Publications of Oliver Dorn (in chronological order)


86
G. Incorvaia and O. Dorn.
A deep-learning classifier for object tracking from through-the-wall radar data.
In 2021 15th European Conference on Antennas and Propagation (EuCAP), pages 1-5, 2021.
submitted.

85
Oliver Dorn and Yifan Wu.
Shape reconstruction in seismic full waveform inversion using a level set approach and time reversal.
Journal of Computational Physics, 425, 2021.
to appear.

84
Gabriele Incorvaia and Oliver Dorn.
Stochastic optimization methods for parametric level set reconstructions in 2d through-the-wall radar imaging.
Electronics, 9(2055), 2020.
http://dx.doi.org/10.3390/electronics9122055

83
A. J. Hiles and O. Dorn.
Colour level set regularization for the electromagnetic imaging of highly discontinuous parameters in 3d*.
Inverse Problems in Science and Engineering, 0(0):1-36, 2020.81 link

82
G. Incorvaia and O. Dorn.
Tracking targets from indirect through-the-wall radar observations.
In 2020 14th European Conference on Antennas and Propagation (EuCAP), pages 1-5, 2020. link


80
A. Hiles and O. Dorn.
Sparsity and level set regularization for near-field electromagnetic imaging in 3d.
Inverse Problems, 36, 2, 2020.
https://doi.org/10.1088/1361-6420/ab44ed
79
G. Incorvaia and O. Dorn.
2d through-the-wall radar imaging using a level set approach.
IEEE Xplore, 2019.
Extended paper for PIERS 2019 conference, to appear in IEEE Xplore, Awarded 3rd Prize in Best Student Paper Competition http://piers.org/piers/BSTAward_19Rome.php.

78
Rossmary Villegas, Clement Etienam, Oliver Dorn, and Masoud Babaei.
Shape and distributed parameter estimation for history matching using a modified ensemble kalman filter and level sets.
Inverse Problems in Science and Engineering, 28(2):175-195, 2020.
DOI https://doi.org/10.1080/17415977.2019.1583751.

77
Y. Wu and O. Dorn.
A level set method for shape reconstruction in seismic full waveform inversion using a linear elastic model in 2d.
Journal of Physics Conference Series, 1131:012001, 2018.
DOI https://doi.org/10.1088/1742-6596/1131/1/012001, https://iopscience.iop.org/article/10.1088/1742-6596/1131/1/012001.

76
Etienam C., Velasquez R.V., and Dorn O.
Sparse multiple data assimilation with k-svd for the history matching of reservoirs.
In Simon P. Faragó I., Izsák F., editor, Progress in Industrial Mathematics at ECMI 2018, volume 30 of Mathematics in Industry. Springer, 2019.
https://doi.org/10.1007/978-3-030-27550-1_72.

75
O. Dorn.
Distributed parameter estimation for the time-dependent radiative transfer equation.
In H. Antil, D Kouri, M Lacasse, and D Ridzal, editors, Frontiers in PDE constrained Optimization, volume 163 of IMA Volumes in Mathematics and its Applications, pages 341-375. Springer, 2018.
DOI: 10.1007/978-1-4939-8636-1_10
This is an invited topical review/survey paper.

74
O. Dorn and A. Hiles.
A level set method for magnetic induction tomography of boxes in 3d.
In D. Lesselier et al., editor, Proceedings XXII International Workshop on Electromagnetic Nondestructive Evaluation (ENDE2017) Saclay, France, September 2017, Electromagnetic Nondestructive Evaluation - volume XXI. IOS Press, 2018.
http://ebooks.iospress.nl/volumearticle/49010, DOI: 10.3233/978-1-61499-836-5-33.

73
K. Prieto and O. Dorn.
Sparsity and level set regularization for diffuse optical tomography using a transport model in 2d.
Inverse Problems, 33(1):014001, 2017.
DOI: 10.1088/0266-5611/33/1/014001, This paper has been included in the journal's Highlights collection for 2017.

