Closure operators on group Cayley graphs, and presentations of F-inverse monoids

Panglobal Algebra and Logic Seminar

Nóra Szakács

14 November, 2023

An introduction to inverse monoids

Definition

An inverse semigroup is a semigroup M such that for all $a \in M$, there is a unique $a^{-1} \in M$ such that $a = aa^{-1}a$, $a^{-1} = a^{-1}aa^{-1}$.

Inverse semigroups form a variety with the operations $(M, \cdot, ^{-1})$, defined by associativity and the identities

$$a = aa^{-1}a, \ a^{-1} = a^{-1}aa^{-1}, \ aa^{-1}bb^{-1} = bb^{-1}aa^{-1}.$$

Additional nice identities: $(a^{-1})^{-1} = a$, $(ab)^{-1} = b^{-1}a^{-1}$

We can similarly define inverse monoids.

Note: every element of an X-generated inverse monoid can be represented by the term in $(X \cup X^{-1})^*$.

Free inverse monoids

Munn gave the following, beautiful description of the X-generated free inverse monoid FIM(X):

- elements: (*T*, *g*), where *g* ∈ FG(*X*), and *T* is a finite subtree of the Cayley graph of FG(*X*) with 1, *g* ∈ Δ
- product: $(T,g)(U,h) = (T \cup gU,gh)$

• inverse:
$$(T,g) = (g^{-1}T,g^{-1})$$

Note: we can replace FG(X) in the previous construction with the Cayley graph Γ_X of any X-generated group G, and consider the inverse monoid M(G) with

- elements: (Δ, g), where g ∈ G, and Δ is a finite subgraph of Γ_X with 1, g ∈ T
- product: $(\Delta, g)(\Xi, h) = (\Delta \cup g\Xi, gh)$
- inverse: $(\Delta,g)^{-1} = (g^{-1}\Delta,g^{-1})$

This is called the Margolis-Meakin expansion of G, and it is the initial object in the category of X-generated [additional adjectives] inverse monoids.

Any inverse monoid M has a least group congruence σ : the one generated by the pairs (xx⁻¹, 1). M/σ is called the greatest group image.

M is called *E*-unitary if 1σ is exactly the set of idempotents of *M*.

Definition

Given an X-generated group G, consider the category $\mathcal{E}(G, X)$ with

- objects: X-generated, E-unitary inverse monoids with greatest group image G
- morphisms: inverse semigroup morphisms fixing the generating set X

M(G) is the initial object of $\mathcal{E}(G, X)$.

Theorem (McAlister's *P*-theorem)

Every E-unitary inverse monoid can be built (in a given way) out of

- a group G (the greatest group image),
- a semilattice \mathcal{Y} (the semilattice of idempotents),
- a poset X containing Y, acted upon by G.

Steinberg gave a proof of McAlister's theorem where \mathcal{X} is given as a certain set of connected subgraphs of the Cayley graph of G, and \mathcal{Y} consists of those graphs in \mathcal{X} which contain 1.

We rephrase this approach in terms of closure operators on the subgraphs of the Cayley graph of G.

Closure operators and *E*-unitary inverse semigroups

- G: an X-generated group
- Γ_X : its Cayley graph
- CSub Γ_X : the set of connected subgraphs of Γ_X
- ()^c: a closure operator on the poset (CSub Γ_X, \subseteq)

()^c is G-invariant if the set of closed graphs is invariant under the left action of G.

- ()^c is finitary/algebraic if $\Delta^c = \bigcup \{F^c : F \subseteq \Delta \text{ is finite}\}.$
- $\Delta \in \mathsf{CSub}\,\Gamma_X$ is compact if it is the closure of a finite subgraph.

Given a *G*-invariant, finitary closure operator on $(\text{CSub}\,\Gamma_X,\subseteq)$, we can define an inverse monoid M_c :

- elements: (Δ, g), where g ∈ G, and Δ is a compact subgraph of Γ_X with 1, g ∈ Δ
- product: $(\Delta, g)(\Xi, h) = ((\Delta \cup g\Xi)^c, gh)$
- inverse: $(\Delta, g)^{-1} = (g^{-1}\Delta, g^{-1})$

 M^c is also *E*-unitary and *X*-generated.

Closure operators

Definition

Given an X-generated group G, consider the category $\mathcal{C}(G, X)$ with

- objects: finitary, *G*-invariant closure operators on $(CSub \Gamma_X, \subseteq)$
- morphisms: there is a morphism from ()^{c_1} to ()^{c_2} iff all c_2 -closed subgraphs are c_1 -closed

Recall: $\mathcal{E}(G, X)$ is the category of X-generated, E-unitary inverse monoids with greatest group image G

Theorem

The categories $\mathcal{E}(G, X)$ and $\mathcal{C}(G, X)$ are equivalent.

