Simplicity of Nekrashevych algebras of contracting self-similar groups

Nóra Szakács co-author: Benjamin Steinberg

Functional Analysis Seminar, Oxford June 6, 2023

The free monoid X^*

X: set (alphabet) X*: the set of finite sequences (words) of elements of X ε : the word of length 0

 X^* is a monoid with respect to juxtaposition:

 $w \cdot v = wv$

 X^{ω} : the set of infinite sequences (words) of elements of X

Regular rooted trees

X: finite set with $|X| \ge 2$, T_X : |X|-regular rooted tree

vertices $\longleftrightarrow X^*$ $\operatorname{Aut}(T_X)$: automorphisms of T_X $\operatorname{Aut}(T_X) \hookrightarrow S_{X^*}$ Let $g \in \operatorname{Aut}(T_X)$. |g(w)| = |w| for all $w \in X^*$ ▶ $g|_w \in \operatorname{Aut}(T_X)$: the restriction of g to the subtree at w

$$g(wu) = g(w)g|_w(u)$$

The Grigorchuk group

The Grigorchuk group is generated by the following elements:

Contracting groups

A self-similar group $G \leq Aut(T_X)$ is called **contracting** if there exists a finite set $N \subseteq G$ such that

for all $g \in G$ there exists k with $g|_w \in N$ whenever $|w| \ge k$.

The minimal such N is called the **nucleus**.

Contracting self-similar groups include a lot of the famous classes (such as the Grigorchuk group and the Gupta-Sidki *p*-groups).

If G is contracting, and generated by a finite set closed under sections, then there is an algorithm that computes N.

The Nekrashevych algebra

G: self-similar group, X: set with |X| > 2.

The Nekrashevych algebra $N_K(G, X)$ is the K-algebra generated by the set G and $\{x, x^* : x \in X\}$, subject to the relations

•
$$g \cdot h = gh$$
,
• $gx = g(x)g|_{x}$,
• $x^*g = g|_{g^{-1}(x)}(g^{-1}(x))^*$,
• $x^*y = \delta_{x,y}$,
• $\sum_{x \in X} xx^* = 1$.

Nekrashevych first defined a C^* -algebra defined by these relations, and later studied this discrete counterpart.

If G is contracting, G can be replaced by N, and $N_K(G, X)$ is finitely presented.

Nekrashevych algebras and inverse semigroups

S: monoid with zero, generated by G and $\{x, x^* : x \in X^*\}$, subject to the relations

S is called the inverse semigroup associated to G,

$$S = \{ugv^* : g \in G, u, v \in X^*\} \cup \{0\}.$$

 $N_{\mathcal{K}}(G,X)$ in the Steinberg algebra of the tight groupoid of S, or algebraically,

$$N_{\mathcal{K}}(G,X) = \mathcal{K}_0 S/(1-\sum_{x\in X} xx^*),$$

where $(1 - \sum_{x \in X} xx^*)$ is the tight ideal $T_K(S)$ of S.

Simplicity of Nekrashevych algebras

The question we were interested in is

when is $N_{\mathcal{K}}(G,X)$ simple?

 $\mathit{N}_{\mathbb{C}}(\mathit{G},X)$ not simple \Longrightarrow the C^* -algebra is not simple

- Brown, Clark, Farthing, Sims (2015): if the ample groupoid associated to G is Hausdorff, N_K(G, X) is simple for any K
- Nekrashevych (2015): the Nekrashevych algebra of the Grigorchuk group is not simple over characteristic 2
- Clark, Exel, Pardo, Sims, Starling (2018): characterize simplicity in terms of the groupoid, and prove that the Nekrashevych algebra of the Grigorchuk group is simple over all other characteristics
- Nekrashevych (2019): the Nekrashevych algebra of the Grigorchuk-Erschler group is simple over no field

Main results

Theorem (Steinberg, Sz.)

Let G be a contracting group with nucleus N.

- Either N_K(G, S) is simple over no field or simple over all but finitely many positive characteristics.
- There is an algorithm which on input N outputs the set of characteristics over which N_K(G, S) is non-simple.

The result gives a hands-on description of simplicity for several well-known infinite families of contracting self-similar groups.

For any finite set of primes \mathcal{P} , we give a contracting self-similar group G such that $N_{\mathcal{K}}(G, X)$ fails to be simple exactly over characteristics in \mathcal{P} .

A nice characterization

 $N_K(G,X)$ can be represented on the vector space KX^ω : For $x \in X$ and $w \in X^\omega$ we can define

 $x \cdot w = xw$,

$$x^* \cdot yw = \begin{cases} w & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

and any $g \in G$ acts on infinite words by a natural extension of the action on X^* .

Theorem (Steinberg, Sz.)

 $N_{\mathcal{K}}(G,X)$ is simple if and only if its representation on $\mathcal{K}X^{\omega}$ is faithful. Moreover, the image of the representation is the unique simple quotient of $N_{\mathcal{K}}(G,X)$.