72
O. Dorn and D. Lesselier.
Level set methods for structural inversion and image reconstruction, chapter 11, pages 471-532.
Springer, 2nd edition, 2015.
DOI: https://doi.org/10.1007/978-1-4939-0790-8_11 , This is an invited topical review/survey paper.

71
O. Dorn and K. Prieto.
From data to images: A shape based approach for fluorescence tomography.
In Science: Image in Action: Proceedings of the 7th International Workshop on Data Analysis in Astronomy., pages 255-266, 2012.
DOI: 10.1142/9789814383295_0022, Part of: https://www.worldscientific.com/worldscibooks/10.1142/8350.

70
O. Dorn and D. Lesselier.
Level set methods for structural inversion and image reconstruction.
In Scherzer O., editor, Handbook of Mathematical Methods in Imaging, pages 385-444. Springer-Verlag, New York, 1st edition, 2011.
DOI: https://doi.org/10.1007/978-1-4939-0790-8_11.

69
N. Irishina, D. Alvarez, O. Dorn, and M. Moscoso.
Structural level set inversion for microwave breast screening.
Inverse Problems, 26:035015, 2010.
DOI: 10.1088/0266-5611/26/3/035015.

68
R. Villegas and O. Dorn.
Monitoring 3d reservoirs from csem data using a level set technique.
In Proceedings ECMOR XII, 2010.
DOI: 10.3997/2214-4609.20144973, http://earthdoc.eage.org/publication/publicationdetails/?publication=41292.

67
O. Dorn and B. Lionheart.
Introduction to the conference proceeding of the workshop on electromagnetic inverse problems, the university of manchester, uk, 15–18 june, 2009.
Journal of Physics: Conference Series, 255(1), 2010.
https://iopscience.iop.org/article/10.1088/1742-6596/255/1/011001.

66
M. Schweiger, O. Dorn, A. Zacharopoulos, I Nissiä, and S.A. Arridge.
3d level set reconstruction of model and experimental data in diffuse optical tomography.
Optics Express, 18:150-164, 2010.
https://doi.org/10.1364/OE.18.000150.

65
R.R. Hayes, P.A. Newill, F.J.W. Podd, T.A. York, B.D. Grieve, and O. Dorn.
An investigation into the use of a mixture model for simulating the electrical properties of soil with varying effective saturation levels for sub-soil imaging using ect.
Journal of Physics: Conference Series, 255(1), 2010.
DOI: 10.1088/1742-6596/255/1/012002, https://iopscience.iop.org/article/10.1088/1742-6596/255/1/012002.

64
M. El-Shenawee, M. Moscoso, and O. Dorn.
An adjoint-field technique for shape reconstruction of 3-d penetrable object immersed in lossy medium.
IEEE Transactions on Antennas and Propagation, 57, 2009.
DOI: 10.1109/TAP.2008.2011195.

63
N. Irishina, D. Álvarez, O. Dorn, and M. Moscoso.
Detecting and imaging dielectric objects from real data: A shape-based approach.
Mathematical and Computer Modelling, 50:743-749, 2009.
https://doi.org/10.1016/j.mcm.2009.05.003.

62
J.F.P.J Abascal, M. Lambert, D. Lesselier, and O. Dorn.
Nonlinearized mapping of volumetric defects affecting a metal tube.
In Electromagnetic Nondestructive Evaluation (XII), Chapter: Studies in Applied Electromagnetics and Mechanic, volume 32, pages 172-179, 2008.
DOI:10.3233/978-1-60750-023-0-172.

61
O. Dorn and D. Lesselier.
Level set methods for inverse scattering - some recent developments.
Inverse Problems, 25:125001, 2009.
DOI: https://doi.org/10.1088/0266-5611/25/12/125001 This is an invited topical review/survey paper.

60
D. Alvarez, O. Dorn, N. Irishina, and M. Moscoso.
Crack reconstruction using a level-set strategy.
J. Comput. Phys., 228(16):5710-5721, 2009.
DOI: 10.1016/j.jcp.2009.04.038.