F-inverse monoids

F-inverse monoids

Inverse monoids are naturally equipped with a partial order: $s \leq t \iff s = ts^{-1}s$

An inverse monoid M is *F*-inverse if every σ -class has a greatest element.

F-inverse monoids form a variety with the operations $(\cdot, 1, -1, m)$ where a^m is the greatest element is the σ -class of *a*. The defining identites are those of inverse monoids and

$$a^{\mathfrak{m}}\geq a,\,\,a^{\mathfrak{m}}=(abb^{-1})^{\mathfrak{m}}.$$

Additional nice identities: $(ab^{\mathfrak{m}}c)^{\mathfrak{m}} = (abc)^{\mathfrak{m}}, (a^{\mathfrak{m}})^{-1} = (a^{-1})^{\mathfrak{m}}$

As such, every element of an X-generated F-inverse monoid can be represented by the term

$$u_1v_1^{\mathfrak{m}}u_2v_2^{\mathfrak{m}}\cdots v_{n-1}^{\mathfrak{m}}u_n,$$

 $u_i, v_i \in (X \cup X^{-1})^*.$

Auinger, Kudryavtseva and M. Szendrei gave the following description of the *X*-generated free inverse *F*-inverse monoid:

- elements: (*T*, *g*), where *g* ∈ FG(*X*), and *T* is a finite subgraph (not necessarily connected!) of the Cayley graph of FG(*X*) with 1, *g* ∈ Δ
- product: $(T,g)(U,h) = (T \cup gU,gh)$
- inverse: $(T,g)^{-1} = (g^{-1}T,g^{-1})$
- maximum element in σ -class: $(T,g)^{\mathfrak{m}} = (\{1,g\},g)$

They also define the analogues of Margolis-Meakin expansions, and prove that they are the initial objects in the category of X-generated F-inverse monoids with greatest group image G.

Closure operators again

- G: an X-generated group
- Γ_X : its Cayley graph
- Sub Γ_X : the set of all subgraphs of Γ_X
- ()^c: a closure operator on the poset (Sub Γ_X, \subseteq)

Given a *G*-invariant, finitary closure operator on $(\operatorname{Sub} \Gamma_X, \subseteq)$, we can define an *X*-generated *F*-inverse monoid M^c :

- elements: (Δ, g), where g ∈ G, and Δ is a compact subgraph of Γ_X with 1, g ∈ Δ
- product: $(\Delta, g)(\Xi, h) = ((\Delta \cup g\Xi)^c, gh)$
- inverse: $(\Delta, g)^{-1} = (g^{-1}\Delta, g^{-1})$
- maximum element in σ -class: $(\Delta, g)^{\mathfrak{m}} = (\{1, g\}^{c}, g)$

To every X-generated F-inverse monoid M with $M/\sigma = G$, we associate a finitary, G-invariant closure operator ()^{c_M} on Sub Γ_X . We define $\Delta \in \text{Sub }\Gamma_X$ to be closed iff

for any two terms w_1, w_2 with $w_1 \equiv_M w_2$, and for any $g \in G$, Δ contains the journey from g labeled by w_1 if and only if it contains the journey from g labeled by w_2 .

Proposition

If M is given by a presentation (in the variety of F-inverse monoids), it suffices to consider pairs of relators as w_1, w_2 in the condition above.

 $\mathcal{F}(X, G)$: the category of X-generated, F-inverse monoids with greatest group image G

 $\mathcal{S}(X, G)$: the category of closure operators on Sub Γ_X

Theorem

The categories $\mathcal{F}(G, X)$ and $\mathcal{S}(G, X)$ are equivalent.

Let $M = \text{FInv}\langle X \mid R \rangle$ be a presentation of *F*-inverse monoid, and let $G = M/\sigma$.

Define the *F*-Schützenberger graph $F\Gamma(w)$ of a term *w* to be the smallest subgraph of Γ_X which

- contains the journey labeled by w starting at 1;
- is closed in c_M .

Theorem

- 1. Given two term w_1, w_2 , we have $w_1 \ge_M w_2$ iff $w_1 \equiv_G w_2$ and $F\Gamma(w_1) \subseteq F\Gamma(w_2)$.
- 2. In particular, $w_1 =_M w_2$ iff $w_1 \equiv_G w_2$ and $F\Gamma(w_1) = F\Gamma(w_2)$.

Recall the free inverse monoid FIM(X).

This is given by the *F*-inverse presentation $FInv\langle X \mid w^{\mathfrak{m}} = red(w) \rangle$.