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1 Introduction

Endogenous growth theories have stressed the importance of human capital

accumulation as a determinant of growth in per capita income. In a seminal

contribution, Lucas (1988) developed a model in which individual decisions

to invest in education lead to an increase in the economy’s stock of human

capital and capacity to produce. The process driving human capital accu-

mulation depends on its current stock and the fraction of non-leisure time

that workers devote to training and learning, as opposed to current produc-

tion. If the returns to education do not decline over time, private spending

on education (or investment in human capital) becomes the main source of

long-run growth.

A key feature of the Lucas model is that the decision to invest in educa-

tion, and thus the path of human capital, depends on the individual’s decision

regarding how much training he or she is willing to undertake. Because every-

thing else in the model depends on the path of human capital, the dynamic

behavior of the economy and the steady-state growth rate are completely

determined by the way individuals decide to allocate their time. However,

as pointed out for instance by Creedy and Gemmell (2002), the hypothesis

that education decisions are entirely private ignores the fact that in many

developing countries education is provided free of charge, at least at the pri-

mary and secondary levels, by the government, and that school attendance is

mandatory. Individuals can therefore choose the intensity (or level of effort)

provided in acquiring education, but the amount of time that is allocated to

studying is subject to a lower bound, fixed by government fiat.1 Moreover, in

the presence of credit market imperfections and human capital externalities,

private agents may have only weak incentives, and insufficient resources, to

1By itself, this does not invalidate the Lucas model; the fraction of time allocated to
studying can be reinterpreted as the additional time that individuals allocate to homework.
In the model of Fisher and Keuschnigg (2002), for instance, self-study (or homework) and
school attendance are substitutable inputs (to some degree) in the acquisition of skills.
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finance their own education. In such conditions, publicly-provided educa-

tion can reduce or eliminate the negative externalities that affect individual

decisions to accumulate human capital.

Various contributions have extended the Lucas framework to account

for government spending on education, as well as other services (such as

health, infrastructure, or utility-enhancing services). They include Ni and

Wang (1994), Glomm and Ravikumar (1992, 1998, 2003), Baier and Glomm

(2001), van Zon and Nuysken (2001), Fisher and Keuschnigg (2002), Rioja

and Glomm (2003), Rivas (2003), and Blankenau and Simpson (2004). Some

of these contributions have explicitly studied the extent to which an increase

in the public provision of education services raises long-run growth, by alter-

ing the process of human capital accumulation. For instance, in Glomm and

Ravikumar (1992, 1998, 2003), the learning technology has two inputs: the

time that each individual spends studying, and the quality of schools, which is

a publicly-provided input common to all individuals. School quality depends

on government expenditure, so labor productivity varies with increases in

public spending. Blankenau and Simpson (2004) developed an overlapping-

generations model where human capital accumulation results from the pro-

vision of both public and private services, which are imperfect substitutes.

Public services are proportional to output, whereas the per unit cost of pri-

vate investment in human capital is proportional to the wage rate. They

found that growth depends on the share of government spending on educa-

tion in output, the ratio of physical capital to human capital, and per capita

private investment in human capital. Both sets of studies, however, abstract

from the provision of infrastructure and do not consider trade-offs that may

arise in the allocation of public expenditure.

This paper departs from the existing literature in several ways. First, it

abstracts entirely from private decisions to acquire skills and assumes instead

that education is public and free of charge. The absence of an investment

function in education for individuals is the consequence of education being
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mandatory. These assumptions are particularly relevant for low-income de-

veloping countries, where the scarcity of human capital have led states to

pursue active policies to promote education, and private schooling opportu-

nities are limited. Education, however, is not a pure public good: although it

is non-excludable, I assume initially that it is rival as a result of a government-

imposed “admissions” policy that limits the number of individuals who are

allowed in schools. Second, I account simultaneously for the provision of

education and infrastructure services, in order to study potential trade-offs

associated with the allocation of public spending.2 The growth effects of pub-

lic spending on infrastructure have attracted much interest in recent years.

In an early contribution by Barro (1990), public investment was treated as

a flow; subsequent contributions by Turnovsky and Fisher (1995), Chang

(1999), Fiaschi (1999), Turnovsky (2000), and Eicher and Turnovsky (2000),

followed that approach as well. In the model developed in this paper, growth

depends also on the flow of government spending on infrastructure, in addi-

tion to the provision of education services. As a result, the optimal allocation

of tax revenue can be examined. The fact that all components of spending

are productive, and that the government faces a budget constraint, makes

this issue non trivial from a growth perspective–particularly for low-income

countries, where needs are great in both education and infrastructure.

Third, the model assumes that the economy is endowed only with “raw”

labor, and that raw labor must be educated to become productive. Knowl-

edge is thus “embodied” in (educated) workers, unlike Lucas-type models

where human capital is disembodied and can therefore grow without bounds.

In the framework developed in this paper, the growth rate of educated la-

bor is subject to an upper bound, the growth rate of the population itself

2Rivas (2003) for instance examined the impact of changes in the allocation of govern-
ment spending (for given tax rates) between government consumption, transfer payments,
and the provision of infrastructure services in an endogenous growth framework. He did
not, however, account for human capital accumulation and publicly-provided education
services, and did not derive optimal allocation rules.
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(which is kept exogenous). Fourth, the model accounts for congestion costs

in education–an important feature of education systems in the developing

world, particularly in low-income countries. According to World Bank es-

timates, in 1999, the pupil-teacher ratio in primary schooling (a common

indicator of the quality of education) was 16.9 for high-income countries, but

reached 21.4 in middle-income countries and 38.9 in low-income countries.

In the same year, the ratio was 41.5 in South Asia and 46.7 in sub-Saharan

Africa. Most recent estimates for those regions put the ratio at 40 and 44, re-

spectively (see UNESCO (2005)). Overcrowded classrooms affect the benefits

of public education, both in terms of quality and quantity. Infrastructure-

related congestion costs have been studied in several contributions in the

endogenous growth literature,3 but congestion costs (or quality issues) asso-

ciated with the provision of education services have not, as far as I know,

been dealt with in detail. Glomm and Ravikumar (1992, 1998, 2003) relate

the quality of schools to public spending on education (as noted earlier) but,

given their assumption of a linear relationship between these two variables,

they do not allow for congestion effects. They also abstract from infrastruc-

ture spending. The only contribution that I am aware of is a study by

Tamura (2001). He allows for congestion effects by introducing a trade-off

between teacher quality and class size in the production of human capital in

determining school quality (that is, smaller classes provide better learning

environments, but the detrimental effects of larger classes can be mitigated

by improving the quality of teachers). He focuses, however, on convergence

issues, rather than the optimal allocation of public resources as I do here.4

The remainder of the paper is organized as follows. Section II presents the

basic framework. A key assumption underlying the model is that education

3See for instance Fisher and Turnovsky (1998), Glomm and Ravikumar (1999), and
Eicher and Turnovsky (2000), where the use of public capital is congested by the use of
private capital.

4Rioja and Glomm (2003) consider both public education and public provision of in-
frastructure services, as I do here. However, they do not provide an explicit analysis of
the optimal allocation of public resources.
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is provided (free of charge) through a schooling technology that depends on

the provision of government services. These services, as well as spending on

infrastructure, are financed by a distortionary tax on installed capital. Sec-

tion III derives the balanced-growth equilibrium and discusses the dynamic

properties of the model. Section IV examines the short- and long-run effects

of an increase in the share of government spending on infrastructure services.

