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A trick and a map
































































A magic trick

Choose a number on the clock

Starting from 12 and moving clockwise, spell out your number

around the clock

Starting from wherever you landed, spell out the number you had

landed on

Starting from wherever you now landed, spell out the number you

had landed on

You are now at number 1.
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A map

Your friend is lost. Can you help them find their way to your house? Give

instructions which work from any intersection using R and B.
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RBB



What is in common?

In both cases, we had a set of possible positions, and possible moves

between these:
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Finite state automata



Finite state automata

A finite state automaton consists of a set of points (states) connected

by edges labeled by instructions (transitions):
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Synchronizing word

A synchronizing word in a finite state automaton is a sequence of

instructions that take any state to the same one.

For example, in the

automaton corresponding to the map, RBB is a synchronizing word.

Not all automata have synchronizing words!
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How would you find a synchronizing word?
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How long is the shortest synchronizing word?

If an automaton has states {1, . . . , n}, then every given sequence of

instructions maps these n states into some subset S ⇢ {1, . . . , n}.

The sequence of instructions is a synchronizing word if and only if it

maps the n states into a singleton.

If w = a1a2 · · · ak is a shortest synchronizing word, then the instructions

a1, a1a2, a1a2a3, . . . , a1a2 · · · ak�1 must

all map to nonsingleton subsets

all map to di↵erent subsets

So k is at most the number of di↵erent nonsingleton (and nonempty)

subsets: k  2n � n � 1.

However, for every synchronizing automaton anyone’s ever tried, the

length of the shortest synchronizing word is at most (n � 1)2.
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The Černý conjecture



The Černý conjecture

In 1969, the Slovakian mathematician Jan Černý conjectured:

Every synchronizing automaton on n states has a synchronizing word of

length at most (n � 1)2.

So far, nobody could prove that this is true, and it is an open research

question in mathematics.
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Things we do know

The bound (n � 1)2 cannot be improved: for every n, there are

synchronizing automata on n states where this is the length of the

shortest synchronizing word.

The current best (proven) bound is cubic (⇠ 1/6n3).

the Černý conjecture is true for almost all finite state automata:

for n 2 N, let pn be the probability that a randomly chosen

synchronizing automata on n states satisfies the Černý conjecture.

Then

lim
n!1

pn = 1.

In fact, almost all finite state automata have a synchrozing word

whose length is linear in the number of states.

9



Things we do know

The bound (n � 1)2 cannot be improved: for every n, there are

synchronizing automata on n states where this is the length of the

shortest synchronizing word.

The current best (proven) bound is cubic (⇠ 1/6n3).
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