Hz = 1

r

d

dr
(r Eθ ) (12)

Here ω is the circular frequency of the inductor current and elec-
tric field; ω = 2π f . In this approximation the vortical electric field
amplitude is described by the single nonzero component Eθ , the
magnetic field amplitude has the single nonzero component Hz ,

and the axial component of Lorentz force equals zero. This quasi-
one-dimensional approximation is an essential simplification of the
problem; it leads to a boundary-value problem for the ordinary dif-
ferential equation just shown to determine Eθ (z, r); the z coordinate
is a parameter only in this equation and Eθ depends on z owing to
boundary conditions. To determine Eθ , we use also the symmetry
condition at the axis Eθ (z, 0) = 0 and the condition at the discharge
channel wall16 as follows:

r = Rc :
1

r

d

dr
(r Eθ ) = iωµ0 Hzc0(z)

Here Hzc0 is the axial component of the magnetic field amplitude
produced only by the inductor current outside the plasma flow, and
µ0 is the vacuum magnetic permeance. Hzc0 is determined by the
inductor current amplitude, which in turn is determined in numerical
solution by the value of the total power input in plasma Npl = ηNap,
where Nap and η are the plasmatron anode power and efficiency
obtained by experimental measurements.

A comparison between the two-dimensional MHD equation so-
lutions and the quasi-one-dimensional approximation results given
in Ref. 17 showed quite a good accuracy of this approximation in a
wide range of operating frequencies for the plasma torch geometry
under consideration.

Calculation of Plasma Transport Properties
To solve the Navier–Stokes and Maxwell equations, the following

transport coefficients are necessary: the viscosity, thermal conduc-
tivity, and electrical conductivity. In our approach the transport co-
efficients were calculated in advance for the equilibrium air plasma
flows as functions of the pressure and temperature. The transport
properties were calculated by the precise formulas of the Chapman–
Enskog method9 in the temperature range 300 ≤ T ≤ 15,000 K. The
first nonzero approximation is rather accurate to calculate transport
coefficients for neutral gases, but for ionized gases it can lead to
∼50% error.18 Our calculations for high temperatures were made
with ζ = 2 for the viscosity and ζ = 4 for other transport coeffi-
cients to provide 5% accuracy; here ζ is the order of approximation
by Sonine polynomials, and ζ means the number of terms in Sonine
polynomial expansions of Boltzmann’s equation solution that pro-
vides transposition in the Chapman–Enskog method. The formulas9

exploited for the transport properties are much more convenient
for the calculations than the classic formulas17 of the Chapman–
Enskog method because these contain the determinants of the order
N (ζ − 1) × N (ζ − 1) instead of the order Nζ × Nζ .

Computational Results on Underexpanded
and Overexpanded Supersonic Jets

The underexpanded and overexpanded supersonic jets exhausted
from the IPG-4 plasmatron through a sonic and Laval nozzle into
the test chamber have been considered in the current research.

The principal scheme of the ICP torch with a sonic nozzle is
given in Fig. 1 (Ref. 7). The outer inductor is represented by parallel
current-currying rings, which are considered as infinitely thin. The
nozzle at the end of the channel allows us to reach the sonic velocity
for the flow. After the nozzle the underexpanded jet interacts with

Fig. 1 Sketch of discharge channel with sonic nozzle.
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Fig. 2 Sketch of test chamber.

Fig. 3 Comparison of temperature profiles at z = a) 15, b) 27, and
c) 46 cm for argon.

a test sample located in the test chamber. The sketch of the test
chamber is represented in Fig. 2.

The input parameters of the problem are as follows: gas is air,
the angle of the flow spinning is 45 deg, the inductor frequency
f = 1.76 MHz, and the temperature of the input gas and the tem-
perature of the channel and chamber walls coincide and equal
300 K.

A comparison of the results obtained by three absolutely differ-
ent codes (code-to-code validation) was done for several operating
pressures (1 atm; 0.1 atm; 0.04 atm) in the case of argon. For the
comparison, we used the results obtained at the IPM7 and VKI17

using our own in-house well-tested codes. Temperature profiles are
presented in Fig. 3 at the following axial positions in the plasma-
tron channel: z = 15 cm (inlet region), z = 27 cm (midcoil), and
z = 46 cm (outlet). The results of our calculations (solid line) are
compared against the IPM7 (circle-line) and VKI17 (squares) data. In
this example the operating parameters used were as follows: the air-
flow rate G = 2.8 g/s, the pressure at the inlet slot P0 = 0.1 atm, and
the plasmatron anode power and its efficiency are Nap = 23.5 kW,
η = 0.64. The results obtained by all codes are in a reasonably good
agreement. The relatively big difference in the inlet region is ap-
parently explained by somewhat different numerical realization of
the inlet boundary conditions. The most “full” temperature pro-
file is observed in the midcoil section relative to the Joule heating
area.

Numerical tests we have carried out11 reveal essential improve-
ment in convergence rate if preconditioning technique (7–9) is used
for low-Mach-number flows. The history of convergence shown
in Fig. 4 corresponds to the calculation of channel flow with
M0 = 10−2, where M0 is the inlet Mach number. Because of an
implicit scheme used, it is possible to integrate the governing equa-

Fig. 4 Evolution of the norm of residual for different values of pre-
conditioning parameter β.

Fig. 5 Underexpanded supersonic plasma jet. The upper part is ex-
periment; the lower one is shadow computational picture.

tions using high Courant–Friedrichs–Lewy numbers (CFL). In the
calculations done, the CFL number equals 40. A linear system of
Eqs. (8) was solved using the approximate factorization based on
space splitting. The evolution of the residual norm is presented for
different values of the preconditioning parameter β. The nonpre-
conditioning case corresponds to β = 1. The final (limit) solution
does not depend substantially on β because of delta-form (8) used
if the mesh is fine enough.

