
Bimonoidal adjunctions

Paul Taylor
Honorary Research Fellow
University of Birmingham

PSSL 101, Leeds
Saturday 16 September 2017

www.Paul Taylor.EU/slides/17-PSSL-Leeds.pdf

Web address for notes available on request.

Funded by: my late parents.



Both ends of an adjunction are equally important
Applications:
Idescent: somebody please explain this to me;
IHopf algebras: ditto;
I quantum computation: (I know whom to ask about this);
I localic locales or colocales: Steve Vickers (and me);
I linear–non-linear models: Nick Benton & Gavin Bierman

(plus ideas of mine);
I Stone duality in general: what makes the opposite of a

category of algebras suitable to be a kind of “category of
spaces”?
I building new interesting categories

There are various papers about these applications,
but they have fragmentary bits of theory.
Relevant pure theory is in very sophisticated settings
(closed, enriched or higher dimensional categories)
without a good overall explanation.



Iterating Eilenberg–Moore and its dual
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AdjunctionY� X gives monad on X gives adjunctionA� X
gives comonad onA gives adjunctionA� C gives monad on
C gives ...
Does this stabilise?

Yes, Steve Lack sent me the proof in a fax in 1999, but
apparently this is not well known.
Does it give the same result the other way?
AdjunctionY� X gives comonad onY gives adjunction
Y� D gives monad onD gives adjunction B� D gives
comonad on B gives ...
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Eilenberg–Moore commutes with its dual
A neater proof, starting with the adjunction not a monad.
Form the Eilenberg–Moore categories at each end separately:
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There’s a new adjunction F a U.
Is it monadic and comonadic? Not in general.
But it’s premonadic and precomonadic,
i.e. the comparison functors are full and faithful.
It’s monadic and comonadic if idempotents split.
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Coalgebras for a monad
I’m not sure what to call these,
but this name should make people stop and think.
Rather a lot of data:

X
-

φ
-

�� α
-

ηX
-

TX

-
Tφ

-

�� Tα
- TηX -
��

µX-
ηTX

-

TTX,

with the equations

ηX ; TηX = ηX = ηTX α ; ηX = ηTX ; Tα

ηX ; α = idX = φ ; α Tα ; α = µX ; α

α ; φ = Tφ ; µX φ ; Tφ = φ ; TηX = ηTX.

It would be nice to cut down on the data,
but it can come in handy...



Ordered monads
A KZ-monad on an ordered category satisfies

TηX ≤ ηTX.

Main property:
α : TX→ X is an algebra structure map iff α a ηX
Such monads add certain joins to order structures
(possibly with existing joins or meets).

Extension to coalgebras:
φ : X→ TX is a coalgebra structure map iff φ a α a ηX
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Continuous algebras
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FX is the lattice of ideals or lower sets.
αXU ≡

∨
U and ηXx ≡ ↓ x

φXx ≡ ↓↓ x way below
There are similar results for continuous lattices
and Richard Wood’s CCD lattices.
I’m not sure who deserves credit for this: maybe
Peter Johnstone and André Joyal 1982
Barry Fawcett and Richard Wood 1990 or Bart Jacobs 1994.
No similar characterisation for co-KZ-monads adding meets.
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Limits and colimits are hopeless!
Limits of algebras are easy, but we lose colimits.
Colimits of coalgebras are easy, but we lose limits.
So for coalgebras on algebras, we’ve lost everything!

Not so!
We take advantage of all the extra arrows in the structure...
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Colimits are easy!
If idempotents split in X then coalgebras admit whatever
colimits the base category had and the comparison functor
preserves them.

(Xi, αi, φi)
-
φi -
��.
αi

............ IXi

-
Iηi -

Iφi -
�............................

µXi

..........................
I(TXi)

(Z, γ, ω)
?

................ -
j
-

��...
q
.... I(colimAi)

Iνi

? -
Icolimηi -

I(colimφi)
- I(
∐

TAi)

Iνi

?

TT(
∐

Ai)
Iνi

�......
.......

µ

�.................

This adapts Fred Linton’s result for colimits of algebras,
but without assuming that the monad preserves reflexive
coequalisers.



Products of free coalgebras
If the objects A,B ∈ X carry algebra structures (say, α and β,
though they will play no role) then the product IA ? IB exists in
C, and is given by I(A × B), with projections Iπ0 and Iπ1.

A (A, α) × (B, β)

X
I -

U

�

C

U

-

A1 × A2
I -

U

�

(T(A × B), µA×B,TηA×B)

U

-

The functors U and U are right adjoints and so preserve limits,
in particular binary products.
Every coalgebra is an equaliser of free ones, so we should be
able to extend this result to all coalgebras.



Give me strength!
It is very unlikely that categories of coalgebras for a monad
have general equalisers.
(For example, colocales are frames with structure, their
equalisers are subframes or quotient locales, but there may be a
proper class of these, so we cannot use the Special Adjoint
Functor Theorem.)

So we’re looking for split equalisers.

