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A crash course on geometric group theory

A key idea: derive algebraic and algorithmic properties of f.g.
groups from the (large scale) geometry of their Cayley graphs.

For example: hyperbolic groups have a decidable word problem
(Gromov, 1987)

In the subsequent years, Gromov outlined a long-term plan to study
finitely generated groups via their (large scale) geometry, which led
to the development of geometric group theory as a stand alone field.

To what extent can this be generalized to larger classes of
semigroups?
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Inverse semigroups

A semigroup S is called an inverse semigroup if every element
s ∈ S has a unique inverse s−1 satisfying

ss−1s = s, s−1ss−1 = s−1.

The Cayley graph of an inverse semigroup is much less nice than a
group Cayley graph, in particular:

• ss−1 is typically not 1, so typically edges labeled by s and s−1

don’t come in reverse pairs
• the graph is typically not strongly connected (e.g. a 0 element

is a sink)

This makes it difficult to define a natural metric on the Cayley
graph that is related to the algebraic properties of the inverse
semigroup.
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Schützenberger graphs

However, the strong components of the Cayley graph are nice.

The vertices s and t are in the same strong component iff there are
directed paths from s to t and t to s.

Equivalently, if s R t, that is, ss−1 = tt−1.

Fact: if s R sx , then sxx−1 = s =⇒ within the strong
components, edges do come in inverse pairs.

The strong components are called Schützenberger graphs, and they
are naturally metric spaces with the path metric.
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Finitely generated inverse semigroups as metric spaces

SX : the graph formed as the disjoint union of all Schützenberger
graphs of S = 〈X 〉.

SX still retains enough information about S :

• S can be reconstructed from SX ,
• the word problem boils down to deciding the languages of

automata with components of SX as underlying graphs:
Schützenberger automata

So we can define the word metric metric on S as:

dX (s, t) = the path distance of s and t in SX

(dX (s, t) =∞ when s and t are in different components)
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Example: the bicyclic semigroup

S = Inv〈a | aa−1 = 1〉
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Geometry and the word problem

A natural question: Do all finite presented, hyperbolic inverse
semigroups have a solvable word problem?

No. (Gray, Silva, Sz., 2021)

In a finitely presented inverse semigroup where all Schützenberger
graphs are quasi-isometric to trees, the word problem is solvable
(and the languages of the Schützenberger automata are
context-free). (Gray, Silva, Sz., 2021)
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Geometry and C*-algebras

A key application of inverse semigroups: using inverse
semigroups to construct (and study) C*-algebras.

A C*-algebra is a subset A ⊂ B(H) of bounded linear operators on
a complex Hilbert space (think infinite matrices!) which is closed
under linear combinations, products, adjoints, and closed in
operator norm.

Given a (adjectives omitted) metric space X (such as that coming
from a graph via the path metric), there is an associated C*-algebra
called the uniform Roe algebra of the space: C ∗u (X ) ⊆ B(`2(X )).

It encapsulates the large scale properties of the space:

C ∗u (X ) ∼= C ∗u (Y ) ⇐⇒ X and Y are bijectively large scale
equivalent
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Uniform Roe algebras of groups

If G is a group equipped with a metric, then

C ∗u (G ) ∼= `∞(G )or G ,

where the latter C*-algebra is obtained directly from the Cayley
representation of G .

If S is an inverse semigroup, we can similarly construct `∞(S)or S

from the Wagner-Preston representation.

Natural question: is this also a uniform Roe algebra of some
metric on S?

If S is f.g. and equipped with the word metric, then
C ∗u (S)

∼= `∞(S)or S . (Lledó, Martínez, 2021)
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Quasi-countable inverse semigroups

This generalizes to non-finitely generated inverse semigroups.

We call S is quasi-countable if it’s generated by X ∪ E (S) for some
countable set X .

Any quasi-countable inverse semigroup can be equipped with a
(adjectives ommitted) metric in a large scale unique way, and for
this (any such) metric C ∗u (S)

∼= `∞(S)or S . (Chung, Martínez,
Sz., 2022)
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Finiteness properties

We investigate the following finiteness properties of C*-algebras:

(1) local AF =⇒ (2) strongly quasi-diagonal =⇒ (3)
quasi-diagonal =⇒ (4) stably finite =⇒ (5) finite

Given a quasi-countable inverse semigroup S , we characterize in
terms of S , and in terms of the metric, when C ∗u (S) satisfies the
above conditions (Chung, Martínez, Sz., 2022)

(1) ⇐⇒ (2) ⇐⇒ S is locally finite ⇐⇒ S has asymtotic
dimension 0

(3) ⇐⇒ (4) ⇐⇒ (5) ⇐⇒ S is locally R-finite ⇐⇒ S is sparse
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