The analysis shows that there is a trade-off in increasing public spending on

infrastructure: on the one hand, it leads to an increase in the productivity of

private capital, which increases growth, but on the other, it leads to a reduc-

tion in the rate of human capital accumulation, which lowers growth. Thus,

the long-run effect on steady-state growth is ambiguous; depending on the

parameters that characterize the production technology, an increase in pub-

lic spending on infrastructure can actually lower the growth rate. Section V

derives the optimal (or growth-maximizing) allocation of public expenditure

between education and infrastructure, and examines its sensitivity to vari-

ous structural parameters. Section VI introduces congestion costs in public

education. I do so by assuming that the efficiency of government-provided

education services declines with the number of potential students (that is,

the number of individuals in the raw labor force seeking to acquire skills).

The last section of the paper summarizes the main results and discusses some

possible extensions of the analysis.

2 The Economy

Consider an economy populated by a single infinitely-lived household who

produces and consumes a single traded good, which can be used for consump-

tion or investment. The economy’s endowment consists of raw labor, which

must be educated to be used in the production process. The government

provides infrastructure and education services (with the former consisting of

spending on transportation, communication, sewers, water systems, and so
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on, and the second consisting of expenditure on books, lunches, and so on)

free of charge. It levies a flat tax on installed capital to finance its outlays.

All individuals in the raw labor force (which grows at a constant rate) seek

to acquire skills; however, not all of them have access to the education sys-

tem. The number of students is set through an “admissions” policy, which

involves (as discussed later) some form of rationing. As a result, whereas

infrastructure services are a pure (that is, non-rival, non-excludable) public

good, education is not; it is non-excludable (an uneducated individual can-

not prevent other individuals from accessing the education services that the

government provides at no cost), but it is rival (the use of the education

system by a sufficient number of uneducated individuals precludes its use by

others).

2.1 Production

Output, Y , is produced with private physical capital, public infrastructure

services, and educated labor, using a Cobb-Douglas technology:

Y = GαEβK1−α−β
P , (1)

where KP is the stock of private capital, G government services, E the stock

of educated labor, and α, β ∈ (0, 1). Thus, production exhibits constant
returns to scale in all factors. Moreover, as long as G/KP and E/KP are

constant, output is proportional to the private capital stock; the production

function is then an AK-type technology, which implies that the equilibrium is

characterized by steady-state growth. Indeed, as shown below, steady-state

growth occurs even with decreasing returns to scale in reproducible factors

of production (educated labor and private capital).

2.2 Household Preferences

Assuming no disutility associated with working, and no utility per se from the

acquisition of skills, the infinitely-lived household maximizes the discounted
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stream of future utility5

max
C

V =

Z ∞

0

lnCt exp(−ρt)dt,

where C is consumption and ρ > 0 the discount rate. Consumption enters

the instantaneous utility function in logarithmic form, implying that income

and substitution effects cancel out, and that the household’s propensity to

save (and invest) is independent of the rate of return on capital. Moreover,

unlike some contributions in the literature–such as Barro (1990), Turnovsky

and Fisher (1995), Baier and Glomm (2001), Rioja and Glomm (2003), and

Turnovsky (2004)–I do not allow for utility-enhancing public services.6

The household budget constraint is

C + K̇P = Y − τKP , (2)

where τ ∈ (0, 1) is the tax rate on capital. For simplicity, the depreciation
rate of private capital is assumed to be zero.

Using (1) and (2), the current-value Hamiltonian for this problem can be

written as

H = lnC + λ[GαEβK1−α−β
P − τKP − C],

where λ is the costate variable associated with constraint (2). From the first-

order condition dH/dC = 0 and the costate condition dH/dKP = ρλ − λ̇,

optimality conditions for this problem can be written as:

1/C = λ, (3)

λ̇ = λ
h
τ + ρ− (1− α− β)GαEβK−α−β

P

i
, (4)

together with the budget constraint (2) and the transversality condition

lim
t→∞

λtKP,t exp(−ρt) = 0. (5)

5Throughout the paper, the time subscript t is omitted whenever doing so does not
result in confusion. A dot over a variable is used to denote its time derivative.

6For a more general specification of instantaneous utility in this class of models, see
Agénor (2005a, 2005d).
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Equations (3) and (4) can be combined to give

Ċ

C
= − λ̇

λ
= (1− α− β)(

G

KP
)α(

E

KP
)β − τ − ρ. (6)

2.3 Human Capital Accumulation

As noted earlier, raw labor must be educated to become productive. The

schooling technology is specified as a two-level production function. At the

first level, the prevailing quantity of educated labor, E, and government

spending on education, IE, are combined to produce a composite input. At

the second level, this input is combined with the number of individuals seek-

ing to acquire an education, L, to produce the flow of newly-educated work-

ers, N . Thus, a more literate environment leads to the production of a greater

number of educated workers, for given levels of public spending on education

and individuals seeking to acquire skills.7

Assuming that technology is Cobb-Douglas at both levels yields:

N = A(IωEE
1−ω)ηL1−η, (7)

where A is a scale parameter and ω, η ∈ (0, 1). The schooling technology
exhibits therefore constant returns to scale in E and IE (taken separately),

as well as in the composite input IωEE
1−ω and L.

Equation (7) can be rewritten as

N = A(
IωEE

1−ω

L
)ηL = A(

IE
E
)ωη(

E

L
)ηL. (8)

As shown later, in the steady state the growth rate of educated labor,

N/E is positive. However, given the schooling technology (7), E cannot

grow without bound; it cannot, in fact, exceed the growth rate of the stock

7Note that it could have been assumed (as in Agénor (2005a, 2005b)) that a fraction
χ of the total stock of educated labor consists of teachers on the government’s payroll,
with the rest engaged in the production of goods. However, this would only change the
definitions of the constant terms in (1) and (7) and would not affect the results in any
way, as long as χ is constant.
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of raw labor admitted in schools, n.8 Thus, N/E ≤ n. In order to abstract

from considerations related to endogenous population growth, I impose this

restriction in a particularly simple way–I assume a strictly proportional

relation between E and L, of the form L = ϕE, where ϕ > 0. Thus, in the

steady state, L grows at the same rate as E, implying that the ratio L/E is

constant. In effect, this restriction amounts to assuming that the government

rations access to public education by fixing n. The case where L responds

endogenously to changes in wages is examined later.9

Substituting L = ϕE in (8) implies that the growth rate of E evolves

over time according to

Ė

E
=

N

E
− δE = B(

IE
E
)ωη − δE, (9)

where B = Aϕ1−η, and δE ∈ (0, 1) denotes the rate of “depreciation” (or
de-skilling) of educated labor. Note also that I have not accounted for the

possibility that public infrastructure may affect the schooling technology and

therefore the ability to produce educated labor; this issue is discussed at

length elsewhere (see Agénor (2005a, 2005b)).

2.4 Government

The government provides infrastructure and education services, G and IE.

As in Park and Philippopoulos (2004), for instance, it collects a proportional

tax on private installed capital at the rate τ ∈ (0, 1).10 Thus, the government
8Note that n is endogenous, whereas the growth rate of the overall raw labor force itself

is exogenous and must in turn exceed (or be equal to) n.
9Note also that if it had been assumed (as indicated earlier) that a fraction of the stock

of educated labor consists of public sector teachers, the interpretation of this restriction
would be straightforward: it would mean that the government is trying to achieve a
constant pupils-to-teachers ratio by limiting the number of individuals accepted in the
classrooms. The results would be, nevertheless, qualitatively similar to those discussed
later, so the simpler specification in (7) is used.
10The assumption that the tax is proportional to installed capital is made for simplicity

only. As shown in Appendix A, the results are qualitatively same if instead a proportional
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budget constraint is given by

IE +G = τKP . (10)

Assuming that infrastructure services are a constant fraction of tax rev-

enue, so that G = υτKP , with υ ∈ (0, 1), the government budget constraint
can be rewritten as

IE = (1− υ)τKP , (11)

which determines the share of spending on education services, 1− υ. Thus,

because G/IE = υ/(1 − υ), the composition of public spending is constant

over time, as long as υ is constant.

