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Cubical Type Theory

CTT: Extension of dependent type theory (with Σ,Π-types
and a universe) by an interval, a lattice of faces, path types
and certain operations for type families (composition and
glueing).
Devised by Bezem, Cohen, Coquand, Huber and Mörtberg
[BCH14, CCHM16] in 2014-2016 as an intensional type theory
which validates Voevodsky’s Univalence Axiom and has
computational meaning.
Further developments by Orton and Pitts [OP16] as well as
Birkedal, Bizjak, Clouston, Gratwohl, Spitters and Vezzosi
[BBCGSV16] in 2016.
Goal of this talk: Present semantics of CTT in SetC

op
and

ECop , with E a model of extensional type theory (ETT) and C
a category internal to E .
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Interval and face lattice I

The interval is a pretype I with constants 0, 1 : I and operations

u,t : I→ I→ I,
1− · : I→ I,

endowing I with the structure of a de Morgan algebra where 1 is
indecomposable.

We obtain the face lattice F from I by factoring modulo
x u (1− x) = 0.
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Interval and face lattice II

Example: ϕ = (i = 0) t (i = 1) t (j = 0) : F

j

i

(i = 0)

(j = 0)

(i = 1)

For Γ ` ϕ : F, ∆ ` ψ : F, . . . we may form the restricted
contexts (Γ, ϕ), (∆, ψ), . . .
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Composition operation

Γ ` ϕ Γ, i : I ` A Γ, ϕ, i : I ` u : A Γ ` a0 : A(i0)[ϕ 7→ u(i0)]

Γ ` a1 = compi (A, ϕ, u, a0) : A(i1)[ϕ 7→ u(i1)]

A

u

I 0 1
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Composition operation
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Composition operation

Composition is actually equivalent to filling:

A

u

I 0 1
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Composition operation

Composition is actually equivalent to filling:

A

u

I 0 1

a0



Cubical Type Theory Modelling CTT in Presheaves Modelling CTT in Internal Presheaves References

Composition operation

Composition is actually equivalent to filling:
Γ, i : I ` v = filli (A, ϕ, u, a0)

A

v

I 0 1

a0

a1
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Glueing operation I

Γ ` A Γ, ϕ ` T Γ, ϕ ` w : T → A

Γ ` GlueΓ(ϕ,T ,A,w)

Γ ` b : GlueΓ(ϕ,T ,A,w)

Γ ` unglue(b) : A[ϕ 7→ w(b)]

Γ, ϕ ` w : T → A Γ, ϕ ` t : T Γ ` a : A[ϕ 7→ w(t)]

Γ ` glue(ϕ, t, a) : GlueΓ(ϕ,T ,A,w)

s.t. judgmentally:

GlueΓ(1,T ,A,w) = T unglue(glue(ϕ, t, a)) = a
glue(1, t, a) = t glue(ϕ, b, unglue(b)) = b
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Glueing operation II

T

��

w

!!

glue(ϕ,A,T ,w)// GlueΓ(ϕ,A,T ,w)

��

unglue(ϕ,A,T ,w)

&&
ι∗ϕA

��

� � ιϕ,A // A

��
(Γ, ϕ) �

�

ιϕ
// Γ

s.t. judgmentally:

GlueΓ(1,T ,A,w) = T
glue(1,T ,A,w)(t) = t
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Cubical sets

Let C be a category such that:
1 C has finite products.
2 Ĉ has an interval object I which is representable.
3 The weakening morphism F→ FI has a right adjoint
∀ : FI → F.

We call C “the” category of cubes and Ĉ = SetC
op

“the”
category of cubical sets.
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Modelling CTT in presheaves I

Definition (Type category)

A type category consists of categories B and E with a discrete
Grothendieck fibration T : E→ B and a functor p : E→ B→
mapping T -cartesian morphisms in E to morphisms in B→ which
are pullbacks in B, such that:

E

T ��

p // B→

cod}}
B

Set B = Ĉ and EΓ =
∫̂
C Γ ' Ĉ/Γ for Γ ∈ Ĉ.
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Modelling CTT in presheaves II

Consider the classifying map (· = 1) : I→ Ω of the global
element 1 of I. Interpret the face lattice as F := im(· = 1):

I

��

(·=1) // Ω

F
/�

??

