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Definition
Suppose we are given maps f and g in a category C, as below:

A

f
��

X

g
��

B Y

A lifting problem of f against g is a commutative square with f on
the left and g on the right.
A filler of a lifting problem is a diagonal map from B to X making
two commutative triangles.
We say f has the left lifting property against g and g has the right
lifting property against f and write f t g if every lifting problem
has a filler.
We say a class of maps R is cofibrantly generated if for some fixed
set I , g belongs to R precisely when f t g for all f ∈ I .
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Definition (Grothendieck)

Let p : E→ B be a functor. We say p is a (cloven) (Grothendieck)
fibration if for every morphism σ : I → J in B and every Y ∈ EJ we
have a choice of object σ∗(Y ) over I together with a cartesian
map σ̄ : σ∗(Y )→ Y over σ.

Definition
We say a map f : X → Y is vertical over I if p(f ) = 1I .

The fibre category over I , EI consists of objects X such that
p(X ) = I together with vertical maps over I .



Example

Let C be any category. We write FamSet(C) for the following
category.

An object of FamSet(C) consists of any set I , together with a
family of objects (Xi )i∈I with each Xi an object of C.

A morphism from (Xi )i∈I to (Yj)j∈J is a function σ : I → J
together with a family of morphisms (fi )i∈I , with each fi a
morphism Xi → Yσ(i) in C.
The forgetful functor p : FamSet(C)→ Set sending (Xi )i∈I to I is a
Grothendieck fibration.



Example

A map in the arrow category C→ is cartesian over the codomain
functor cod: C→ → C if and only if it is a pullback (as a square in
C).

(So this is a fibration if and only if C has all pullbacks.)

The fibre category over A ∈ C is the slice category C/A.

Example

A category indexed family is a small category A together with a
functor X : A → C. A morphism from X : A → C to Y : B → C is
a functor χ : A → B together with a natural transformation
α : X ⇒ Y ◦ χ.

This forms a fibration FamCat(C)→ Cat (with cartesian maps
given by composition).

The fibre category over A ∈ Cat is the functor category [A,C].
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Definition
Let f : X → Y be a vertical map over I ∈ B and g : W → Z a
vertical map over J ∈ B. A family of lifting problems of f against
g consists of

1. An object K of B.

2. Maps σ : K → I and τ : K → J in B.

3. A commutative square of vertical maps over K , of the
following form:

σ∗(X )

σ∗(f )
��
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A solution, or family of fillers of the lifting problems consists of a
diagonal map σ∗(Y )→ τ∗(W ) making two commutative triangles.
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Example

For FamSet(C)→ Set, a family of lifting problems of (fi )i∈I
against (gj)j∈J consists of a set K , together with σ : K → I and
τ : K → J and for each k ∈ K , a square in C of the following form:

Xσ(k)

fσ(k)
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//Wτ(k)

gτ(k)

��
Yσ(k)

// Zτ(k)

A solution is a choice of diagonal filler jk for each k.
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Theorem
Suppose p : E→ B is locally small and B has pullbacks. The
following are equivalent.

1. Every family of lifting problems of f against g has a solution.

2. A single universal family of lifting problems has a filler.

3. There is a coherent choice of fillers for all families of lifting
problems.

This applies to set indexed families and category indexed families
on C precisely when C is locally small, and applies to codomain
fibrations on C precisely when C is locally cartesian closed.



Note that any map g : W → Z in C can be viewed as a family of
maps indexed by 1 in FamCat(C) and FamSet(C), or as a map in
the slice category C/1.

Definition
We say a class of morphisms X in E1 is cofibrantly generated if
for some I ∈ B and some map f : X → Y in EI , g ∈X if and only
if the universal lifting problem of f against g has a solution.

We say a category D with functor D→ E→1 is cofibrantly
generated if D is isomorphic over E→1 to the category consisting of
pairs (g , j) where g is a map in E1 and j is a solution to the
universal lifting problem against f .
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Example (Quillen)

Applying this to set indexed families and assuming the axiom of
choice recovers the classical notion of cofibrantly generated by
Quillen.
This includes Kan fibrations in simplicial sets, Serre fibrations in
topological spaces and many other examples.

Example (Garner)

Applying this to category indexed families recovers Garner’s notion
of algebraic lifting problem and algebraically cofibrantly generated.

In turn this includes set indexed family cofibrantly generated as a
special case as well as Kan fibrations and trivial fibrations in BCH
cubical sets and CCHM cubical sets, and many other examples
from homotopical algebra and elsewhere.



Example (Van den Berg and Frumin, Orton and Pitts)

Van den Berg and Frumin consider the following classes of maps.
Let D be a class of maps closed under pullback (e.g. all
monomorphisms). Let X be maps with the rlp against every
element of D . Let e0, e1 : 1⇒ I be an interval object in C and let
Y be the class of maps with rlp against ei ×̂f for each f ∈ D and
i ∈ {0, 1}.
Suppose there exists a universal map > : 1→ Σ in D (i.e. every
map in D is a pullback of >). Then X and Y are both
cofibrantly generated w.r.t. the codomain fibration by the following
families of maps over Σ:

1

> ��

> // Σ

1Σ��
Σ

I +1 Σ

""

ei ×̂> // I× Σ

π1
||

Σ

By writing out the universal lifting problems explicitly we see this is
the same as a class of maps studied by Orton and Pitts.