3 The Balanced-Growth Equilibrium

The balanced-growth equilibrium (BGE) can be determined as follows. First,

Equation (2) can be rewritten as, using (1),

K̇P = (
G

KP
)α(

E

KP
)βKP − τKP − C,

that is, using G/KP = τυ,

K̇P

KP
= (τυ)αeβ − τ − c, (12)

where c = C/KP and e = E/KP .

Similarly, Equation (6) can be rewritten as

Ċ

C
= (1− α− β)(τυ)αeβ − τ − ρ, (13)

whereas equation (9) gives

Ė

E
= B[(

IE
KP

)(
KP

E
)]ωη − δE. (14)

tax on output is assumed. Note also that, unlike the assumption in Park and Philippopou-
los (2004), the tax is here taken to be paid out of current income.
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Consequently, given that from (11) IE/KP = τ(1− υ),

Ė

E
= B[τ(1− υ)]ωηe−ωη − δE. (15)

Combining equations (12), (13), and (15) yields

ċ

c
= −(α+ β)(τυ)αeβ − ρ+ c, (16)

ė

e
= B[τ(1− υ)]ωηe−ωη − δE − (τυ)αeβ + τ + c. (17)

These two nonlinear differential equations in c and e, together with the

initial condition e0 = E0/KP,0 > 0 and the transversality condition (5),

rewritten as

lim
t→∞

c−1t exp(−ρt) = 0, (18)

characterize the dynamic equilibrium. The BGE is a set of functions {ct, et}∞t=0
such that equations (16) and (17) and the transversality condition (18) are

satisfied, and consumption, the stock of educated labor, and the stock of

private capital, all grow at the same constant rate γ, that is, Ċ/C = Ė/E =

K̇P/KP = γ.11 This is also the rate of growth of output.12 From (16), setting

ċ = 0 yields

c̃ = ρ+ (α+ β)(τυ)αẽβ, (19)

where ẽ and c̃ denote the stationary values of e and c. This expression can

be substituted in (17) with ė = 0 to yield an implicit function of the form

Q(ẽ; υ) = 0. (20)

11The transversality condition (18) is satisfied along any interior BGE because consump-
tion and the stock of private capital grow at the same constant rate, implying that the
ratio c = C/KP is also constant.
12From (1), and given that Ė/E = K̇P /KP on the BGE, Ẏ /Y = αĠ/G+ [β+(1−α−

β)]K̇P /KP . Given that G = υτKP , and thus Ġ = υτK̇P , this expression boils down to
Ẏ /Y = K̇P /KP .

13



From (13), γ is given by

γ = (1− α− β)(τυ)αẽβ − τ − ρ, (21)

which shows that the growth rate depends on the production technologies

for goods and educated labor (the latter through ẽ), as well as fiscal policy

variables (τ and υ). From (12) and (15), the growth rate is given by the

equivalent forms

γ = (τυ)αẽβ − τ − c̃, (22)

which is identical to (21) given (19), and

γ = B[(1− υ)τ ]ωηẽ−ωη − δE. (23)

To investigate the dynamics in the vicinity of the steady state, the system

(16)-(17) can be linearized to give∙
ċ
ė

¸
=

∙
a11 a12
a21 a22

¸ ∙
c− c̃
e− ẽ

¸
, (24)

where the aij are given by

a11 = c̃, a21 = ẽ,

a22 = −ωηB[τ(1− υ)]ωηẽ−ωη − β(τυ)αẽβ < 0,

a12 = −c̃β(α+ β)(τυ)αẽβ−1 < 0.

c is a jump variable, whereas e is predetermined at any given moment in

time. Saddlepath stability requires one unstable (positive) root. To ensure

that this condition holds, the determinant of the Jacobian matrix of partial

derivatives of the dynamic system (24) must be negative, that is,∆ = a11a22−
a12a21 < 0. Using the above definitions yields

∆ = −c̃ωηA[τ(1− υ)]ωηẽ−ωη − c̃β(1− α− β)(τυ)αẽβ < 0.

This condition always holds, given that α + β < 1. Thus, in the neigh-

borhood of the BGE, the dynamic system is saddlepath stable. There is a
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unique value of the initial level of consumption, C0, which can be chosen

freely by the household, such that the economy converges to the BGE in

the long run. Moreover, under the restriction ρ > δE − τ (a condition that

always holds if δE → 0), this equilibrium is unique.13 The model is thus

locally determinate.14

The phase diagram in Figure 1 shows how the BGE equilibrium is reached.

The phase curve CC represents the combinations of c and e for which the

consumption-capital stock ratio is constant (ċ = 0), whereas the phase curve

EE represents the combinations of c and e for which the educated labor-

capital stock ratio is constant (ė = 0).15 Both curves have a concave shape,

but saddlepath stability requires that the slope of EE be steeper than the

slope of CC at the point at which they intersect, point A, which corresponds

to the BGE.

From the linearization given above, the stable manifold is given by

e = ẽ+ (e0 − ẽ) exp(νt), (25)

c = c̃+ κ(e− ẽ), (26)

where

κ ≡ ν − a22
ẽ

= − a12
c̃− ν

> 0, (27)

is the slope of the saddlepath, denoted SS in Figure 1, and ν denotes the

13To show that the BGE is unique, note first that from (20) Qẽ < 0. Thus, Q(ẽ; υ)
cannot cross the horizontal axis from below. Suppose also that ρ > δE − τ , a condition
that ensures thatQ(0; υ) > 0. Given thatQ(ẽ; υ) is a continuous, monotonically decreasing
function of ẽ, there is a unique positive value of ẽ that satisfies Q(ẽ; υ) = 0. From (19),
there is also a unique positive value of c̃. Finally, note that, from (23), if δE → 0, γ is
always positive if ẽ > 0.
14Of course, the fact that the model is locally determinate in the neighborhood of the

steady state does not imply that it is also globally determinate. In addition, multiple
balanced growth paths can arise if the services derived from public spending on education
are subject to, say, threshold effects. However, these issues are not pursued here.
15Inspection of (16) and (17) shows that the intercept of CC is ρ, whereas, in general,

the only thing that can be said about the intercept of EE is that it is strictly positive. In
the particular case where δE − τ = 0, the intercept is {(τυ)α/B[τ(1− υ)]ωη}1/(β+ωη).
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negative root of (24).16 During the transition, both ratios move in the same

direction. The reason is that the transitional dynamics are driven by the

ratio of educated labor to private capital (G/KP is constant over time and

equal to τυ). For instance, as this ratio increases (starting from a point

located on SS to the left of A), the productivity of private capital increases

as well. Although intertemporal substitution and income effects associated

with the increase in the rate of return on capital exactly offset each other in

the present case (given the assumption of a logarithmic instantaneous utility

function), the increase in the level of output raises consumption by more

than it increases the stock of private capital, and this tends to raise the

consumption-capital ratio during the transition to point A.

4 Increase in the Share of Infrastructure

I now examine the response of the economy to an unanticipated, permanent

increase in the share of spending on infrastructure, υ, for a constant tax rate

on capital, τ . Clearly, given the balanced-budget assumption (see (10), at

any given level ofKP an increase in υ leads to a concomitant reduction in the

share of spending on education services. Because both types of services affect

production (directly, in the case of infrastructure, indirectly, in the case of

education), it is intuitively clear that this policy will entail a trade-off with

respect to its impact on the economy’s growth rate and level of consumption.