Consider ϕ : Γ→ F. Restricted contexts arise as pullbacks

Γ, ϕ //
� _

IdF(ϕ,1)
��

F
��
IdF
��

Γ
〈ϕ,1〉
// F× F

and we write [ϕ] := IdF(ϕ, 1).
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Universe of pretypes

Construct generic family E → U in Ĉ à la [HS97, Str05]:
U Grothendieck universe hosting the category C
Define U ∈ Ĉ by

U(I ) := U (C/I )op for I ∈ C,
U(u : J → I )(A) := A ◦ (Σu)op for u : J → I .

Define E over U as the presheaf

E (〈I ,A〉) := A(idI ),

E (u : 〈J, u∗A〉 → 〈I ,A〉)(a) := A(u : u → idI )(a).

N.B.: We get Ω when choosing U = {0, 1}.
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Fibrations

Definition (Composition structure (cf. [CCHM16], [OP16]))

Define the family Comp : T (UI) of composition structures as

Comp(A : UI) := (Πϕ : F)(Πp : [ϕ]→ (Πi :I)A(i))

{a ∈ A(0) | ∀u:[ϕ].p(u)(0) = a}
→ {a ∈ A(1) | ∀u:[ϕ].p(u)(1) = a}.

Externally composition structures “put lids on open boxes”.

Definition (Fibration structure (cf. [CCHM16], [OP16]))

For any context Γ define the family FibΓ : T (UΓ) of fibration
structures as

FibΓ(A) := (Πp:ΓI)Comp(A ◦ p).
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Universe of types

Define Uf ∈ Ĉ by

Uf (I ) := {A = 〈|A|, fib(A)〉 | |A| : I → U, fib(A) : FibI (|A|)}.

The universe Ef → Uf of fibrant types is obtained from
E → U by pulling back along the forgetful map Uf → U:

Ef

��

// E

��
Uf

// U
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Interpreting glueing I

T

��

w

!!

glue(ϕ,A,T ,w)// GlueΓ(ϕ,A,T ,w)

��

unglue(ϕ,A,T ,w)

&&
ι∗ϕA

��

� � ιϕ,A // A

��
(Γ, ϕ) �

�

ιϕ
// Γ

Strictness: GlueΓ(1,A,T ,w) = T and glue(1,A,T ,w) = idT
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Interpreting glueing II

Strictness issue: difficult in general toposes, cf. [OP16]. But can
be achieved in Ĉ, cf. [CCHM16], as follows. Write
G := GlueΓ(ϕ,A,T ,w) and for I ∈ C, γ ∈ Γ(I ) let

G (I , γ) :=


T (I , 〈γ, ∗〉) if ϕI (γ) = 1{
〈t, a〉 | a ∈ A(I , γ), t : [ϕ]I (γ)→ T ,

a|ϕI (γ) = ιϕ,A ◦ w ◦ t
}

otherwise

where a|ϕI (γ) is the restriction of a along the inclusion of ϕI (γ) into
y(I ).
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Interpreting glueing III
Reindexing: Let u : J → I in C. Reindexing along
u : 〈J, u∗γ〉 → 〈I , γ〉 is by case distinction:

ϕI (γ) = 1 : T (I , 〈γ, ∗〉) 3 t 7−→ u∗t ∈ T (J, 〈u∗γ, ∗〉)

ϕI (γ) 6= 1 : 〈t, a〉 7−→

{
u∗t if ϕJ(u∗γ) = 1
〈u∗t, u∗a〉 otherwise

Here u∗a = a ◦ y(u), and u∗t arises as in:

