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λ-directed colimits
∐
j∈J Kj →

∐
i∈I Ki , where J are subsets of I of

cardinality less than λ will be called coproduct λ-directed colimits.

Let K be a category with coproducts and λ a regular cardinal. An
object A of K will be called barely λ-presentable its hom-functor
K(A,−) : K → Set preserves coproduct λ-directed colimits.

This means that K(A,−) sends coproduct λ-directed colimits to
λ-directed colimits and not to coproduct λ-directed ones (because
K(A,−) does not preserve coproducts).

If coproduct injections are monomorphisms then A is barely
λ-presentable if and only if for every morphism f : A→

∐
i∈I Ki

there is a subset J of I of cardinality less than λ such that f
factorizes as A→

∐
j∈J Kj →

∐
i∈I Ki where the second morphism

is the subcoproduct injection.

Coproduct injections are very often monomorphisms, for instance
in any pointed category. However, in the category of commutative
rings, the coproduct is the tensor product and the coproduct
injection Z→ Z⊗ Z/2 ∼= Z/2 is not a monomorphism.



λ-directed colimits
∐
j∈J Kj →

∐
i∈I Ki , where J are subsets of I of

cardinality less than λ will be called coproduct λ-directed colimits.

Let K be a category with coproducts and λ a regular cardinal. An
object A of K will be called barely λ-presentable its hom-functor
K(A,−) : K → Set preserves coproduct λ-directed colimits.

This means that K(A,−) sends coproduct λ-directed colimits to
λ-directed colimits and not to coproduct λ-directed ones (because
K(A,−) does not preserve coproducts).

If coproduct injections are monomorphisms then A is barely
λ-presentable if and only if for every morphism f : A→

∐
i∈I Ki

there is a subset J of I of cardinality less than λ such that f
factorizes as A→

∐
j∈J Kj →

∐
i∈I Ki where the second morphism

is the subcoproduct injection.

Coproduct injections are very often monomorphisms, for instance
in any pointed category. However, in the category of commutative
rings, the coproduct is the tensor product and the coproduct
injection Z→ Z⊗ Z/2 ∼= Z/2 is not a monomorphism.



λ-directed colimits
∐
j∈J Kj →

∐
i∈I Ki , where J are subsets of I of

cardinality less than λ will be called coproduct λ-directed colimits.

Let K be a category with coproducts and λ a regular cardinal. An
object A of K will be called barely λ-presentable its hom-functor
K(A,−) : K → Set preserves coproduct λ-directed colimits.

This means that K(A,−) sends coproduct λ-directed colimits to
λ-directed colimits and not to coproduct λ-directed ones (because
K(A,−) does not preserve coproducts).

If coproduct injections are monomorphisms then A is barely
λ-presentable if and only if for every morphism f : A→

∐
i∈I Ki

there is a subset J of I of cardinality less than λ such that f
factorizes as A→

∐
j∈J Kj →

∐
i∈I Ki where the second morphism

is the subcoproduct injection.

Coproduct injections are very often monomorphisms, for instance
in any pointed category. However, in the category of commutative
rings, the coproduct is the tensor product and the coproduct
injection Z→ Z⊗ Z/2 ∼= Z/2 is not a monomorphism.



λ-directed colimits
∐
j∈J Kj →

∐
i∈I Ki , where J are subsets of I of

cardinality less than λ will be called coproduct λ-directed colimits.

Let K be a category with coproducts and λ a regular cardinal. An
object A of K will be called barely λ-presentable its hom-functor
K(A,−) : K → Set preserves coproduct λ-directed colimits.

This means that K(A,−) sends coproduct λ-directed colimits to
λ-directed colimits and not to coproduct λ-directed ones (because
K(A,−) does not preserve coproducts).

If coproduct injections are monomorphisms then A is barely
λ-presentable if and only if for every morphism f : A→

∐
i∈I Ki

there is a subset J of I of cardinality less than λ such that f
factorizes as A→

∐
j∈J Kj →

∐
i∈I Ki where the second morphism

is the subcoproduct injection.

Coproduct injections are very often monomorphisms, for instance
in any pointed category. However, in the category of commutative
rings, the coproduct is the tensor product and the coproduct
injection Z→ Z⊗ Z/2 ∼= Z/2 is not a monomorphism.



λ-directed colimits
∐
j∈J Kj →

∐
i∈I Ki , where J are subsets of I of

cardinality less than λ will be called coproduct λ-directed colimits.

Let K be a category with coproducts and λ a regular cardinal. An
object A of K will be called barely λ-presentable its hom-functor
K(A,−) : K → Set preserves coproduct λ-directed colimits.

This means that K(A,−) sends coproduct λ-directed colimits to
λ-directed colimits and not to coproduct λ-directed ones (because
K(A,−) does not preserve coproducts).

If coproduct injections are monomorphisms then A is barely
λ-presentable if and only if for every morphism f : A→

∐
i∈I Ki

there is a subset J of I of cardinality less than λ such that f
factorizes as A→

∐
j∈J Kj →

∐
i∈I Ki where the second morphism

is the subcoproduct injection.

Coproduct injections are very often monomorphisms, for instance
in any pointed category. However, in the category of commutative
rings, the coproduct is the tensor product and the coproduct
injection Z→ Z⊗ Z/2 ∼= Z/2 is not a monomorphism.