4.1 Steady-State Effects

To determine the steady-state effects of an increase in υ, note first that, from

(20), and using the implicit function theorem, ∂ẽ/∂υ < 0. An increase in the

share of spending on infrastructure services leads to a lower ratio of educated

16To show that κ is positive, note that c̃− ν > 0 whereas a12 < 0. To show that SS is
flatter than CC, note that κ < −a12/c̃, because a12ν > 0.
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labor to physical capital in the long run. From (19),

dc̃

dυ
= (α+ β)(τυ)αẽβ[αυ−1 + βẽ−1(

dẽ

dυ
)],

which is in general ambiguous in sign. ∂c̃/∂υ is positive if, and only if

εẽ/υ ≡ −(
dẽ

dυ
)(
υ

ẽ
) <

α

β
. (28)

An increase in the share of spending on infrastructure leads to a higher

consumption-capital ratio in the steady state only if the negative effect on

the educated labor-capital ratio is not too large, given the relative impact

of infrastructure services and educated labor on output. The reason is sim-

ply the linear dependence of steady-state consumption on the steady-state

output-capital ratio, (τυ)αẽβ, as indicated in (19). The lower the elasticity

of output with respect to educated labor is (the lower β is), or the higher

the elasticity of output with respect to infrastructure services, the higher

the ratio α/β will be, and thus the more likely it is that output, and thus

consumption (both measured in proportion of the private stock of capital)

will increase in the long run.

From (21), the effect of an increase in the share of public investment on

the steady-state growth rate is given by

dγ

dυ
= (1− α− β)(τυ)αẽβ[αυ−1 + βẽ−1(

dẽ

dυ
)], (29)

that is,

sg(
dγ

dυ
) = sg(

dc̃

dυ
) = −sg(εẽ/υ −

α

β
).

This result indicates that whether an increase in the share of government

resources spent on infrastructure raises the economy’s steady-state growth

rate (dγ/dυ > 0) depends on the same condition that determines whether

the consumption-capital ratio rises.17

17This result obtains here because of the assumption of a logarithmic utility function.
With a more general specification for instantaneous utility, it would not necessarily hold.
In particular, the degree of intertemporal elasticity of substitution would matter (see
Agénor (2005a)).
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The intuition behind the above results is straightforward. Increasing

the fraction of government resources allocated to infrastructure has a direct,

positive effect on private production (through the increase in G/KP on the

marginal productivity of private capital), consumption, and long-run growth.

At the same time, this increase reduces the provision of education services and

lowers the supply of educated labor, which tends to lower private production,

consumption, and the growth rate. For a given tax rate, there is therefore a

trade-off between spending on education and infrastructure. If β → 0, then

γ → (1−α)(τυ)α−τ−ρ, and dγ/dυ → α(1−α)(τυ)α−1 > 0. Put differently, if
educated labor makes a small contribution to private production, an increase

in υ has an unambiguously positive effect. Similarly, if α → 0, then γ →
(1 − β)ẽβ − τ − ρ, and dγ/dυ → β(1 − β)(dẽ/dυ) < 0: if infrastructure

services have a limited impact on private production, an increase in the share

of resources allocated to the provision of these services will unambiguously

reduce the economy’s steady-state growth rate.

4.2 Transitional Dynamics

From (26), the impact effect of a rise in υ on the consumption-private capital

ratio, given that e cannot change instantaneously (so that de0/dυ = 0), is

dc0
dυ

=
dc̃

dυ
− κ(

dẽ

dυ
), (30)

which is also ambiguous, given that ∂c̃/∂υ is ambiguous. Nevertheless, given

that ∂ẽ/∂υ < 0, and κ > 0, it can be established that18

sg(
dc0
dυ
) = sg(

dc̃

dυ
).

The transitional dynamics associated with an increase in υ (assumed to be

unanticipated at t = 0) are illustrated in Figure 2, for “low” and “high” values

18Because the second term in (30) is positive, ∂c̃/∂υ > 0 implies that ∂c0/∂υ is also
positive. If ∂c̃/∂υ < 0, given that the new saddlepath has a negative slope and shifts
downward (see Figure 2), then ∂c0/∂υ must also be negative.
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of α/β, as implied by (28). A rise in υ leads to a leftward shift in both CC

and EE. In the upper panel of the figure, α/β > εẽ/υ, and the consumption-

capital ratio jumps up on impact from A to B, located on the new saddlepath

S0S0. This leads to a reduction in the ratio of educated labor to private capital

(ė0 < 0). Over time, both c and e fall along S0S0. In the lower panel of the

figure, α/β < εẽ/υ, and the consumption-capital ratio jumps downward on

impact from A to B, and continues to decline (together with e) along S0S0

during the transition. In both cases, the economy converges monotonically

to the new BGE, located at point A0.

5 The Growth-Maximizing Policy

The foregoing discussion indicated that, as long as α/β is sufficiently large,

an increase in υ will lead to an increase in private investment, a rise in the

consumption-capital ratio, and a higher growth rate in the long run. This is

because of the positive effect of higher infrastructure services on the marginal

productivity of private capital, which offsets the adverse effect of the lower

stock of educated labor. As υ is raised beyond a certain point, however, the

positive marginal effect starts to decline (due to decreasing returns to each

input), and the negative effect starts to increase. There is therefore a hump-

shaped curve linking the growth rate and υ, and thus a growth-maximizing

value for υ, similar to that obtained by Barro (1990) in a setting in which

the tax rate on output and the share of spending on infrastructure are one

and the same.19

The growth-maximizing share of investment in infrastructure, υ∗, is ob-

tained by solving the condition dγ/dυ = 0 for υ. From (29), this implies that

19See Tsoukis and Miller (2003), and Zagler and Durnecker (2003) for a review of Barro’s
results and its extensions. In Barro’s (1990) model, with output taxes, the growth rate
declines after a point with increases in the tax rate, as the adverse impact of distorting
taxes (on private savings and investment) dominates the positive effect of public spending
on the marginal productivity of capital. See Appendices A and B for a derivation of the
optimal tax rate in the present setting and Agénor (2005d) for a more detailed discussion.
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βυ(dẽ/dυ) + αẽ = 0, that is, from (28),

εẽ/υ =
α

β
. (31)

Thus, the optimal share υ∗ corresponds to the value of υ for which the

elasticity of the steady-state ratio of educated labor to private capital is

equal to α/β. Any increase in the share of public infrastructure beyond

that point would reduce public investment in education and the steady-state

ratio of educated labor to private capital, and thus indeed lower the growth

rate, despite the positive effect of infrastructure services on the marginal

productivity of private capital. In the present setting, the growth-maximizing

policy is also the policy that maximizes the steady-state consumption-private

capital ratio (dc̃/dυ = 0).

An explicit interior solution for υ∗ can be derived as follows. From the

equivalent form for γ given in (23), it can be shown that dγ/dυ = 0 implies

that υ∗/(1−υ∗) = εẽ/υ. Combining this result with (31) yields υ∗/(1−υ∗) =
α/β, which can be rewritten as

υ∗ =
α

α+ β
. (32)

Thus, an increase in α raises υ∗, whereas an increase in β lowers υ∗. If

β = 0, so that educated labor has no effect on private production, the optimal

share of spending on infrastructure is unity. Conversely, if α = 0 (that is,

spending on infrastructure services has no effect on private output), then υ∗ =

0. Put differently, the optimal share is positive as long as there are positive

production externalities associated with public spending on infrastructure

services. Note also that the optimal share υ∗ is independent of the tax rate,

as could be expected, but also of the education technology, as captured by

the parameters ω and η.20 As shown in Appendix A, the exact same results

20The latter result depends on the absence of congestion costs (as shown below), in
addition to the assumption that the production and education technologies are Cobb-
Douglas.
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obtain if government spending is financed by a proportional tax on output,

as opposed to a tax on installed capital.