59
O. Dorn.
Numerical Methods in Multidimensional Radiative Transfer, chapter Shape Reconstruction for an Inverse Radiative Transfer Problem Arising in Medical Imaging, pages 299-309.
Springer Berlin Heidelberg, 2009.
Part of DOI: 10.1007/978-3-540-85369-5_17.

58
N. Irishina, O. Dorn, and M. Moscoso.
Microwave imaging for early breast cancer detection using a shape-based strategy.
IEEE Transactions on Biomedical Engineering, 56(4):1143-1153, 2009.
DOI: 10.1109/TBME.2009.2012398.

57
A. Borsic, M. Soleimani, O. Dorn, R. Halter, A. Hartov, and K.D. Paulson.
Breast imaging with electrical impedance tomography: a comparison of traditional quadratic regularization, total variation regularization and level set method on in vivo data.
In Proceedings `Workshop on Electromagnetic Inverse Problems', June 16-19, 2009, Manchester, UK, 2009.
https://pdfs.semanticscholar.org/7433/ee539c334019b1161048ad5c35434ba0610d.pdf.

56
S. Arridge, O. Dorn, V. Kolehmainen, M. Schweiger, and A. Zacharopoulos.
Parameter and structure reconstruction in optical tomography.
Journal of Physics: Conference Series, 135(1), 2008.
DOI: 10.1088/1742-6596/135/1/012001.

55
M. Schweiger, O. Dorn, and S.R. Arridge.
3-d shape and contrast reconstruction in optical tomography with level sets.
Journal of Physics: Conf. Series, 124(1), 2008.
DOI: 10.1088/1742-6596/124/1/012043.

54
J.F.P.J. Abascal, M. Lambert, D. Lesselier, and O. Dorn.
3-d eddy-current imaging of metal tubes by gradient-based, controlled evolution of level sets.
IEEE Trans. Magnetics, 44(12):4721-4729, 2008.
DOI: 10.1109/TMAG.2008.2004265.

53
O. Dorn and R. Villegas.
History matching of petroleum reservoirs using a level set technique.
Inverse Problems, 24:035015, 2008.
DOI: 10.1088/0266-5611/24/3/035015.

52
M. El-Shenawee, O. Dorn, and M. Moscoso.
An adjoint-field technique for shape reconstruction of 3-d penetrable object immersed in lossy medium.
IEEE Transactions on Antennas and Propagation, 57(2):520-534, 2008.
DOI: 10.1109/TAP.2008.2011195.

51
N. Irishina, M. Moscoso, and O. Dorn.
A level set evolution strategy in microwave imaging for early breast cancer detection.
Computers & Mathematics with Applications, 56(3):607-618, 2008.
DOI: 10.1016/j.camwa.2008.01.004.

50
R. Villegas, O. Dorn, M. Moscoso, and M. Kindelan.
Reservoir characterization using stochastic initializations and level sets.
Computers & Mathematics with Applications, 56(3):697-708, 2008.
DOI: 10.1016/j.camwa.2008.02.026.

49
O. Dorn, H. Bertete-Aguirre, and G.C. Papanicolaou.
Lecture notes in Mathematics, Vol 1943, chapter Adjoint fields and sensitivities for 3D electromagnetic imaging in isotropic and anisotropic media, pages 35-65.
Springer-Verlag, Berlin/Heidelberg, 2008.
DOI: 10.1007/978-3-540-78547-7_3.

48
O. Dorn.
Lecture notes in Mathematics, Vol 1943, chapter Time reversal and the adjoint imaging method with an application in telecommunication, pages 135-170.
Springer-Verlag, Berlin/Heidelberg, 2008.
DOI: 10.1007/978-3-540-78547-7_6.