In the case of underexpanded jets, the following operation param-
eters are considered: G = 2.4 g/s, Nap = 45 kW, η = 0.64, the sonic
nozzle diameter dc = 0.04 m, and the nozzle length hnz = 0.045 m.
The pressure in the test chamber P∞ = 6.4 hPa, whereas the pressure
at the inlet slot is6 P0 = 37.4 hPa. Strictly speaking, the last value
is not necessary for the mathematical statement of the problem, and
we will turn to this question later.

A comparison of the experimental7 and computational results is
given in Fig. 5. The experimental photograph is shown in the upper
part. For the comparison, the shadow contour plot picture of the
internal energy is given in the lower part. The correspondence of
the location of “casks,” local compression shocks, and jet boundary
is quite reasonable. We should remark here that first a comparison
with the experiment used was done in Ref. 7 using another code
and numerical approach. The correspondence with the experimental
results obtained was satisfactory in terms of the stagnation point
heat flux and pressure, but the problem was solved by considering
flows in the channel and test chamber separately. Different codes
and numerical methods were used to simulate these flow parts. In
the second part (test chamber) the value P0 set from the experiment
was used as the boundary condition in Ref. 7. In our approach we
solve the problem in a united manner, and P0 is obtained in the
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Table 1 Pressure comparison between
computational and experimental results

P0, hPa

Nap, kW dc , m Calc Exp

52 0.024 51.8 50.4
76 0.05 31.1 30.5

Fig. 6 Underexpanded supersonic plasma jet over sample cylinder.
The upper part is experiment; the lower one is shadow computational
picture.

calculations. In the present example we have P0 = 41 hPa, which
gives us a 10% correspondence with the experimental result. The
error of the pressure measurements in the experiments was within
10% (Refs. 4 and 19).

In the calculations, an adaptive mesh was used consisting of
100 × 50 nodes in the channel, 50 × 50 nodes in the nozzle do-
main, and 200 × 200 ones in the test chamber. The parameter β is
variable and has the order of the local Mach number.

An underexpanded jet and supersonic flow over a cylindrical sam-
ple, 2 cm in the diameter Dm , are shown in the Fig. 6. The distance
z between the sonic nozzle and the cylinder equals 6 cm. As in
the preceding case, the experimental and computational results are
presented in the figure. The locations of the shock wave before the
cylinder, rarefaction, and compression waves quite coincide.

The correspondence between the calculated pressure P0 and the
experimental data at the other regimes investigated was even better.
The comparison is given in Table 1.

As was just mentioned, the multistep modeling of flow in a
plasmatron7 consists of the calculation of the plasmatron channel,
where the value P0 is taken from the experiment, followed by the
calculation of the nozzle and chamber domains. The comparison of
our unified approach against a multistage one used in Ref. 7 shows
the later technique might have an essential error somewhere as a
result of the nozzle influence. In Figs. 7 and 8, the axial velocity
component and temperature profiles, accordingly, are given at the
end channel section under the same flow conditions as for Figs. 5
and 6. The solid line corresponds to our approach, and the dashed
one is the multistage technique.

Further, some examples of modeling overexpanded jets are given.
In this case G = 2.8 g/s, P0 = 0.1 atm, and Nap = 31.3 kW. On the
subsonic outlet boundary of the test chamber, the pressure is set
13 hPa. Thus, rarefaction gas is created in the test chamber. Mach
numbers are changed from 2 × 10−2 in the circulated flow up to 2.5
at the nozzle exit. The parameters of the nozzle are as follows: the
nozzle throat is 0.016 m, the diameter of the exit section is 0.03 m,
and the half-angle of the supersonic part is 100. In Fig. 9, the up-
per part corresponds to streamlines; the lower part is the enthalpy

Fig. 7 Axial velocity profile at the channel end: ——, the unified cal-
culation and – – –, multistage approach.6

Fig. 8 Temperature profile at the channel end: ——, unified calcula-
tion and – – –, multistage approach.6

Fig. 9 Supersonic outflow from IPG-4 plasmatron. The upper part
corresponds to streamlines and the lower one to enthalpy distribution.

distribution. The pressure is about 7 hPa at the nozzle exit. Thus,
the jet is overexpanded in this case, and the exhausted flow is ac-
companied by the typical system of shocks and rarefaction waves.
A flow pattern near the nozzle, including the first two “casks,” is
presented in Fig. 10 by the distribution of pressure. The maximal
velocity is about 3000 m/s in this case. All calculations were per-
formed by the same manner without dividing flowfield into different
parts.
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Fig. 10 Outflow into test chamber.

Conclusions
Numerical modeling of equilibrium inductive coupled plasma

flows in a plasmatron has been done. An advanced technology de-
veloped for the calculations of the plasma transport coefficients
based on the rigorous modification of the Chapman–Enskog for-
malism and appropriate database for thermodynamic and transport
properties has been used.

A new effective preconditioning technique along with an implicit
total-variation-diminishing scheme has been developed to solve the
Navier–Stokes equations in both subsonic and supersonic regimes
in a uniform manner. Numerical simulation of underexpanded and
overexpanded supersonic jets, including the interaction with a sam-
ple in the test chamber, has been performed without dividing the
domain investigated into different parts.

The computational results have been validated by a comparison
of the flowfield structures with the experimental ones.
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