Simplicity of inverse semigroup algebras

Theorem (Steinberg, Sz.)

If S is a congruence-free inverse semigroup, then there is a unique maximal ideal of K_0S containing $T_K(S)$, called the **singular ideal** $I_K(S)$.

• $K_0S/T_K(S)$ has a unique maximal ideal: $I_K(S)/T_K(S)$.

$$\blacktriangleright \ K_0 S/T_K(S) \text{ is simple} \iff I_K(S) = T_K(S)$$

If G is self-similar over X, then the associated semigroup S is congruence-free. The singular ideal of K_0S is

 $I_{\mathcal{K}}(S) = \{a \in K_0 S : \text{for all } u \in X^* \text{ there is } w \in X^* \text{ with } auw = 0\}.$ So the unique maximal ideal of $N_{\mathcal{K}}(G, X)$ is

$$I_{\mathcal{K}}(S)/(1-\sum_{x\in X}xx^*).$$

The singular ideal minus the tight ideal

Let G be a self-similar over X and S the inverse semigroup. We have established:

$$N_{\mathcal{K}}(G,X)$$
 is simple $\iff I_{\mathcal{K}}(S) \setminus (1 - \sum_{x \in X} xx^*) = \emptyset$.

 $I_{\mathcal{K}}(S) = \{a \in \mathcal{K}_0 S : \text{for all } u \in X^* \text{ there is } w \in X^* \text{ with } auw = 0\}.$

Step 1:

For any $a \in K_0 S$, we have $a \in (1 - \sum_{x \in X} xx^*)$ if there are finitely many words $w \in X^*$ with $aw \neq 0$.

Step 2: If $I_{\mathcal{K}}(S) \setminus (1 - \sum_{x \in X} xx^*) \neq \emptyset$, then $I_{\mathcal{K}}(S) \setminus (1 - \sum_{x \in X} xx^*)$ intersects *KG*. If *G* is contracting with nucleus *N*, it intersects *KN*.

Understanding aw = 0Let $a = \sum_{g \in N} a_g g \in KN$. Then

$$aw = \sum_{g \in N} a_g gw.$$

 \equiv_w : equivalence on N defined by $g \equiv_w h$ iff gw = hw. Then

$$\mathsf{aw} = \mathsf{0} \Longleftrightarrow orall h \in \mathsf{N}, \sum_{\mathbf{g} \equiv_w h} \mathsf{a}_{\mathbf{g}} = \mathsf{0}$$

For any equivalence \equiv on N, consider the following linear system in variables $x_g, g \in N$:

$$\sum_{g\equiv h} x_g = 0, \ h \in N.$$

We say $a \in KN$ satisfies \equiv if $a_g = x_g$ is a solution over K.

Understanding aw = 0

N is finite \implies there are finitely many equivalences and corresponding linear systems.

The key: to understand

- which of these must be satisfied for a to be singular,
- ▶ and which of these must not be satisfied for $a \notin (1 \sum_{x \in X} xx^*).$

The simplicity graph

Recall: $gx = g(x)g|_x$ for $g \in G$, $x \in X$, furthermore, if $g \in N$, then $g|_x \in N$.

So
$$g \equiv_{xw} h \iff gxw = hxw \iff g(x)g|_xw = h(x)h|_xw \iff$$

 $g(x) = h(x)$ and $g|_xw = h|_xw \iff g(x) = h(x)$ and $g|_x \equiv_w h|_x$.

 X^* has a left action on equivalences on N given by

$$g \ x \cdot \equiv \ h \Longleftrightarrow g(x) = h(x) \text{ and } g|_x \equiv h|_x.$$

 $\{\equiv_w: w \in X^*\}$ is the orbit of the equality.

The simplicity graph: the Schreier graph of the action on $\{\equiv_w: w \in X^*\}$

An example: the Grigorchuk-Erschler group

The nucleus (also a generating set):

Note: $s(w) \neq g(w)$ if $s \neq g$, so s is its own \equiv_w -class for any w.

Reading the ideals from the simplicity graph

- ▶ $a \notin (1 \sum_{x \in X} xx^*) \iff$ there is an equivalence \equiv not satisfied by a, reachable from a cycle.
- a ∈ I_K(S) ⇐⇒ satisfies all the equations in the minimal strongly connected components.

The Grigorchuk-Erschler group

The minimal component: $\equiv_{x}: \{s\}, \{b, d\}, \{id, c\}$ $\equiv_{yx}: \{s\}, \{c, d\}, \{id, b\}$ The equations:

$$x_s = 0, x_d = -x_b, x_{id} = -x_c$$
$$x_s = 0, x_d = -x_c, x_{id} = -x_b$$

 $a = \operatorname{id} - b - c + d$ is a solution over any field $\Longrightarrow a \in I_{\mathcal{K}}(S)$ a does not satisfy '=' which is reachable from a cycle, so $a \notin (1 - \sum_{x \in X} xx^*)$ \Longrightarrow the Nekrashevych algebra is simple over no field.

Thanks for your attention!