47
O. Dorn, M. El-Shenawee, and M. Moscoso.
Proc. 14th European Conference on Mathematics for Industry (ECMI 2006), 10-14 July 2006, Leganes, Spain, chapter Iterative microwave inversion algorithm based on the adjoint-field method for breast cancer application, pages 587-591.
Springer Berlin Heidelberg, 2008.
DOI: 10.1007/978-3-540-71992-2_97.

46
N. Irishina, M. Moscoso, and O. Dorn.
Proc. 14th European Conference on Mathematics for Industry (ECMI 2006), 10-14 July 2006, Leganes, Spain, chapter Iterative microwave inversion for breast cancer detection using level sets, pages 592-596.
Springer Berlin Heidelberg, 2008.
DOI: 10.1007/978-3-540-71992-2_98.

45
R. Villegas, O. Dorn, M Moscoso, and M. Kindelan.
Proc. 14th European Conference on Mathematics for Industry (ECMI 2006),10-14 July 2006, Leganes, Spain, chapter Characterization of reservoirs by evolving level set functions obtained from geostatistics, pages 597-602.
Springer Berlin Heidelberg, 2008.
DOI: 10.1007/978-3-540-71992-2_99.

44
A. Zacharopoulos, O. Dorn, S.R. Arridge, V. Kolehmainen, and J. Sikora.
Proc. 14th European Conference on Mathematics for Industry (ECMI 2006),10-14 July 2006, Leganes, Spain, chapter Reconstruction of Simple Geometric Objects in 3D Optical Tomography Using an Adjoint Technique and a Boundary Element Method, pages 603-607.
Springer Berlin Heidelberg, 2008.
DOI: 10.1007/978-3-540-71992-2_100.

43
O. Dorn and D. Lesselier.
Level Set Techniques For Structural Inversion In Medical Imaging, pages 61-90.
Topics in Biomedical Engineering. International Book Series. Springer, 2007.
DOI: 10.1007/978-0-387-68413-0_3.

42
R. Villegas, O. Dorn, M. Moscoso, and M. Kindelan.
Shape reconstruction from two-phase incompressible flow data using level sets.
In X.C. Tai, K.A. Lie, T.F. Chan, and S. Osher, editors, Image Processing Based on Partial Differential Equations, Mathematics and Visualization, pages 381-401. Springer, 2007.
https://doi.org/10.1007/978-3-540-33267-1_21.

41
M. El-Shenawee, M. Moscoso, and O. Dorn.
On the stability of surface shape reconstruction using microwave algorithm for 3-d breast tumor based on the adjoint-fields scheme.
2007.
DOI: 10.1109/APS.2007.4395962, https://ieeexplore.ieee.org/document/4395962.

40
R. Villegas, O. Dorn, and M. Kindelan.
Imaging low sensitivity regions in petroleum reservoirs using topological perturbations and level sets.
Journal of Inverse and Ill-posed Problems, 15(2):199-223, 2007.
DOI: 10.1515/JIIP.2007.011.

39
O. Dorn and R. Villegas.
A level set method for 3d low frequency electromagnetic imaging with applications in geophysical prospecting.
PAMM Proc. in Appl. Math. and Mech., 7:2150023-2150024, 2007.
DOI: https://doi.org/10.1002/pamm.200700605.

38
D. Alvarez, O. Dorn, and M. Moscoso.
A new level set technique for the crack detection problem.
PAMM Proc. in Appl. Math. and Mech., 7:1081501-1081502, 2007.
DOI: https://doi.org/10.1002/pamm.200700355

37
R. Irishina, O. Dorn, and M. Moscoso.
Level set techniques for microwave medical imaging.
PAMM Proc. in Appl. Math. and Mech., 7:11151601-1151602, 2007.
DOI: https://doi.org/10.1002/pamm.200700053

36
N. Irishina, M. Moscoso, and O. Dorn.
Microwave tomography for breast cancer detection using level sets.
In Proc. 23rd International Review of Progress in Applied Computational Electromagnetics Conference ACES 2007, March 19-23, 2007, Verona, Italy, pages 1955-1960, 2007.
https://pdfs.semanticscholar.org/f9b2/43a2cfaa5a79e72cf9db1284326d5f612d15.pdf.