Any λ-presentable object is barely λ-presentable. We say that A is
barely presentable if it is barely λ-presentable for some λ.

A cocomplete category K will be called barely locally λ-presentable
if it is strongly co-wellpowered and has a strong generator
consisting of barely λ-presentable objects.
A category is barely locally presentable if it is barely locally
λ-presentable for some regular cardinal λ.

This concept was introduced by L. Positselski and J. Šťovíček for
abelian categories. Since any abelian category with a generator is
co-wellpowered, strong co-wellpoweredness does not need to be
assumed there.

Any locally λ-presentable category is barely locally λ-presentable.
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A category K has λ-directed unions if for any λ-directed set of
subobjects (Ki )i∈I of K the induced morphism colimi∈I Ki → K is
a monomorphism. The following result was proved by Positselski
and Šťovíček for abelian categories and for λ = ℵ0.

Proposition 1. Any barely locally λ-presentable regular category
has λ-directed unions.

We say that K has coproduct λ-directed unions if for every
coproduct λ-directed colimit

∐
j∈J Kj →

∐
i∈I Ki , every morphism∐

i∈I Ki → K whose compositions with
∐
j∈J Kj →

∐
i∈I Ki are

monomorphisms is a monomorphism.

Proposition 2. Any barely locally λ-presentable category has
coproduct λ-directed unions.

Proposition 3. Let K be a locally presentable category such that
Kop has coproduct λ-directed unions for some regular cardinal λ.
Then K is equivalent to a complete lattice.

Thus a non-trivial locally presentable category cannot have the
barely locally presentable dual.
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Theorem 1. Any barely locally λ-presentable abelian category is
locally presentable.

Theorem 2. Any barely locally presentable regular category is
bounded.

Corollary 1. Vopěnka’s principle is equivalent to the fact that any
barely locally presentable regular category is locally presentable.

In fact, under Vopěnka’s principle, every cocomplete bounded
category is locally presentable.

Conversely, from the negation of Vopěnka’s principle, we construct
artificial examples of regular barely locally presentable categories
which are not locally presentable.

Problem. Is there a barely locally presentable category which is
not locally presentable in ZF?
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Let Prox be the category of proximity spaces and proximally
continuous mappings and Unif the category of uniformity spaces
and uniformly continuous mappings.

Prox is isomorphic to the full subcategory of Unif consisting of
totally bounded uniformity spaces. A uniformity space is totally
bounded if every uniform cover has a finite subcover.

A proximity space is separated if its underlying topology is
Hausdorff.

Lemma 1. Every separated proximity space is barely presentable in
Proxop.

In fact, A is barely λ+-presentable where λ is its uniform character
(Hušek 1973), i.e., the smallest cardinality of a base of uniform
covers of A.
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Proxop is regular but not barely locally presentable because trivial
proximity spaces (any two non-empty subsets are near) are not
barely presentable in Proxop and

Lemma 2. Let K be a barely locally presentable category with
pullbacks such that coproduct injections are monomorphisms.
Then any object of K is barely presentable.

Let Prox0 be the full subcategory of Prox consisting of separated
spaces.

R is a cogenerator in Prox0 because any separated proximity space
is a subspace of powers of R. But it is not a strong cogenerator in
Prox0 because strong monomorphisms in Prox0 are closed
embeddings.

Let ProxR be the full subcategory of Prox0 consisting of closed
subspaces of powers of R.

Proposition 4. ProxopR is barely locally ℵ1-presentable.

R is a strong cogenerator in ProxopR and has uniform character ℵ0.
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Proposition 5. Assuming Vopěnka’s principle, ProxopR is locally
presentable.

Any K in ProxR induces a realcompact topological space. The
category of proximity spaces is isomorphic to the category K whose
objects are triples (X , bX , f ) where f : X → bX is an embedding
of X to its compactification, i.e., f makes X a dense subspace of a
compact space bX . Consider the functor G : Kop → Ring→
sending (X , bX , f ) to the monomorphism C (f ) : C (bX )→ C (X )
where C (X ) is the ring of continuous functions X → R. This
makes Kop isomorphic to a full subcategory of the category Ring→

of morphisms of rings. Since the latter is locally presentable,
Vopěnka’s principle implies that Kop is locally presentable.

We do not know whether the local presentability of ProxopR
depends on set theory.
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depends on set theory.



Only singletons are presentable in the dual of the category of
topological spaces.

Lemma 3. Every separated uniform space is presentable in Unifop.

A uniform space is barely λ+-presentable in Unifop where λ is its
uniform character. This follows from the fact that any uniformly
continuous mappings from a subspace of a product depends on λ
many coordinates (Vidossich 1970). This is not true for proximity
spaces (Hušek 1973).

Let Unif1 be the full subcategory of Unif consisting of subspaces
of powers of R. Spaces from Unif1 are rather special, any has the
uniform character < ℵ1. Let UnifR be the full subcategory of
Unif1 consisting of closed subspaces of powers of R.

Proposition 6. UnifopR is locally ℵ1-presentable.
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Proposition 7. Any barely locally presentable category with
pullbacks is complete.

We do not know whether any barely locally presentable category is
complete.

Proposition 8. Let λ1 < λ2 be regular cardinals. Then any barely
λ1-presentable category is barely λ2-presentable.

Proposition 9. Let K be a barely locally λ-presentable category
and C be a small category. Then the functor category KC is barely
locally λ-presentable.
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