In terms of proportion of spending in output, formula (32) yields

G∗

Y
=

α

α+ β
(
τKP

Y
), (33)

which implies that (because output grows at the same rate as the capital

stock), that G∗ is also growing at the rate γ, or equivalently that the ra-

tio G∗/Y is constant over time. This result also shows that the share of

output spent on infrastructure services is linearly related to the tax rate; if

β = 0, this expression becomes G∗/Y = τKP/Y , which indeed implies that

all revenues should be spent on infrastructure. In an overlapping-generations

model with no steady-state growth, a constant population, and no accumu-

lation of human capital, Heijdra and Meijdram (2002, p. 727) found that

the consumption-maximizing share of government spending on infrastruc-

ture, measured in proportion of output, is equivalent (in my notation) to

G∗/Y = α. This is exactly what Barro’s (1990) analysis would predict.

Turnovsky and Fisher (1995, p. 771) obtain a similar result in the context of

a representative-household model with otherwise similar features. Intuitively,

this rule amounts to setting the marginal physical product of infrastructure

services to its resource cost of unity, that is, dY/dG = α/(G∗/Y ) = 1.21 The

above formula can be seen as generalizing these results to the case where edu-

cated labor (or human capital) is also a reproducible factor and the economy

experiences positive steady-state growth, given that in the present framework

maximizing the growth rate or consumption of the household are equivalent.

In the present case, given that I∗E/Y = [β/(α+ β)](τKP/Y ), using (33),

dY

dG
= (α+ β)(

τKP

Y
)−1,

dY

dE
= β(

Y

E
) = (α+ β)(

IE
E
)(
τKP

Y
)−1.

21Put differently, in the Heijdra-Meijdram model, given that ∂Y/∂G = α(Y/G∗) =
α/(G∗/Y ), then G∗/Y = α is equivalent to ∂Y/∂G = 1.
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The form of these expressions depends on the fact that the tax is levied on

installed capital and that it is the stock of educated labor that enters in the

production function, not spending on education services per se. If the tax is

levied on output, and educated capital depreciates fully and instantaneously

(so that IE = E), the above results yield dY/dG = dY/dIE: the optimal

allocation rule requires setting spending shares so that the marginal physical

product of each component is the same.

Government resources could also be used for lump-sum transfers and for

services that may provide direct utility to households, as in Barro (1990),

Turnovsky and Fisher (1995), Baier and Glomm (2001), or Turnovsky (2004).

For instance, if utility-enhancing services were also provided by the gov-

ernment, the equality between the growth-maximizing and consumption-

maximizing shares would not hold. Alternatively, intuition would suggest

that the trade-off identified earlier regarding the impact of υ on the growth

rate would be significantly less acute if the increase in spending on infrastruc-

ture comes at the expense of a reduction not in education services, but rather

lump-sum transfers. As shown in Appendix B, this is not correct with a

balanced-budget rule. If spending on both infrastructure and education ser-

vices are fixed as a fraction of total resources, and transfers are determined

as a residual to balance the budget and rebated in lump-sum fashion to the

household, the “transfer rate” essentially acts as a reduction in the “effective”

tax rate on private capital. Consequently, a rise in the share of spending on

infrastructure would occur at the expense of transfers and would increase the

effective tax rate, thereby reducing the rate of physical capital accumulation.

If this effect is large, a rise in υ could be counter-productive, in the sense

that it would lower the steady-state growth rate.22 In general, both ẽ and

22In an open economy, this adverse effect would disappear if the rise in υ is accompanied
not by an offsetting change in other components of public expenditure but is instead
financed by an increase in foreign aid (that is, a “pure” transfer from abroad, a very
relevant scenario for low-income countries). An increase in υ would then unambiguously
increase the long-run growth rate.
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c̃ respond ambiguously to an increase in υ (whereas in the previous case ẽ

fell).

In general, as shown in Appendix B, explicit expressions for the optimal

spending shares in infrastructure, υ∗, and education services, υ∗E, are rather

complicated when these shares are chosen independently of each other, and

an interior solution is not guaranteed.23 However, if both rates are chosen

simultaneously, it can be established that the ratio of optimal shares, υ∗/υ∗E,

is given by
υ∗

υ∗E
=

α

β
, (34)

which is simply formula (32) if υ∗E = 1− υ∗ is imposed (see Appendix B).

6 Congestion Costs

To introduce congestion costs in the present setting, I assume that govern-

ment spending on education, IE, is less productive the higher the number of

individuals in the raw labor force seeking to acquire skills. For instance, if

IE represents spending on books used in the classroom, a greater number of

students means that books must be shared, thereby making learning more

laborious. Equation (7) is then replaced by

N = A[(
IE
Lφ
)ωE1−ω]ηL1−η = A(

IE
E
)ωηE

η

L1−η−φωη, (35)

where φ ∈ (0, 1) measures the degree of congestion. Thus, an increase in
the economy’s stock of raw labor seeking an education reduces the efficiency

of the education system and lowers the flow supply of educated labor if

1− η−φωη < 0, that is, φ > (1− η)/ωη. If φ = 1, then it is the provision of

education services per school attendant, IE/L, which determines the quantity

of educated labor produced at any moment in time, as in Beauchemin (2001,

23One result that comes out clearly is that if the solution is feasible, both shares are
positively related to the elasticity of output to private capital, 1− α− β.
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p. 294) for instance. In the logic of Tamura (2001), IE/L can then also be

interpreted as an indicator of the quality of schooling.

To focus attention on the issue at hand (the impact of congestion costs on

the optimal allocation rule), and to simplify algebraic results, I assume that

η = 1, so that raw labor is not used directly in the production of educated

labor, and that δE = 0, so that Ė = N . Thus, equation (35) yields

Ė

E
= A(

IE
E
)ωL−θ, (36)

where θ = φω. Thus, an increase in L unambiguously lowers the growth rate

of the stock of educated labor.

Note that the above specification is equivalent to one where congestion is

taken to affect the overall efficiency of the education system, if efficiency is

measured by AL−θ, or one in which it is the ratio of educated labor to raw

labor (as a proxy for the teacher-student ratio, or the quality of teaching)

that matters; in the latter case, equation (35), with η = 1, would be replaced

by N = AIωE(E/L
φ)1−ω, and the coefficient θ in (36) would be equal to

−φ(1− ω).