35
M. El-Shenawee, O. Dorn, and M. Moscoso.
Reconstruction of irregular shape of breast cancer tumor using the adjoint-field scheme in the microwave imaging algorithm.
In Proc. 23rd International Review of Progress in Applied Computational Electromagnetics Conference ACES 2007, March 19-23, 2007, Verona, Italy, pages 1288-1293, 2007.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.536.6899&rep=rep1&type=pdf.

34
D. Alvarez, O. Dorn, and M. Moscoso.
Crack detection using a level set technique and thin shapes.
In 23rd International Review of Progress in Applied Computational Electromagnetics Conference ACES 2007, March 19-23, 2007, Verona, Italy, pages 1283-1287, 2007.
https://www.researchgate.net/publication/228869667.

33
O. Dorn and U. Ascher.
Shape reconstruction in 3d electromagnetic induction tomography using a level set technique.
In Proc. 23rd International Review of Progress in Applied Computational Electromagnetics Conference ACES 2007, March 19-23, 2007, Verona, Italy, pages 695-700, 2007.
https://pdfs.semanticscholar.org/8d34/c9dd4f883caf04ec577de127c1bf2ed6a127.pdf.

32
S.R. Arridge, O. Dorn, J.P. Kaipio, V. Kolehmainen, M. Schweiger, T. Tarvainen, M Vauhkonen, and A. Zacharopoulos.
Reconstruction of subdomain boundaries of piecewise constant coefficients of the radiative transfer equation from optical tomography data.
Inverse Problems, 22(6), 2006.
DOI: 10.1088/0266-5611/22/6/016.

31
O. Dorn and R. Villegas.
Shape reconstruction and structural inversion for medical, geophysical and industrial tomography.
In Proc. Oberwolfach workshop on `Mathematical Methods in Tomography' (org. A. Louis, F. Natterer and E. T. Quinto), Report No. 34/2006, Mathematisches Forschungsinstitut Oberwolfach, Germany, pages 2108-2110, 2006.
https://www.researchgate.net/publication/265702977.

30
O. Dorn and D. Lesselier.
On the evolution of level sets and inverse scattering, and its extension to the recovery of thin shapes.
In Proc. Mediterranean Microwave Symposium, Sept 19-21, Genova, Italy, page (5 pages), 2006.

29
M. Schweiger, S. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen.
Reconstruction absorption and diffusion shape profiles in optical tomography using a level set technique.
Optics Letters, 31(4):471-473, 2006.
DOI: 10.1364/OL.31.000471.

28
M. Soleimani, O. Dorn, and W.R.B. Lionheart.
A narrowband level set method applied to eit in brain for cryosurgery monitoring.
IEEE Trans. Biom. Eng., 53(11):2257-2264, 2006.
DOI: 10.1109/TBME.2006.877112.

27
M. Soleimani, W.R.B. Lionheart, and O. Dorn.
Level set reconstruction of conductivity and permittivity from boundary electrical measurements using experimental data.
Inverse Problems in Science and Engineering, 14(3):193-210, 2006.
DOI: 10.1080/17415970500264152.

26
A. Zacharopoulos, S.R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora.
3d shape reconstruction in optical tomography using spherical harmonics and bem.
In Proceedings Progress in Electromagnetics Research Symposium PIERS, Cambridge, March 2006, pages 48-52, 2006.
http://piers.org/piersproceedings/piers2k6Proc.php.

25
A. Zacharopoulos, S.R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora.
3d shape reconstruction in optical tomography using spherical harmonics and bem.
Journal of Electromagnetic Waves and Applications, 20:1827-1836, 2006.
DOI: 10.1163/156939306779292165.