T
w // ι∗A� _

ιϕ,A
��

u∗[ϕ]I (γ)

u∗t
00

//
� _

��

[ϕ]I (γ)

t

OO

a|ϕI (γ) //
� _

��

A

��
y(J)

y(u)
// y(I ) γ

//

a

77

Γ
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Interpreting glueing IV

The map glue(ϕ,A,T ,w) : T → G is defined by:

glue(ϕ,A,T ,w)I ,γ(t) :=

{
t ϕI (γ) = 1
〈t,wI ,γ(t)〉 otherwise

The map
unglue(ϕ,A,T ,w) : G → A

over Γ is given by:

unglue(ϕ,A,T ,w)I ,γ(b) :=

{
wI ,γ(b) ϕI (γ) = 1
pr2(b) otherwise



Cubical Type Theory Modelling CTT in Presheaves Modelling CTT in Internal Presheaves References

Composition for glueing I

For a type pA : A→ Γ let PA be the type of paths in A interpreted
as follows:

PA = AI

(pA)Γ∗I
##

〈A0,A1〉 // A×Γ A

||
Γ

Define weak equivalences á la Voevodsky:

Contractibility: isContr(A : U) := (Σx : A)(Πy : A)PA(x , y)

Homotopy fiber:
hfib(A,B : U)(f : A→ B)(y : B) := (Σx : A)PB(f (x), y)

Weak equivalences: isWeq(A,B : U)(f : A→ B) := (Πy :
B)isContr(hfib(A,B, f , y)),
Weq(A,B : U) := (Σf : A→ B)isWeq(A,B, f )
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Composition for glueing II

Theorem ([CCHM16], Sec. 6.2)

Let ϕ : Γ→ F, A ∈ T (Γ× I) and T ∈ T ((Γ, ϕ)× I) have a
composition structure, and w : Weq(T , ι∗ϕA). Then
G := GlueΓ×I(ϕ,A,T ,w) ∈ T (Γ× I) also has a composition
structure.

The proof makes crucial use of u,t : I2 → I and the map
∀ : FI → F, which is right adjoint to weakening.
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Composition for the universe

Theorem ([CCHM16], Sec. 7.1)

The universe Uf is fibrant.

Proof idea: Paths in the universe can be transformed into weak
equivalences between their endpoints. Now given a partial path
T : (Γ, ϕ)→ UI and a total extension A of T (1), by glueing we get
a total type G which is a total extension of T (0):

T (0)

��

w
∼

##

glue(ϕ,A,T ,w) // G

��

unglue(ϕ,A,T ,w)

∼
��

T (1)

��

� � ιϕ,A // A

��
(Γ, ϕ) �

�

ιϕ
// Γ
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Concrete instances

Our (re)construction of the cubical set model has not required too
much about the site C and the interval object I. Nevertheless, the
only known examples are the algebraic theories of distributive
lattices and de Morgan algebras, resp.

Coquand has pointed out that in these particular cases the
construction of the cubical set model can be performed in a fairly
weak meta-theory, e.g. ETT with a sufficiently well-behaved
universe.

This allows one to construct a whole bunch of new models replacing
Set by models of sufficiently well-behaved models of ETT.
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Modelling CTT in internal presheaves

Let E be a model of ETT with a universe U containing a natural
numbers object (nno) and exact quotients of ¬¬-closed
equivalence relations.

Let C be the category internal to E which is the opposite of the
category of finitely presented free de Morgan algebras and
homomorphisms.

Then our interpretation of CTT carries over to the category of
internal presheaves ECop since we have never made any substantial
use of the subobject classifier in Ĉ.

The universe Uf is impredicative in ECop whenever U is
impredicative.
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Realizability models for CTT

Thus, in particular, we can perform the construction of the cubical
set model within E = Asm(A) for any pca A instantiating U with
the universe Mod(A).

Since Mod(A) is impredicative in E the ensuing universe Uf in
ECop is impredicative as well (cf. also recent work by Awodey, Frey
and Hofstra [Awo17, Fre17]).
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