Suppose also that now the number of uneducated individuals seeking

to acquire skills depends positively on the wage paid to educated labor.24

Implicitly, therefore, the pay-off to remaining uneducated is zero (or, more

generally, constant). In the present setting, with continuous clearing of the

labor market, this wage is equal to the marginal product of educated labor,

which from (1) is given by βGαEβ−1K1−α−β
P .25 Thus,

L = Γ

∙
β(

G

KP
)α(

KP

E
)1−β

¸
, (37)

24In principle, of course, it is the discounted present value of all future wages that
should affect schooling decisions. However, this would complicate quite significantly the
model and make the derivation of explicitly analytical solutions very difficult. Despite its
relatively ad hoc nature, the specification chosen here is sufficient to illustrate the impact
of congestion in education on the optimal share of spending on infrastructure.
25Given the Cobb-Douglas production technology, results similar to those derived below

would obtain if the supply of individuals seeking an education were to depend on average
income per educated worker, Y/E.
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where, in general, Γ0 > 0 and Γ00 < 0. The raw labor supply decision (or,

more precisely, the supply of raw labor seeking to acquire skills through

public schools) is thus assumed to be separable from consumption decisions.26

Taking a linear approximation to Γ, and noting that G/KP = υτ , yields

L = βΓ0(τυ)αe−(1−β). (38)

Substituting (38) in (36) yields

Ė

E
= A[βΓ0(τυ)α]−θ[(

IE
KP

)(
KP

E
)]ωeθ(1−β),

which, using (11), can be rearranged to give

Ė

E
=

A[τ(1− υ)]ω

[βΓ0(τυ)α]θ
e−[ω−θ(1−β)]. (39)

Equations (12), (13), and (39) represent now the dynamic system driving

the economy. Stability of the BGE and the transitional dynamics depend on

the sign of ω− θ(1− β), which affects the sign of a22 in the Jacobian matrix

of the dynamic system (24):

a22 = −[ω − θ(1− β)]
A[(1− υ)τ ]ω

[βΓ0(υτ)α]θ
ẽ−[ω−θ(1−β)] − β(τυ)αẽβ.

If θ < ω/(1− β), then a22 < 0, and the condition for saddlepath stability

is the same as given before. Given the definition of θ, this condition implies

that φ(1− β) < 1, which is always satisfied.

Given (39), equation (23) is now replaced by

γ =
A[(1− υ)τ ]ω

[βΓ0(υτ)α]θ
ẽ−[ω−θ(1−β)], ω − θ(1− β) > 0,

26More formally, raw labor supply could be assumed to enter separately in the instanta-
neous utility function, as for instance in Greiner (1999) or Palivos, Yip, and Zhang (2003),
and solved for as part of the household’s optimization problem. Given that this does not
add much insight to the issue at hand, I restrict the discussion to specification (37).
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from which it can be established, given that (31) continues to hold, that

υ∗ =
α(ω − θ)

α(ω − θ) + ωβ
=

α(1− φ)

α(1− φ) + β
. (40)

This formula is simply (32) if φ = 0. It implies that the higher the de-

gree of congestion in education, the lower the optimal share of government

spending on infrastructure services (dυ∗/dφ < 0). The reason is as follows.

An increase in υ, by raising the marginal product of educated labor, brings

more students into public schools. Increased congestion tends to lower the

supply of educated labor and thus the educated labor-capital ratio, which

further increases the supply of raw labor (as a result of decreasing marginal

returns to educated labor in production). The optimal policy, in response

to higher congestion effects, is to increase spending on education (or, equiv-

alently, reduce spending on infrastructure services), in order to offset this

adverse effect on growth. With full or “proportional” congestion, that is,

with φ = 1, the optimal share of spending on infrastructure is zero. For

instance, with α = 0.15, β = 0.45 (as in Agénor (2005b), for instance) the

optimal share of spending on infrastructure is 25 percent of tax revenues with

φ = 0, but only 14 percent with φ = 0.5.

These results continue to hold with independent shares and lump-sum

transfers; as shown in Appendix B, the ratio of optimal shares is then given

by, instead of (34),
υ∗

υ∗E
=

α(1− φ)

β[1− φ(1− β)]
, (41)

which is equal to (34), that is, α/β, if φ = 0. It can also be verified from this

result that d(υ∗/υ∗E)/dφ < 0.

As one would expect, both results depend crucially on the way the inflow

of raw labor into public schools is modeled. Suppose, for instance, that the

smaller the average quantity of physical capital that educated individuals

have access to, the lower the incentive to acquire skills. Unlike the specifica-

tion in (38), the supply of individuals seeking an education would be positively
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related to the ratio of educated labor to physical capital, e, perhaps because

these individuals value the fact that the use of machines increases learning

opportunities (as in Kosempel (2004)) and improves their productivity. This

assumption can be captured in a simple (albeit ad hoc) manner by setting

L = eκ, with κ > 0. As a result, and using (36), equation (39) is replaced by

Ė

E
= A[(1− υ)τ ]ωe−(ω+κθ).

Following the same reasoning as before, it can now be shown that

υ∗ =
α(1 + κφ)

α(1 + κφ) + β
. (42)

This result is identical to (32) if either κ = 0 or φ = 0. But now an in-

crease in congestion costs raises the optimal share of spending on infrastruc-

ture services (dυ∗/dφ > 0). The reason why the adverse effect of a rise in φ

on the steady-state growth rate can be mitigated by a higher υ is because

an increase in υ lowers the (steady-state) educated labor-capital ratio, as es-

tablished earlier, it now reduces the number of individuals seeking to acquire

skills. The adverse effect of a greater degree of congestion in public schools

on growth can therefore be offset by spending less on education and more on

infrastructure.

7 Concluding Remarks

This paper studied the determination of the optimal allocation of public

resources between infrastructure and education services. The analysis was

based on an endogenous growth model in which raw labor must be edu-

cated to become productive and government spending is financed by a tax

on installed capital. Unlike Lucas-type models, where private agents decide

how much to invest in the acquisition of skills, education is mandatory, and

the schooling technology involves government provision of education services.

The balanced growth equilibrium is derived, and the transitional dynamics
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associated with an increase in the share of public spending on infrastructure

services are characterized. Long-run growth is shown to be driven by tax-

financed public spending on education and infrastructure services. Besides

the growth effect, the allocation of public expenditure affects the equilibrium

path along which the economy converges to the balanced growth equilibrium

path. The growth-maximizing share is shown to depend on the parameters

characterizing the production technology.

The model is then extended to account for independent spending shares

and lump-sum transfers, and congestion costs in education. The growth-

maximizing share of public spending on infrastructure is shown to depend

also on the education technology. Depending on what determines the supply

of raw labor, the growth-maximizing share of government spending on in-

frastructure services was shown to depend either positively or negatively on

the degree of congestion in education. In particular, even if the number of

pupils has only negative effects on the rate of human capital accumulation,

this does not imply that spending on education (infrastructure) should be

reduced (increased) in response to an increase in the degree of congestion in

schooling; on the contrary, if the decision to acquire skills is a function of

the current wage (viewed perhaps as a proxy for future wages), the optimal

response is a reduction in the share of spending on infrastructure.

The model developed in this paper can be extended in a variety of di-

rections. One extension would be to account for private education (and

subsidies to private schools), in addition to public education. This would

allow an analysis of the growth and distributional effects of the two regimes,

as in Zhang (1996), Glomm and Ravikumar (1992, 2003), and Glomm and

Kaganovich (2003), in the presence of trade-offs between public education

and infrastructure spending. A second extension would be to model con-

gestion effects associated with public infrastructure and the stock of private

capital. This would change the growth-maximizing rule (as well as the opti-

mal rate of subsidies to private investment, for instance), which would then
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depend on the relative magnitude of congestion effects. A third extension

would be to consider other forms of distortionary taxation, such as taxes

on consumption, wages, or capital income, as for instance in Glomm and

Ravikumar (1998), Turnovsky (2000, 2004) and Rivas (2003). With endoge-

nous supply of (raw) labor, a tax on wages would also affect private decisions

between labor and leisure, and the rate of growth. Blankenau and Simpson’s

(2004) analysis illustrates the importance of considering alternative meth-

ods of financing when evaluating the growth effects of increased spending

on public education. A tax on the returns from private capital would affect

decisions between consumption and investment, but both taxes are likely to

have ambiguous effects on growth, because their adverse effect on private

investment and labor supply may be offset by an increase in the stock of

public capital.