Theorem (Garner)

Let C be a cocomplete category and suppose that for every X ∈ C
the functor C(X ,−) preserves λ-filtered colimits for some regular
cardinal λ.
Then, for each vertical map f we get a functorial factorisation
(L,R) over category indexed families, such that:

1. R induces a monad and L induces a comonad on vertical
maps in E.

2. R-Algebra structures on g correspond precisely to solutions of
the universal lifting problem of g against f .

We say (L,R) is an algebraic weak factorisation system (awfs)
cofibrantly generated by f .

I C needs to be cocomplete.

I Gitik has proved it is consistent with ZF that ω is the only
regular cardinal.
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Theorem (S)

Let C be a topos with natural number object satisfying WISC.
Consider the codomain fibration on C. Then, for each vertical map
f the algebraic weak factorisation system cofibrantly generated by
f exists.

Remark
WISC (weakly initial set of covers) is a choice axiom, but a very
weak one.
Van den Berg and Moerdijk have proved that WISC is stable under
a large number of constructions and in particular holds in all
Grothendieck toposes, all realizability toposes and internal
presheaves in realizability toposes (assuming it holds in the
background theory).



Garner’s argument is a transfinite iteration of step 1 along a
regular ordinal λ.

One way to phrase the construction is “freely adding a filler for
every lifting problem.” This involves adding elements for the image
of the filler, and then quotienting to make the upper triangle
commute and ensure that every filler is only added once. Adding
new elements and quotienting both add new lifting problems.

I To avoid the use of cocompleteness, we need to work
internally in the topos.

I Ordinals are difficult to use internally in a topos, so instead we
use W -types which have well understood categorical
semantics.

I Alternating between adding new elements and quotienting is
difficult to do with W -types, so instead we add all elements in
one go, and then quotient once at the end.

I By using WISC we can ensure that we are now finished and
no new elements have to be added after quotienting.
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The general framework allows us to compare the new internal
constructions with preëxisting work.



Observation
In Garner’s notion of cofibrantly generated, the generating
cofibrations are a functor A → C→ and the solutions to the lifting
problem need to be natural with respect to morphisms in A (this is
referred to as uniformity). Nothing like this appears in the work of
Van den Berg and Frumin and Pitts and Orton.

Explanation

The base of the codomain fibration is just objects of C with no
addition structure. This makes it closer to FamSet(C) than
FamCat(C) in some ways.

We could also consider internal versions of FamCat(C) where the
base consists of internal categories in C, but this is unnecessary -
many models of type theory including the CCHM model can be
understood using cod directly.



Observation
Over FamCat(C) we have to choose the generating cofibrations
carefully (making essential use of uniformity) to satisfy Gambino
and Sattler’s requirement that cofibrations are algebraically stable
under pullback. This is not required by Van den Berg and Frumin
or Pitts and Orton.

Explanation

Pullback stability is inherent in the codomain fibration, and
stability of cofibrations is closely linked to coherence. One can
show under certain conditions that if the generating family of
cofibrations is a map into the terminal object of its slice category,
then cofibrations are stable under pullback.



Observation
Garner’s definitions (and older notions due to Quillen) refer to a
notion of set and category which are external to C. In particular,
Garner’s small object argument makes essential use of the
existence of all small (set sized) colimits in C. A non trivial colimit
appears already in step one of the small object argument.

Explanation

The base of the category indexed family fibration consists of all
small categories, most of which have nothing to do with C,
whereas the base of the codomain fibration is just C itself.

The opcartesian maps in FamCat(C) are given by left Kan
extension, whereas the opcartesian maps in cod are simply given by
composition.



Observation
Garner’s results work with many categories that are not necessarily
cartesian closed whereas dependent products play an essential role
in the codomain fibration.

Explanation

There is a general notion of Hom object in fibrations, such that
Hom objects are unique if they exist. If all Hom objects exist we
say the fibration is locally small.

FamCat(C) is locally small if and only if C is locally small, with
Hom objects defined as comma categories.

cod is locally small if and only if C is locally cartesian closed with
Hom objects defined as local exponentials.



Observation
Results by Sattler and Gambino refer to a monoidal product on C
that can be, but doesn’t need to be cartesian product. Results by
Van den Berg and Frumin and Pitts and Orton only apply to
cartesian product.

Explanation

Any monoidal product on C lifts to a fibred monoidal product over
category indexed families, which is simply defined pointwise.

Monoidal products that are fibred over the codomain fibration are
more difficult to construct, with the exception of cartesian product
which extends to a fibred product simply given by pullback.



Summary:

I A general notion of lifting problem in Grothendieck fibrations
can be applied to category indexed families or codomain
fibrations to give short definitions of many interesting classes
of maps.

I Step 1 of the small object argument applies in any locally
small bifibration and is uniquely determined up to
isomorphism.

I Cofibrantly generated algebraic weak factorisation systems
exist over the codomain fibration of many interesting
categories.

Thank you for your attention!