24
N. Irishina, M. Moscoso, and O. Dorn.
Detection of small tumors in microwave medical imaging using level sets and music.
In Proceedings Progress In Electromagnetics Research Symposium (PIERS), Cambridge, March 2006, pages 43-47, 2006.
https://www.researchgate.net/publication/245553982.

23
O. Dorn and D. Lesselier.
Topical review: Level set methods for inverse scattering.
Inverse Problems, 22:R67-R131, 2006.
DOI: 10.1088/0266-5611/22/4/R01, This paper has been included in the journal's Highlights Collection for the year 2006,
This paper is on the list of the `top 30 cited papers' of the journal Inverse Problems https://iopscience.iop.org/journal/0266-5611/page/top-30-cited, This is an invited topical review/survey paper.

22
O. Dorn.
Time reversal and the adjoint imaging method with an application in underwater communication.
The Journal of the Acoustical Society of America, 119(5):3246, 2006.
DOI: 10.1121/1.4786042, Part of ISSN: 0001-4966.

21
D. Alvarez, O. Dorn, and M. Moscoso.
Reconstructing thin shapes from boundary electrical measurements with level sets.
International Journal for Information and Systems Sciences, 2(4):489-511, 2006.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.7603.

20
R. Villegas, O. Dorn, M. Moscoso, and M. Kindelan.
Shape reconstruction from two-phase incompressible flow data using level sets.
In T.F. Chan X.-C. Tai, K.-A. Lie and S. Osher, editors, Proceedings of the International Conference on PDE-Based Image Processing and Related Inverse Problems, CMA, Oslo, August 8-12, 2005, Mathematics and Visualization, pages 381-401. Springer-Verlag, New York, 2006.
https://doi.org/10.1007/978-3-540-33267-1_21.

19
O. Dorn and D. Lesselier.
Level set techniques for structural inversion in medical imaging.
In Suri J.S. and Farag A., editors, Deformable Models: Theory and Biomaterial Applications, pages 61-90. Springer-Verlag, New York, 2007.
DOI: https://doi.org/10.1007/978-0-387-68413-0_3 This is an invited topical review/survey paper.

18
Dorn O.
Shape reconstruction for an inverse radiative transfer problem arising in medical imaging.
In G. Kanschat, E. Meinköhn, R. Rannacher, and R. Wehrse, editors, Numerical methods for multidimensional radiative transfer problems, pages 299-309. Springer-Verlag, Berlin, 2006.
DOI: https://doi.org/10.1007/978-3-540-85369-5_17.

17
R. Villegas, O. Dorn, M. Moscoso, and M. Kindelan.
Simultaneous characterization of geological regions and parameterized internal permeability profiles in history matching.
In Proc. 10th European conference on the mathematics of oil recovery ECMOR X, 4-7 Sept., Amsterdam, Netherlands, pages A015 - 9 pages, 2006.
https://www.onepetro.org/conference-paper/SPE-100291-MS.

16
R. Villegas, O. Dorn, M. Moscoso, M. Kindelan, and F. Mustieles.
Simultaneous characterization of geological shapes and permeability distributions in reservoirs using the level set method.
In Society of Petroleum Engineers SPE paper 100291, SPE Europec/EAGE Annual Conference and Exhibition, Vienna, Austria, June 12-15, 2006, page C015, 2006.
https://www.onepetro.org/conference-paper/SPE-100291-MS.

15
R. Villegas, M. Kindelan, O. Dorn, and M. Moscoso.
Sensitivity studies for shape reconstruction in reservoir characterization using level sets.
In Proceedings Inverse problems: modelling and simulation, Fethiye, Turkey, May 29-June 02, 2006, 2006.

14
A.D. Zacharopoulos, S.R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora.
Three dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonics parameterisation and a boundary element methods.
Inverse Problems, 22:1509-1532, 2006.
DOI: 10.1088/0266-5611/22/5/001.