These require extra structure, provided by a strength.

σX,Y : X × TX −→ T(X × Y).

This does not need to be “commutative”.



Products of coalgebras

TT(TX × Y)

f3 ≡ T(ηX × TY)
g3 ≡ T(φ × TY)

q4 -- f1 ≡ T(ηX × Y)
g1 ≡ T(φ × Y)

T(TX × TY)
� f4≡T(TX×ηY ) �
�

g4≡T(TX×ψ)

TσTX,Y
-

T(TX × Y)

p4--
�

j4
�

µTX×Y
--

TTX ? Y

TT(X × TY)

Tσ′X,TY

�
TT(X × Y)

Tσ′X,Y

�
q3

??

q1

??

T(X × TY)

g3

6

f3

6

6

� f2≡T(X×ηY ) �
�

g2≡T(X×ψ)

µX×TY
--

T(X × Y)

g1

6

f1

6

6

p2--
�

j2
�

µX×Y
--

TX ? Y

f5

6

6

q5

?

g5

6

q2 --

X ? TTY

j3

6

6
p3
??

TT(X × Y)

µX×Y

--

TσX,Y -

X ? TY

j1

6

6
p1
??

X ? Y

j

6

6
p
??

The f and g squares T(X × Y)⇒ T(TX × TY) commute.
The q squares the other way need not commute, but either
composite provides the required splitting.



The same diagram without the coalgebras
We try to define a coequaliser of algebras:

F(TA × TB)
q4 -

h4

- F(TA × B)
p4 - FTA ⊗ (B, β)

F(A × TB)

q3

?

h3

? q2 -

h2

- F(A × B)

q1

?

h1

? p2 - FA ⊗ (B, β)

q5

?

h5

?

(A, α) ⊗ FTB

p3

?? q6 -

h6

- (A, α) ⊗ FB

p1

?? p6-- (A, α) ⊗ (B, β)

p5

??

For the q-square, σ must be commutative.
This is a general reflexive coequaliser, not a split one.



Commutative and monoidal monads
The strength σ is commutative if

σTX,Y ; Tσ′X,Y = σ′X,TY ; TσX,Y : TX × TX −→ T(X × Y)

where this composite is called κX,Y.
The axioms for κ make (T, η, µ, κ) a monoidal monad.
Commutative and monoidal are equivalent,
but the diagrams are horrendous!
Yet another equivalent form:

σX,Y = ηX×TY ; (TX ⊗ µY).

Theorem: any commutative or monoidal monad that preserves
reflexive coequalisers defines tensor products of algebras and

F1 � I F(X × Y) � FX ⊗ FY.



Linear–non-linear models in Logic
Nick Benton and Gavin Bierman.
Jean-Yves Girard’s Linear Logic with of course !

A + 0 ⊗ I × 1

C

F

6

a U

?
+ 0

F

6

× 1

U

�

F

�
Eugenio Moggi’s Computational Monads



Linear–non-linear models in Mathematics
Algebras
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Carriers (all comonadic)

Algebras
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Carriers (the coalegebras are the continuous ones)



Linear–non-linear models in Mathematics
Internal algebras with other carriers
(generalised “spaces”)

AbTopGp AbAlgGp AbLocGp SLatLoc
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The underlying algebraic structure:
(we need the EM-completions of these)

AbGpop CSLatop PreFrmop
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Stone duality
Familiar picture with multiplication over addition:

CRing Frm Frm
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Stone duality
Turning it upside down:

Setop Dcpoop Dcpoop
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Setop � CRingop is already bi-monadic.
We replace Dcpoop by the EM-completion,
which we call localic frames
and its opposite localic locales or colocales.
CSLat and PreFrm also need to be EM-completed.



Stone duality
Turning it upside down again:

Frm CoLocop

A

F
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A
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whereA is the EM-completion of either CSLat or PreFrm.



Composing monads
Jon Beck’s distributive law δ : ST→ TS.
Algebras for the composite monad (e.g. rings or frames)
are equivalent to
algebras for each monad (sum/join and product/meet)
compatible with the distributive law δ.

Coalgebras for the composite monad (e.g. rings or frames)
are equivalent to
coalgebras for each monad
compatible with the inverse δ−1.
The powerlocales commute, i.e. the distributive law has an
inverse.
Richard Wood: upper and lower subsets have distribitivities
but they’re adjoint, not inverse.
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Linear–non-linear models again
The algebras may have a dualising object:

CSLat
(−)(Ω-
��

(−)(Ω
CSLatop

Set

6

a

? Ω(−)
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Setop

6

a

?

Set→ CSLat is the covariant powerset.
Set→ Setop is the contravariant powerset.
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What about the two powerlocales?
Maybe we have to use both.
Self-duality would swap them round, like Chu.
Monadic Chu for the spaces (as in my talk in Cork).
Fertile ground for new interesting categories.
Finitary Properties of categories of “spaces”
without using anything like set theory.
Therefore potentially with a recursive version.


