Women in Maths Day

The Černý conjecture

Nóra Szakács
29 June, 2023

A trick and a map

A magic trick

- Choose a number on the clock

A magic trick

- Choose a number on the clock
- Starting from 12 and moving clockwise, spell out your number around the clock

A magic trick

- Choose a number on the clock
- Starting from 12 and moving clockwise, spell out your number around the clock
- Starting from wherever you landed, spell out the number you had landed on

A magic trick

- Choose a number on the clock
- Starting from 12 and moving clockwise, spell out your number around the clock
- Starting from wherever you landed, spell out the number you had landed on
- Starting from wherever you now landed, spell out the number you had landed on

A magic trick

- Choose a number on the clock
- Starting from 12 and moving clockwise, spell out your number around the clock
- Starting from wherever you landed, spell out the number you had landed on
- Starting from wherever you now landed, spell out the number you had landed on

You are now at number 1 .

A map

Your friend is lost. Can you help them find their way to your house?

A map

Your friend is lost. Can you help them find their way to your house? Give instructions which work from any intersection using R and B.

A map

Your friend is lost. Can you help them find their way to your house? Give instructions which work from any intersection using R and B.

What is in common?

In both cases, we had a set of possible positions, and possible moves between these:

What is in common?

In both cases, we had a set of possible positions, and possible moves between these:

What is in common?

In both cases, we had a set of possible positions, and possible moves between these:

Finite state automata

Finite state automata

A finite state automaton consists of a set of points (states) connected by edges labeled by instructions (transitions):

Finite state automata

A finite state automaton consists of a set of points (states) connected by edges labeled by instructions (transitions):

Synchronizing word

A synchronizing word in a finite state automaton is a sequence of instructions that take any state to the same one.

Synchronizing word

A synchronizing word in a finite state automaton is a sequence of instructions that take any state to the same one. For example, in the automaton corresponding to the map, RBB is a synchronizing word.

Synchronizing word

A synchronizing word in a finite state automaton is a sequence of instructions that take any state to the same one. For example, in the automaton corresponding to the map, RBB is a synchronizing word.

Not all automata have synchronizing words!

How would you find a synchronizing word?

How long is the shortest synchronizing word?

If an automaton has states $\{1, \ldots, n\}$, then every given sequence of instructions maps these n states into some subset $S \subset\{1, \ldots, n\}$.

How long is the shortest synchronizing word?

If an automaton has states $\{1, \ldots, n\}$, then every given sequence of instructions maps these n states into some subset $S \subset\{1, \ldots, n\}$.

The sequence of instructions is a synchronizing word if and only if it maps the n states into a singleton.

How long is the shortest synchronizing word?

If an automaton has states $\{1, \ldots, n\}$, then every given sequence of instructions maps these n states into some subset $S \subset\{1, \ldots, n\}$.

The sequence of instructions is a synchronizing word if and only if it maps the n states into a singleton.

If $w=a_{1} a_{2} \cdots a_{k}$ is a shortest synchronizing word, then the instructions $a_{1}, a_{1} a_{2}, a_{1} a_{2} a_{3}, \ldots, a_{1} a_{2} \cdots a_{k-1}$ must

- all map to nonsingleton subsets

How long is the shortest synchronizing word?

If an automaton has states $\{1, \ldots, n\}$, then every given sequence of instructions maps these n states into some subset $S \subset\{1, \ldots, n\}$.

The sequence of instructions is a synchronizing word if and only if it maps the n states into a singleton.

If $w=a_{1} a_{2} \cdots a_{k}$ is a shortest synchronizing word, then the instructions $a_{1}, a_{1} a_{2}, a_{1} a_{2} a_{3}, \ldots, a_{1} a_{2} \cdots a_{k-1}$ must

- all map to nonsingleton subsets
- all map to different subsets

So k is at most the number of different nonsingleton (and nonempty) subsets: $k \leq 2^{n}-n-1$.

How long is the shortest synchronizing word?

If an automaton has states $\{1, \ldots, n\}$, then every given sequence of instructions maps these n states into some subset $S \subset\{1, \ldots, n\}$.

The sequence of instructions is a synchronizing word if and only if it maps the n states into a singleton.

If $w=a_{1} a_{2} \cdots a_{k}$ is a shortest synchronizing word, then the instructions $a_{1}, a_{1} a_{2}, a_{1} a_{2} a_{3}, \ldots, a_{1} a_{2} \cdots a_{k-1}$ must

- all map to nonsingleton subsets
- all map to different subsets

So k is at most the number of different nonsingleton (and nonempty) subsets: $k \leq 2^{n}-n-1$.

However, for every synchronizing automaton anyone's ever tried, the length of the shortest synchronizing word is at most $(n-1)^{2}$.

The Černý conjecture

The Černý conjecture

In 1969, the Slovakian mathematician Jan Černý conjectured:

Every synchronizing automaton on n states has a synchronizing word of length at most $(n-1)^{2}$.

The Černý conjecture

In 1969, the Slovakian mathematician Jan Černý conjectured:

Every synchronizing automaton on n states has a synchronizing word of length at most $(n-1)^{2}$.

So far, nobody could prove that this is true, and it is an open research question in mathematics.

Things we do know

- The bound $(n-1)^{2}$ cannot be improved: for every n, there are synchronizing automata on n states where this is the length of the shortest synchronizing word.

Things we do know

- The bound $(n-1)^{2}$ cannot be improved: for every n, there are synchronizing automata on n states where this is the length of the shortest synchronizing word.
- The current best (proven) bound is cubic $\left(\sim 1 / 6 n^{3}\right)$.

Things we do know

- The bound $(n-1)^{2}$ cannot be improved: for every n, there are synchronizing automata on n states where this is the length of the shortest synchronizing word.
- The current best (proven) bound is cubic ($\sim 1 / 6 n^{3}$).
- the Černý conjecture is true for almost all finite state automata:

Things we do know

- The bound $(n-1)^{2}$ cannot be improved: for every n, there are synchronizing automata on n states where this is the length of the shortest synchronizing word.
- The current best (proven) bound is cubic ($\sim 1 / 6 n^{3}$).
- the Černý conjecture is true for almost all finite state automata: for $n \in \mathbb{N}$, let p_{n} be the probability that a randomly chosen synchronizing automata on n states satisfies the Černý conjecture. Then

$$
\lim _{n \rightarrow \infty} p_{n}=1
$$

- In fact, almost all finite state automata have a synchrozing word whose length is linear in the number of states.