13
P. González-Rodríguez, M. Kindelan, M. Moscoso, and O. Dorn.
History matching problem in reservoir engineering using the propagation-backpropagation method.
Inverse Problems, 21:565-590, 2005.
DOI: 10.1088/0266-5611/21/2/009.

12
O. Dorn.
Shape reconstruction in 3d low-frequency electromagnetic induction tomography using level sets and adjoint fields.
In Proc. 2002 IEEE Antennas and Propagation International Symposium, June 16-21, 2002, San Antonio, Texas, US. IEEE, 2002.
https://ieeexplore.ieee.org/document/1016762, DOI: 10.1109/APS.2002.1016762.

11
O. Dorn.
A shape reconstruction method for diffuse optical tomography using a transport model and level sets.
In Proc. 2002 IEEE International Symposium on Biomedical Imaging, July 7-10, 2002, Washington, D.C. US, 2002.
DOI: 10.1109/ISBI.2002.1029436.

10
O. Dorn.
Shape reconstruction in scattering media with voids using a transport model and level sets.
Canadian Applied Math Quarterly, 10(2):239-275, 2002.
http://www.math.ualberta.ca/ami/CAMQ/pdf_files/vol_10/10_2/10_2c.pdf.

9
O. Dorn, H. Bertete-Aguirre, J.G. Berryman, and G.C. Papanicolaou.
Sensitivity analysis of a nonlinear inversion method for 3d electromagnetic imaging in anisotropic media.
Inverse Problems, 18:285-317, 2002.
DOI: 10.1088/0266-5611/18/2/301.

8
T. Dierkes, O. Dorn, F. Natterer, V. Palamodov, and H. Sielschott.
Frechet derivatives for some bilinear inverse problems.
SIAM J. Appl. Math., 62:2092-2113, 2002.
DOI: 10.1137/S0036139901386375.

7
H. Bertete-Aguirre, O. Dorn, J.G. Berryman, and G.C. Papanicolaou.
3d-electromagnetic imaging using adjoint fields.
In IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313), IEEE Antennas and Propagation Society, AP-S International Symposium, 2002.
DOI: 10.1109/APS.2002.1016761, https://ieeexplore.ieee.org/document/1016761.

6
O. Dorn.
Shape reconstruction in 2d from limited-view multifrequency electromagnetic data.
In Radon Transforms and Tomography, volume 278 of Contemporary Mathematics. American Mathematical Society, 2001.
DOI: 10.1090/conm/278/04599, Part of ISBN: 9780821821350.

5
O. Dorn, E.L. Miller, and C.M. Rappaport.
A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets.
Inverse Problems, 16(5), 2000.
DOI: 10.1088/0266-5611/16/5/303, This paper has been included in the journal's Highlights Collection for the year 2000,
This paper is on the list of the `top 30 cited papers' of the journal Inverse Problems https://iopscience.iop.org/journal/0266-5611/page/top-30-cited.

4
O. Dorn.
Scattering and absorption transport sensitivity functions for optical tomography.
Optics Express, 7(13):492-506, 2000.
DOI: 10.1364/OE.7.000492.

3
O. Dorn, H. Bertete-Aguirre, J.G. Berryman, and G.C. Papanicolaou.
A nonlinear inversion method for 3d electromagnetic imaging using adjoint fields.
Inverse Problems, 15:1523-1558, 1999.
DOI: 10.1088/0266-5611/15/6/309.

2
O. Dorn.
A transport-backtransport method for optical tomography.
Inverse Problems, 14:1107-1130, 1998.
DOI: 10.1088/0266-5611/14/5/003, This paper has been included in the journal's Highlights Collection for the year 1998,
This paper is on the list of the `top 30 cited papers' of the journal Inverse Problems https://iopscience.iop.org/journal/0266-5611/page/top-30-cited.

1
O. Dorn.
Das inverse Transportproblem in der Lasertomographie.
PhD thesis, Westfälische Wilhelms-Universität Münster, Germany, May 1997.
https://www.uni-muenster.de/AMM/num/Preprints.old/1997/dorn/.