Finally, it would be important to account for the fact that the provision

of public services is related to the stock of capital, not the flow of spend-

ing. In a companion paper (see Agénor ((2005b)), I consider the case where

public capital in infrastructure enters the production function of the econ-

omy. This is in line with Futagami, Morita, and Shibata (1993), and Fisher

and Turnovsky (1998), who extended Barro’s (1990) “flow” model. However,

the resulting model is highly nonlinear and its transitional dynamics can be

analyzed only through numerical methods.
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Appendix A
Proportional Tax on Output

With a proportional tax on output, the household’s budget constraint
(equation (2)) becomes

C + K̇P = (1− τ)Y, (A1)

and optimization leads to, instead of (6)),

Ċ

C
= (1− α− β)(1− τ)(

G

KP
)α(

E

KP
)β − ρ. (A2)

The government budget, equation (10), becomes IE +G = τY , and

G = υτY = υτ(
G

KP
)α(

E

KP
)βKP , IE = (1− υ)τ(

G

KP
)α(

E

KP
)βKP . (A3)

From (A1),

K̇P = (1− τ)(
G

KP
)α(

E

KP
)βKP − C,

whereas, given (A3),
G

KP
= τυ(

G

KP
)α(

E

KP
)β,

or equivalently,
G

KP
= (τυ)1/(1−α)(

E

KP
)β/(1−α). (A4)

Thus,
K̇P

KP
= (1− τ)(τυ)α/(1−α)(

E

KP
)β+[αβ/(1−α)] − C

KP
,

or, given that β + [αβ/(1− α)] = (β − αβ + αβ)/(1− α) = β/(1− α),

K̇P

KP
= (1− τ)(τυ)α/(1−α)eβ/(1−α) − c. (A5)

Similarly, using (A4), equation (A2) can be rewritten as

Ċ

C
= (1− α− β)(1− τ)(τυ)α/(1−α)eβ/(1−α) − ρ. (A6)
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Using equation (9) with δE = 0 gives

Ė

E
= B[(

IE
KP

)(
KP

E
)]ωη.

From (A3) and (A4),

IE
KP

= τ(1− υ)(τυ)α/(1−α)(
E

KP
)β/(1−α).

Substituting this result in the previous equation gives

Ė

E
= B[τ(1− υ)(τυ)α/(1−α)]ωη(

E

KP
)[−1+β/(1−α)]ωη,

so that
Ė

E
= B[τ(1− υ)(τυ)α/(1−α)]ωηe−χ, (A7)

where χ ≡ (1− α− β)ωη/(1− α) > 0.
Combining equations (A5), (A6), and (A7) yields

ċ

c
= −(α+ β)(1− τ)(τυ)α/(1−α)eβ/(1−α) − ρ+ c, (A8)

ė

e
= Ψe−χ − (1− τ)(τυ)α/(1−α)eβ/(1−α) + c. (A9)

where
Ψ ≡ B[τ(1− υ)(τυ)α/(1−α)]ωη.

The growth rate and the steady-state values of c and e are now determined
by

γ = (1− α− β)(1− τ)(τυ)α/(1−α)ẽβ/(1−α) − ρ, (A10)

c̃ = ρ+ (α+ β)(1− τ)(τυ)α/(1−α)ẽβ/(1−α), (A11)

Q(ẽ; υ) = 0, (A12)

from which it can be shown again that ∂ẽ/∂υ < 0. The linearized dynamic
system is now given as in (24), with coefficients aij now given by

a11 = c̃, a21 = ẽ,

a12 = −
c̃β

1− α
(α+ β)(1− τ)(τυ)α/(1−α)ẽβ/(1−α)−1 < 0,
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a22 = −χΨẽ−χ −
β(1− τ)

1− α
(τυ)α/(1−α)ẽβ/(1−α) < 0,

from which it can be established that ∆ = a11a22 − a12a21 < 0. Thus, the
BGE is also a saddlepoint. The phase diagram has the same qualitative
features as those shown in Figure 1.
Using (A10), the impact of an increase in υ on the growth rate is now

dγ

dυ
= (1− α− β)(1− τ)(τυ)α/(1−α)ẽβ/(1−α)[

α

1− α
υ−1 +

β

1− α
ẽ−1(

∂ẽ

∂υ
)].

Thus, the growth-maximizing share is the solution of

α

1− α
+

β

1− α
(
υ

ẽ
)(
∂ẽ

∂υ
) = 0,

that is, υ∗ is such that
εẽ/υ =

α

β
, (A13)

which is identical to (31).
Using (A7), the equivalent form of the growth rate is given by, instead of

(23):
γ = B[τ(1− υ)(τυ)α/(1−α)]ωηẽ−χ, (A14)

which implies that

dγ

dυ
= Ψ[−ωη(1− υ)−1 +

αωη

1− α
υ−1 − χẽ−1(

∂ẽ

∂υ
)].

Thus, the growth-maximizing share is the solution of

−( ωη

1− υ
) +

αωη

υ(1− α)
− χẽ−1(

∂ẽ

∂υ
) = 0,

which gives, using the definition in (28),

υ∗

1− υ∗
=

α

1− α
+

χ

ωη
εẽ/υ.

From the definition of χ, χ/ωη ≡ (1−α−β)/(1−α). Thus, using (A13),
the above result becomes

υ∗

1− υ∗
=

α+ (1− α− β)α/β

1− α
.
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This expression can be rewritten as

υ∗

1− υ∗
=

α(1− α)

β(1− α)
=

α

β
,

or equivalently
υ∗ =

α

α+ β
, (A15)

which is identical to (32).
Note also that if β = 0, υ = 1, from (A6) the growth rate is

γ = (1− α)(1− τ)τα/(1−α) − ρ.

Setting

dγ

dτ
= (1− α)[−τα/(1−α) + α(1− τ)

1− α
τα/(1−α)−1] = 0, (A16)

it can be established that the optimal value of τ is

τ∗ = α, (A17)

as in Barro’s (1990) model. However, in the general case where β > 0,
maximizing growth with respect to the tax rate is not equivalent to maxi-
mizing with respect to υ. To find the optimal tax rate, note that solving for
dγ/dτ = 0 in (A10) yields

α

1− α
+

βεẽ/υ
1− α

− τ

1− τ
= 0,

whereas from (A14), setting dγ/dτ = 0 yields

εẽ/υ = 1/(1− α− β).

Substituting this result in the previous expression yields

τ ∗ = α+ β,

which is independent of υ.
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Appendix B
Independent Shares and Lump-sum Transfers

Suppose that the household receives lump-sum transfers, T , from the
government. Its budget constraint, equation (2), becomes

C + K̇P = Y − τKP + T, (B1)

whereas the government budget constraint, equation (10), becomes

IE +G+ T = τKP . (B2)

Suppose again that G = υτKP , but that the shares of spending on in-
frastructure and education are set independently of each other by the gov-
ernment, so that IE = υEτKP , with υ, υE ∈ (0, 1). Thus, G/IE = υ/υE, and
changes in υ and υE can be analyzed separately.
By implication,

T = (1− υ − υE)τKP = qτKP . (B3)

Substituting this result in (B1) yields

K̇P = Y − C − (1− q)τKP ,

where 1− q ≡ υ + υE ∈ (0, 1). Thus, the case considered in the text corre-
sponds to q = 0 and υE = 1− υ.
Assuming that transfers are taken as given by the household when solving

its optimization problem, the dynamics of consumption are given by, instead
of (6),

Ċ

C
= (1− α− β)(

G

KP
)α(

E

KP
)β − (1− q)τ − ρ. (B4)

Equations (12), (13), and (15) become, with δE = 0 for simplicity,

K̇P

KP
= (τυ)αeβ − (1− q)τ − c, (B5)

Ċ

C
= (1− α− β)(τυ)αeβ − (1− q)τ − ρ, (B6)

Ė

E
= B(τυE)

ωηe−ωη, (B7)
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which can be combined to give, instead of (16) and (17),

ċ

c
= −(α+ β)(τυ)αeβ − ρ+ c, (B8)

ė

e
= B(τυE)

ωηe−ωη − (τυ)αeβ + (1− q)τ + c, (B9)

The BGE is again a saddlepoint and, from the implicit function cor-
responding to (20), Q(ẽ; υ, υE) = 0, it can be shown that the uniqueness
condition is ρ+ (1− q)τ > 0, which always holds. This condition is similar
to the one obtained earlier with δE = 0 (that is, ρ + τ > 0). It can also be
established, using the implicit function theorem, that ∂ẽ/∂υ is ambiguous in
sign, despite the fact that υ has no effect on the accumulation of educated
labor (as implied by (B7)). The reason is that a rise in υ has two offsetting
effects on the rate of accumulation of private capital and consumption. On
the one hand, it tends to raise them, because of the productivity and output
effects. On the other, it tends to reduce them, because it reduces transfers.
These two effects can be seen directly in (B5) and (B6), given that q depends
on υ. If the initial tax rate is small enough, the former will dominate the
latter, and the net effect will be an increase in the private capital stock and
consumption, so that ∂ẽ/∂υ < 0, as before. Using again the implicit function
theorem, it can be shown that ∂ẽ/∂υE > 0.
From (B6), the growth-maximizing value of υ is now given by

dγ

dυ
= (1− α− β)(τυ)αẽβ[αυ−1 + βẽ−1(

∂ẽ

∂υ
)]− τ = 0.

Noting that αυ−1 + βẽ−1(dẽ/dυ) = υ−1(α − βεẽ/υ), this expression can
be rewritten as

dγ

dυ
= (1− α− β)(τυ)α−1ẽβ(α− βεẽ/υ) = 1, (B10)

which yields

υ∗ = min

(
τ−1

∙
(1− α− β)(α− βεẽ/υ)

ẽ−β

¸1/(1−α)
, 1

)
. (B11)

This expression shows that the higher τ is, the lower υ∗ will be. The
reason is that the effect of the “transfer” rate on capital accumulation and
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consumption growth is proportional to τ . A higher υ means a lower q, which
tends to reduce K̇P/KP and Ċ/C if τ > 0. The higher τ is, the greater the
magnitude of this effect.
Note that, when β = 0, this expression becomes

υ∗ = min
©
τ−1[α(1− α)]1/(1−α), 1

ª
, (B12)

and that from (1), ỹ = Ỹ /K̃P = (τυ)
αẽβ, which implies that (B10) can be

rewritten as
(1− α− β)

ỹ

τυ∗
(α− βεẽ/υ) = 1.

Given that υ∗ = G∗/τK̃P , the above expression is equivalent to, in terms
of the ratio of the optimal spending level to output,

υ∗/ỹ = G∗/Ỹ = (1− α− β)(α− βεẽ/υ).

From (B6), the optimal share of spending on education is given by

dγ

dυE
= β(1− α− β)(τυ)αẽβ−1(

∂ẽ

∂υE
)− τ = 0,

which yields

dγ

dυE
= β(1− α− β)(τυ)α−1ẽβ(

υ

υE
)εẽ/υE = 1,

and

υ∗E = min

½
β(1− α− β)υεẽ/υE

(τυ)1−αẽ−β
, 1

¾
, (B13)

with υ∗E = 0 if β = 0. With an interior solution, υ
∗
E is a concave function of

υ, given that it depends on υα. It is also negatively related to τ .
Alternatively, using (B7),

dγ

dυE
= ωηA(τυE)

ωηẽ−ωη[υ−1E − ẽ−1(
∂ẽ

∂υE
)],

which implies that υ−1E − ẽ−1(∂ẽ/∂υE) = 0, or that εẽ/υE = 1. Then εẽ/υ =
εẽ/υEευE/υ = ευE/υ. Because the shares are independent, ευE/υ = 0, so εẽ/υ =
0.27 Thus, assuming an interior solution, equations (B11) and (B13) become:

υ∗ = τ−1
∙
α(1− α− β)

ẽ−β

¸1/(1−α)
, (B14)

27Note that the result εẽ/υ = ∂ẽ/∂υ = 0 follows directly from (B7), which implies
γ = A(τυE)

ωη ẽ−ωη, by setting ∂γ/∂υ = 0.

39



υ∗E =
β(1− α− β)υ

(τυ)1−αẽ−β
. (B15)

If both shares are set optimally at the same time, the second equation
can be rewritten as

υ∗

υ∗E
=
(τυ∗)1−αẽ−β

β(1− α− β)
,

whereas the first implies that

(τυ∗)1−α =
α(1− α− β)

ẽ−β
.

Combining these expressions yields υ∗/υ∗E = α/β, which is expression
(34) in the text.
With congestion costs as in (35) and raw labor supply as in (37), equation

(B7) is replaced by

Ė

E
= A(τυE)

ωη[βL0(τυ)α]−θe−[ωη−θ(1−β)],

from which it can be established that, instead of (B11),

υ∗ = min

(
τ−1

∙
α(1− α− β)(1− η − θ)

[1− η − θ(1− β)]ẽ−β

¸1/(1−α)
, 1

)
. (B16)

It can be verified that if υ∗ is an interior solution, then dυ∗/dφ < 0, for
the reasons discussed in the text. The solution for υ∗E is the same as before
(equation (B15), so the composition of spending, given that both shares are
chosen optimally, is given by

υ∗

υ∗E
=

α(ωη − θ)

β[ωη − θ(1− β)]
, (B17)

which is equal to (34), that is, α/β, if θ = 0. It can be verified from this
result that d(υ∗/υ∗E)/dφ < 0. Setting η = 1 in (B17), and noting that θ = ωφ,
yields (41).
Finally, from (B6), the growth-maximizing tax rate is determined by

∂γ

∂τ
= α(1− α− β)(τυ)αẽβ[ατ−1 + βẽ−1(

∂ẽ

∂τ
)]− (1− q) = 0.
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Noting that ατ−1+βẽ−1(∂ẽ/∂τ) = τ−1(α−βεẽ/τ ), this expression yields

α(1− α− β)(τυ)αẽβτ−1(α− βεẽ/τ) = 1− q,

which can be rewritten as

τ ∗ =

∙
α(1− α− β)υα(α− βεẽ/τ)

(1− q)ẽ−β

¸1/(1−α)
, (B18)

From (B7), the growth-maximizing tax rate is also given by

A(1− η)(τυE)
1−ηe−(1−η)[τ−1 − ẽ−1(

∂ẽ

∂τ
)] = 0,

which implies that τ−1 − ẽ−1(∂ẽ/∂τ) = 0, or that εẽ/τ = −1. (B18) then
becomes

τ ∗ = min

(∙
α(1− α− β)υα(α+ β)

(1− q)ẽ−β

¸1/(1−α)
, 1

)
. (B19)

Using equations (22) and (23) in the text, and following the same reason-
ing as above, it can be shown that the optimal tax rate is

τ ∗ = min

½
[
(1− α− β)υα(α+ β)

ẽ−β
]1/(1−α), 1

¾
. (B20)

which is identical to (B19) if υE = 1 − υ, because then q = 0. Note that
setting β = 0 and υ = 1 in (B20) yields

τ ∗ = [α(1− α)]1/(1−α).
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Figure 1
The Steady-Growth Equilibrium
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